利用体细胞核移植技术生产转基因绒山羊的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绒山羊体细胞核移植技术的研究目前处于刚刚起步阶段。本实验初步建立了转基因绒山羊克隆技术体系,并探讨了不同类型细胞对绒山羊克隆效率的影响,同时对转基因绒山羊进行了初步的鉴定以及生产性能检测。
     1.绒山羊体细胞核移植技术的建立:
     成功体外培养并且保存了四个胎儿来源的绒山羊胎儿成纤维细胞(caprine fetal fibroblast cells,CFC)以及两个成体耳尖成纤维细胞(caprine ear fibroblast cells, CEFC),并通过SRY-PCR方法鉴定了CFCs的性别。使用本实验室构建成功的真核表达载体通过脂质体转染CFC,经G418筛选获得了多个CFCs转基因细胞系(transgenic caprine fetal fibroblast cells, TCFC)。 TCFC高效表达外源标记基因红色荧光蛋白,且生长里旺盛,经PCR鉴定外源目的基因已经稳定整合入TCFC基因组中。
     在检测转基因克隆胚胎发育能力时,绒山羊卵母细胞成熟率为72.6%(420/578),通过体细胞核移植获得重构胚胎419枚,卵裂率为86.1%(361/419),囊胚率为14.8%(62/419),克隆胚胎卵裂较为均匀并且高效表达红色荧光蛋白。2009年秋季进行了大规模的胚胎移植实验,共采集卵细胞6732枚,成熟率为65.1(4380/6732),融合处理重构胚胎3568枚,融合率为62.8%(2241/3568),卵裂率为54.9(1231/2241),移植胚胎924枚,移植受体273只(次),获得转基因及体细胞克隆动物20只。
     2.供体细胞类型和受体羊条件对绒山羊体细胞核移植效率的影响:
     本实验主要以不同种类成纤维细胞为核供体研究细胞类型以及受体山羊排卵数对绒山羊体细胞核移植效率的影响。分别使用不同个体来源胎儿成纤维细胞(Caprine Fetal Fibroblast Cells CFC)、耳尖成纤维细胞(Caprine Ear Fibroblast Cells, CEFC)、转基因胎儿成纤维细胞(Caprine Fetal Fibroblast Cells, TCFC)为核供体进行核移植操作,比较成纤维细胞来源、类型、转基因与否以及性别对融合率、卵裂率、出生率、出生后存活率以及死亡率的影响。共获得4943枚重构胚胎,其中融合3949枚,体外培养3737枚,共卵裂3094枚,1873枚形态较好的克隆胚胎进行了胚胎移植实验,共移植受体羊368只,出生48只,存活35只。不同类型与来源供体细胞其克隆效率不尽相同,其中胎儿成纤维细胞来源胚胎其克隆效率高于耳尖成纤维细胞来源胚胎,非转基因克隆胚胎效率高于转基因克隆胚胎,雄性细胞来源胚胎克隆效率高于雌性细胞来源胚胎,表明供体细胞的类型是决定克隆效率的重要因素之一。
     克隆胚胎的卵裂率与羔羊出生率以及出生后存活率具有正相关性,并且早期克隆胚胎的发育能力与体细胞核移植效率具有一定的相关性。在分析不同年份克隆效率的波动时,发现受体母羊排卵点的多少也影响了克隆胚胎的移植受胎率。
     3.转基因克隆绒山羊的鉴定与生产性能检测:
     分别统计并分析了不同细胞来源的克隆羔羊妊娠天数与初生重的区别,并对转基因羔羊进行初步鉴定,检测分析了转基因克隆绒山羊的生产性能。结果表明不同细胞系来源的羔羊其妊娠天数也不尽相同,TCFC4细胞来源的克隆羔羊妊娠天数最长为平均157.5天,普通体细胞克隆羔羊妊娠天数最短只有152.3天。即使相同细胞系来源的克隆羔羊妊娠天数与出生重也不尽相同,尤其是在转基因细胞系来源的羔羊中存在较大的波动。
     所有个体经PCR检测发现,外源目的基因IC片段与筛选基因Neo片段均稳定整合。最终获得的转基因动物的标记基因共出现三种表达情况:1、转基因羔羊的表型和耳尖分离培养的细胞均能观察到红色荧光;2、个体表型没有红色荧光,但分离培养的细胞具有荧光;3、个体表型和细胞均观察不到荧光。对同样来自CFC3细胞系的普通体细胞克隆羔羊、转IGF-1基因羔羊、转VEGF基因羔羊的生产性能进行了检测,发现转VEGF基因的绒山羊产绒量得到较大的提高。
It is just beganning of somatic cell nuclear transfer (SCNT) on cashmere goat, here we established the SCNT on transgenic cashmere goat, and the influence of cell types on cloning efficiency of cashmere goat was investigated. Finally the identification and production performance testing of cloned transgenic cashmere goats were proceeded.
     1The establishment of cashmere goats SCNT:
     The fibroblast cells from four caprine fetals(caprine fetal fibroblast cells,CFC) and2adults ears(caprine ear fibroblast cells, CEFC) were cultured, and the genders of them were distinguished by SRY-PCR. Transgenic caprine fetal fibroblast cells(transgenic caprine fetal fibroblast cells, TCFC) were obtained after transfected with eukaryotic expression vector and screened with G418. Red fluorescence could be detectable in the TCFCs, and the results of PCR demonstrated the exogous gene was integrated stably. SCNT was performed with these TCFCs utilized as the nucleus donors. The rate of oocyte IVM was72.6%(420/578), and419reconstructed embryos were harvested. In the piriod of in vitro development,86.1%(361/419) oocyte cleavage rate and14.8%(62/419) blastula rate were obtained, while the red fluorescence could be obseved in all blastulas. Another SCNT and embryo transfer were performed in2009. Here we harvested6732oocytes,65.1%(4380/6732) of them had matured in vitro,and3568enucleated oocytes were fusioned with TCFCs and CFCs, the rate of fusion and cleavage were62.8%(2241/3568) and54.9%(1231/2241) respectively. Totally924embryos were transfered into273recipients, and20kids were born.
     2.The affect of donor cell types and recipients condition on cashmere goat SCNT efficiency:
     The efficiency of donor cell types in cashmere goat SCNT was undefined. In this study, SCNT was performed using CFCs, CEFCs and TCFCs as donor cells to compare the influences of cell type, transgene and sex of nuclear donor fibroblast cells on the SCNT efficiency including fusion and cleavage rates of reconstructed embryos and the birth, postnatal survival and mortality rates of cloned kids. A total of4943reconstructed embryos were obtained. Among them,3949embryos were fused, and3737embryos were cultured in vitro leading to a total of3094cleavage embryos. Furthermore, embryo transplantation analysis was conducted on1873cloned embryos with relatively normal morphology, and368recipient goats were transplanted and48kids were born, of which,35kids survived. The SCNT efficiency of CFCs cell-derived embryos was higher than that of CEFCs-derived embryos, and the cloning efficiency of non-transgenic cloned embryo was higher than that of transgenic cloned embryos. Also, the SCNT efficiency of male cell-derived embryos was higher than that of female cell-derived embryos. High oocytes cleavage rates predicted high birth rates and postnatal survival rates. The results indicated that the donor cell types of cashmere goats affected the clone efficience, and connections existed between the clone embryos early development ability and the SCNT efficience. The physiology condition (ovulation number) of recipients also affected the clone efficience.
     3. The Identification and production performance testing of cloned transgenic cashmere goats:
     The days of gestation and weight of newborn of cloned kids from different cells were recorded and analyzed. We also identified the transgenic kids and tested the production preformance. There was difference between the kids from various cells on days of gestation:the ones cloned from RCFC4was the longest,157.5days, while the ones cloned from ordinary somatic cells was the shortest,152.3days. Even though the kids cloned with same donors were various in days of gestation and weight of newborn, and this was more obvious in ones from transgenic cells. The red fluorescence could be observed on phenotype of some kids and the cells separated from ear apex tissues of these ones, while it could be detected in cells rather than phenotype of some others, and no fluorescence could be found in both cells or phenotype of remains, although the the IC and Neo fragment included in the exogous gene could be amplified from all cells. In the production performance testing of goats cloned from ordinary, transfected with IGF-1and VEGF CFC3cells, we found that the VEGF transfected goats had the greater improvement on cashmere production.
引文
[1]Wilmut, I., A.E. Schnieke, J. Mc Whir, etc., Viable offspring derived from fetal and adult mammalian cells. Nature,1997.385(6619):810-3.
    [2]Schnieke, A.E., A.J. Kind, W.A. Ritchie, etc., Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997.278(5346):2130.
    [3]Keefer, C.L., Lessons learned from nuclear transfer (cloning). Theriogenology, 2008.69(1):48-54.
    [4]Akagi, S., M. Geshi and T. Nagai, Recent progress in bovine somatic cell nuclear transfer. Anim Sci J,2013.84(3):191-9.
    [5]Piedrahita, J.A. and N. Olby, Perspectives on transgenic livestock in agriculture and biomedicine:an update. Reproduction, Fertility and Development,2010.23(1):56-63.
    [6]Kues, W.A. and H. Niemann, Advances in farm animal transgenesis. Prev Vet Med,2011.102(2):146-56.
    [7]Kato, Y. and Y. Tsunoda, Role of the donor nuclei in cloning efficiency:can the ooplasm reprogram any nucleus? Int J Dev Biol,2010.54(11-12):1623-9.
    [8]Guo, X.D., D.S. Yang, X.D. Ao, etc., Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer. Science in China Series C:Life Sciences,2009.52(4):390-397.
    [9]Chen, D., J. Li, Z. Han, etc., Somatic cell bovine cloning:Effect of donor cell and recipients. Chinese Science Bulletin,2003.48(6):549-554.
    [10]Heidari, B., A. Shirazi, P. Tajic, etc., Effect of donor cell age on development of ovine nuclear transfer embryos in vitro. Zygote,2010.18(04):331-338.
    [11]Hosseini, S., F. Moulavi, M. Foruzanfar, etc., Effect of donor cell type and gender on the efficiency of in vitro sheep somatic cell cloning. Small Ruminant Research,2008.78(1):162-168.
    [12]Batchelder, C.A., K.A. Hoffert, M. Bertolini, etc., Effect of the nuclear-donor cell lineage, type, and cell donor on development of somatic cell nuclear transfer embryos in cattle. Cloning and stem cells,2005.7(4):238-254.
    [1]Palmiter, R.D., R.L. Brinster, R.E. Hammer, etc., Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes.1982.
    [2]Wilmut, I., A.E. Schnieke, J. McWhir, etc., Viable offspring derived from fetal and adult mammalian cells. Nature,1997.385(6619):810-3.
    [3]Schnieke, A.E., A.J. Kind, W.A. Ritchie, etc., Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science,1997. 278(5346):2130.
    [4]Kato, Y. and Y. Tsunoda, Role of the donor nuclei in cloning efficiency:can the ooplasm reprogram any nucleus? Int J Dev Biol,2010.54(11-12):1623-9.
    [5]Guo, X., J. Yin, D. Yang, etc., Construction of a hair-follicle-cell-specific expression vector of IGF-1 and its transfection into caprine fetal fibroblasts cells. Acta Veterinaria et Zootechnica Sinica,2009.40(10):1460-1467.
    [6]Guo, X.D., D.S. Yang, X.D. Ao, etc., Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer. Science in China Series C:Life Sciences,2009.52(4):390-397.
    [7]金永,毛囊细胞特异表达胸腺素β4基因转基因绒山羊研究2011,内蒙古大学:中国优秀硕士学位论文全文数据库.
    [8]马玉珍,扈廷茂,王建国,等,绵羊胎儿成纤维细胞体外培养及转基因研究.中国实验动物学报,2003.11(4):p.195-198.
    [9]Baguisi, A., E. Behboodi, D.T. Melican, etc., Production of goats by somatic cell nuclear transfer. Nat Biotechnol,1999.17(5):456-61.
    [10]Behboodi, E., E. Memili, D.T. Melican, etc., Viable transgenic goats derived from skin cells. Transgenic Research,2004.13(3):215-224.
    [11]Bai, C., L. Zhang, X. Wu, etc., Generation of a Cloned Inner Mongolia Cashmere Goat by Somatic Cell Nuclear Transfer. Journal of Inner Mongolia University (Natural Science Edition),2011.
    [12]Melican, D., R. Butler, N. Hawkins, etc., Effect of serum concentration, method of trypsinization and fusion/activation utilizing transfected fetal cells to generate transgenic dairy goats by somatic cell nuclear transfer. Theriogenology, 2005.63(6):1549-63.
    [13]Jitong, G., A. Zhixing, L. Yu, etc., Cloned goats (Capra hircus) from adult ear cells. Science in China Series C:Life Sciences,2002.45(3):260-267.
    [14]Hosseini, S., F. Moulavi, M. Foruzanfar, etc., Effect of donor cell type and gender on the efficiency of in vitro sheep somatic cell cloning. Small Ruminant Research,2008.78(1):162-168.
    [15]李松,丁方荣,戴蕴平等,不同转染方法转染牛体细胞效率的比较.农业生物技术学报,2011.19(6):p.1027-1033.
    [16]金永,袁建龙,朱兵等,不同激活方法对绒山羊卵母细胞孤雌发育的影响.农业生物技术学报,2011.19(3):p.495-500.
    [1]Wilmut, I., A.E. Schnieke, J. McWhir, etc., Viable offspring derived from fetal and adult mammalian cells. Nature,1997.385(6619):810-3.
    [2]Schnieke, A.E., A.J. Kind, W.A. Ritchie, etc., Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science, 1997.278(5346):2130-3.
    [3]Lai, L., J.X. Kang, R. Li, etc., Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol,2006.24(4):435-6.
    [4]Brophy, B., G. Smolenski, T. Wheeler, etc., Cloned transgenic cattle produce milk with higher levels of bold beta-casein and kappa-casein. Nature Biotechnology,2003.21:157-162.
    [5]Piedrahita, J.A. and N. Olby, Perspectives on transgenic livestock in agriculture and biomedicine:an update. Reproduction, Fertility and Development,2010.23(1):56-63.
    [6]Kato, Y. and Y. Tsunoda, Role of the donor nuclei in cloning efficiency:can the ooplasm reprogram any nucleus? Int J Dev Biol,2010.54(11-12):1623-9.
    [7]Jang, G., E.S. Park, J.K. Cho, etc., Preimplantational embryo development and incidence of blastomere apoptosis in bovine somatic cell nuclear transfer embryos reconstructed with long-term cultured donor cells. Theriogenology, 2004.62(3):512-521.
    [8]Keefer, C.L., Lessons learned from nuclear transfer (cloning). Theriogenology, 2008.69(1):48-54.
    [9]Zakhartchenko, V., S. Mueller, R. Alberio, etc., Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Molecular reproduction and development,2001.60(3):362-369.
    [10]Chen, D., J. Li, Z. Han, etc., Somatic cell bovine cloning:Effect of donor cell and recipients. Chinese Science Bulletin,2003.48(6):549-554.
    [11]Kato, Y., T. Tani and Y. Tsunoda, Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. Journal of reproduction and fertility,2000.120(2):231-237.
    [12]Sung, L.Y., S. Gao, H. Shen, etc., Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nature genetics, 2006.38(11):1323-1328.
    [13]Wakayama, T. and R. Yanagimachi, Mouse cloning with nucleus donor cells of different age and type. Molecular reproduction and development,2001. 58(4):376-383.
    [14]Powell, A., N. Talbot, K. Wells, etc., Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biology of reproduction, 2004.71(1):210-216.
    [15]Srirattana, K., C. Lorthongpanich, C. Laowtammathron, etc., Effect of donor cell types on developmental potential of cattle (Bos taurus) and swamp buffalo (Bubalus bubalis) cloned embryos. J Reprod Dev,2010.56(1):49-54.
    [16]罗学明,张卫红,冯冲等.,受体母猪排卵状况对体细胞克隆胚胎移植效率的影响.畜牧兽医学报,2010.41(003):366-370.
    [17]Petersen, B., A. Lucas-Hahn, M. Oropeza, etc., Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells,2008.10(3):355-62.
    [18]卫恒习,李秋艳,高凤磊,etc.,胚胎移植方法和受体母猪因素对克隆猪生产效率的影响.中国农业科学,2012.45(15):3147-3153.
    [19]Koo, O.J., J.T. Kang, D.K. Kwon, etc., Influence of ovulation status, seasonality and embryo transfer method on development of cloned porcine embryos. Reprod Domest Anim,2010.45(5):773-8.
    [20]Broadbent, P., M. Stewart and D. Dolman, Recipient management and embryo transfer. Theriogenology,1991.35(1):125-139.
    [21]杨昇,冯建忠,张金龙等,波尔山羊的超数排卵及影响因素的分析.中国畜牧杂志,2005.41(001):37-39.
    [22]俞颂东,王友明and余东游,影响家畜超排效果因素和几种超排方法. 草食家畜,2002.1:29-32.
    [23]Guo, X.D., D.S. Yang, X.D. Ao, etc., Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer. Science in China Series C:Life Sciences,2009.52(4):390-397.
    [24]Guo, X., J. Yin, D. Yang, etc., Construction of a hair-follicle-cell-specific expression vector of IGF-1 and its transfection into caprine fetal fibroblasts cells. Acta Veterinaria et Zootechnica Sinica,2009.40(10):1460-1467.
    [25]Bai, C., L. Zhang, X. Wu, etc., Generation of a Cloned Inner Mongolia Cashmere Goat by Somatic Cell Nuclear Transfer. Journal of Inner Mongolia University (Natural Science Edition),2011.
    [26]Yanfeng, W., L. Yan and J. Yong, Cloning of thymosin β 4 gene from inner mongolia cashmere goat and its stable transfection into caprine fetal fibroblasts cells. China Agriculture Science,2010.43.
    [27]Campbell, K., P. Fisher, W. Chen, etc., Somatic cell nuclear transfer:past, present and future perspectives. Theriogenology,2007.68:S214-S231.
    [28]Kim, S. and C. Ahn, Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein. Theriogenology,2005.63(4):973-991.
    [29]Hong, S.G., G. Jang, M.K. Kim, etc., Dogs cloned from fetal fibroblasts by nuclear transfer. Animal reproduction science,2009.115(1-4):334-339.
    [30]Hyun, S., G. Lee, D. Kim, etc., Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biology of reproduction,2003.69(3):1060-1068.
    [31]Lee, S.L., S.A. Ock, J.G. Yoo, etc., Efficiency of gene transfection into donor cells for nuclear transfer of bovine embryos. Molecular reproduction and development,2005.72(2):191-200.
    [32]Park, K.W., L. Lai, H.T. Cheong, etc., Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts. Biology of reproduction,2002.66(4):p.1001-1005.
    [33]Wani, N.A., U. Wernery, F. Hassan, etc., Production of the first cloned camel by somatic cell nuelear transfer. Biology of reproduction,2010.82(2): 373-379.
    [34]Zhang, Y., Y. Wan, Z. Wang, etc., Production of dairy goat embryos, by nuclear transfer, transgenic for human acid [beta]-glucosidase. Theriogenology,2010.73(5):681-690.
    [35]Hong, S.G., H.J. Oh, J.E. Park, etc., Production of transgenic canine embryos using interspecies somatic cell nuclear transfer. Zygote,2011.1(1):1-6.
    [36]Kurome, M., T. Ishikawa, R. Tomii, etc., Production of transgenic and non-transgenic clones in miniature pigs by somatic cell nuclear transfer. J Reprod Dev,2008.54(3):156-63.
    [37]Gao, S., M. McGarry, T. Ferrier, etc., Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell line. Biology of reproduction,2003.68(2):p.595-603.
    [38]Heidari, B., A. Shirazi, P. Tajic, etc., Effect of donor cell age on development of ovine nuclear transfer embryos in vitro. Zygote,2010.18(04):p.331-338.
    [39]Westhusin, M., C. Long, T. Shin, etc., Cloning to reproduce desired genotypes. Theriogenology,2001.55(1):35-49.
    [40]Kim, S., S.W. Park, M.S. Hossein, etc., Production of cloned dogs by decreasing the interval between fusion and activation during somatic cell nuclear transfer. Molecular reproduction and development,2009.76(5): 483-489.
    [41]Hosseini, S., F. Moulavi, M. Foruzanfar, etc., Effect of donor cell type and gender on the efficiency of in vitro sheep somatic cell cloning. Small Ruminant Research,2008.78(1):162-168.
    [42]Nesterova, T.B., S.C. Barton, M.A. Surani, etc., Loss of Xist imprinting in diploid parthenogenetic preimplantation embryos. Developmental biology, 2001.235(2):343-350.
    [43]Wrenzycki, C, A. Lucas-Hahn, D. Herrmann, etc., In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biology of reproduction,2002.66(1):127-134.
    [44]Inoue, K., T. Kohda, M. Sugimoto, etc., Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 2010.330(6003):496-499.
    [45]Matoba, S., K. Inoue, T. Kohda, etc., RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proceedings of the National Academy of Sciences,2011.108(51): 20621-20626.
    [1]Wilmut, I., A.E. Schnieke, J. Mc Whir, etc., Viable offspring derived from fetal and adult mammalian cells. Nature,1997.385(6619):810-3.
    [2]Baguisi, A., E. Behboodi, D.T. Melican, etc., Production of goats by somatic cell nuclear transfer. Nat Biotechnol,1999.17(5):456-61.
    [3]Jitong, G., A. Zhixing, L. Yu, etc., Cloned goats (Capra hircus) from adult ear cells. Science in China Series C:Life Sciences,2002.45(3):260-267.
    [4]王玉阁,成国祥,由胎儿成纤维细胞而来的克隆山羊(Capra hircus).科学通报,1999.44(21):2319-2323.
    [5]Guo, X.D., D.S. Yang, X.D. Ao, etc., Production of transgenic cashmere goat embryos expressing red fluorescent protein and containing IGF1 hair-follicle-cell specific expression cassette by somatic cell nuclear transfer. Science in China Series C:Life Sciences,2009.52(4):390-397.
    [6]Bai, C., L. Zhang, X. Wu, etc., Generation of a Cloned Inner Mongolia Cashmere Goat by Somatic Cell Nuclear Transfer. Journal of Inner Mongolia University (Natural Science Edition),2011.
    [7]崔文涛,靳二辉,李奎,etc.,转基因羊研究进展.农业生物技术学报,2007.15(3):519-525.
    [8]郭磊,李慧and韩之明,DNA甲基化和组蛋白修饰在克隆动物发育过程中的作用.遗传,2010.32(8):762-768.
    [9]Galli, C., I. Lagutina, A. Perota, etc., Somatic Cell Nuclear Transfer and Transgenesis in Large Animals:Current and Future Insights. Reproduction in Domestic Animals,2012.47(s3):2-11.
    [10]Schmidt, M., P.M. Kragh, J. Li, etc., Pregnancies and piglets from large white sow recipients after two transfer methods of cloned and transgenic embryos of different pig breeds. Theriogenology,2010.74(7):1233-40.
    [11]Park, K.W., H.T. Cheong, L. Lai, etc., Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol, 2001.12(2):173-81.
    [12]Estrada, J., J. Sommer, B. Collins, etc., Swine generated by somatic cell nuclear transfer have increased incidence of intrauterine growth restriction (IUGR). Cloning Stem Cells,2007.9(2):229-36.
    [13]Liu, J., L.L. Li, S. Du, etc., Effects of interval between fusion and activation, cytochalasin B treatment, and number of transferred embryos, on cloning efficiency in goats. Theriogenology,2011.76(6):1076-83.
    [14]Shcherbakova, D.M., O.M. Subach and V.V. Verkhusha, Red fluorescent proteins:advanced imaging applications and future design. Angew Chem Int Ed Eng1,2012.51(43):10724-38.
    [15]Yarbrough, D., R.M. Wachter, K. Kallio, etc., Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proc Natl Acad Sci U S A,2001.98(2):462-7.
    [16]Kong, Q., M. Wu, Y. Huan, etc., Transgene expression is associated with copy number and cytomegalovirus promoter methylation in transgenic pigs. PLoS One,2009.4(8):e6679.
    [17]Duan, B., L. Cheng, Y. Gao, etc., Silencing of fat-1 transgene expression in sheep may result from hypermethylation of its driven cytomegalovirus (CMV) promoter. Theriogenology,2012.78(4):793-802.
    [18]王怡,管鹏飞,薛整风等,利用SRY基因鉴定山羊胎儿成纤维细胞的性别.安徽农业科学,2009(16):7359-7360.
    [19]朱玉成,影响山羊绒细度的因素及控制羊绒细度的研究现状[J].中国草食动物,2004.24(2):35-37.
    [20]高纯金,关于山羊绒国家质量标准的制定意见.纤维标准与检验,1997.9:p.003.
    [21]金梅,胡景慧,辽宁绒山羊育种研究现状及发展方向.中国畜牧杂志,2005.41(3):p.54-56.
    [22]施长华,孟清,蛛丝蛋白基因在大肠杆菌中表达研究.生物学杂志,2011.28(001):6-9.
    [23]张袁松,赵天福,赵爱春等1.,转基因家蚕生产含蜘蛛丝蛋白的新型复合茧丝纤维.纺织学报,2012.33(5):1-5.
    [1]Palmiter, R.D., R.L. Brinster, R.E. Hammer, etc., Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature,1982.300(5893):611-5.
    [2]Wall, R., Transgenic livestock:progress and prospects for the future. Theriogenology,1996.45(1):57-68.
    [3]Wheeler, M.B., Agricultural applications for transgenic livestock. Trends Biotechnol,2007.25(5):204-10.
    [4]Bradley, A., M. Evans, M.H. Kaufrnan, etc., Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature,1984. 309(5965):255-6.
    [5]Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell,2006. 126(4):663-76.
    [6]Nagano, M., C.J. Brinster, K.E. Orwig, etc., Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci U S A,2001.98(23):13090-5.
    [7]Wilmut, I., A.E. Schnieke, J. McWhir, etc., Viable offspring derived from fetal and adult mammalian cells. Nature,1997.385(6619):810-3.
    [8]Schnieke, A.E., A.J. Kind, W.A. Ritchie, etc., Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science,1997.278(5346):2130.
    [9]Jaenisch, R. and B. Mintz, Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A,1974.71(4):1250-4.
    [10]Hammer, R.E., V.G. Pursel, C.E. Rexroad, Jr., etc., Production of transgenic rabbits, sheep and pigs by microinjection. Nature,1985.315(6021):680-3.
    [11]Auerbach, A.B., Production of functional transgenic mice by DNA pronuclear microinjection. Acta Biochim Pol,2004.51(1):9-31.
    [12]李劲松,庄大中,孙青原等,动物转基因技术的新进展.生物化学与生物物理进展,2000.27(2):p.124-126.
    [13]Pfeifer, A., M. Ikawa, Y. Dayn, etc., Transgenesis by lentiviral vectors:lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proceedings of the National Academy of Sciences,2002.99(4): 2140-2145.
    [14]Bakowska, J., M. Di Maria, S. Camp, etc., Targeted transgene integration into transgenic mouse fibroblasts carrying the full-length human AAVS1 locus mediated by HSV/AAV rep+ hybrid amplicon vector. Gene therapy,2003.10(19):1691-1702.
    [15]孙克宁,朱化彬,林峰,etc.,慢病毒载体的构建及其应用于转基因动物的研究进展.中国畜牧兽医,2010(008):116-120.
    [16]Cornetta, K., K. Tessanne, C. Long, etc., Transgenic sheep generated by lentiviral vectors:safety and integration analysis of surrogates and their offspring. Transgenic research,2012:1-9.
    [17]Liu, C., L. Wang, W. Li, etc., Highly efficient generation of transgenic sheep by lentivirus accompanying the alteration of methylation status. PLoS One, 2013.8(1):e54614.
    [18]Ritchie, W.A., T. King, C. Neil, etc., Transgenic sheep designed for transplantation studies. Mol Reprod Dev,2009.76(1):61-4.
    [19]Hofmann, A., B. Kessler, S. Ewerling, etc., Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol Ther,2006.13(1):59-66.
    [20]Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature,1981.292(5819):154-156.
    [21]Bradley, A., M. Evans, M.H. Kaufman, etc., Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature,1984. 309(5965):255-256.
    [22]Thomas, K.R. and M.R. Capecchi, Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell,1987.51(3):503-512.
    [23]Mansour, S.L., Gene targeting in murine embryonic stem cells:introduction of specific alterations into the mammalian genome. Genet Anal Tech Appl, 1990.7(8):219-27.
    [24]Blomberg, L.A. and B.P. Telugu, Twenty years of embryonic stem cell research in farm animals. Reprod Domest Anim,2012.47 Suppl 4:80-5.
    [25]Eakin, GS., A.K. Hadjantonakis, V.E. Papaioannou, etc., Developmental potential and behavior of tetraploid cells in the mouse embryo. Dev Biol, 2005.288(1):150-9.
    [26]Duncan, S.A., Generation of embryos directly from embryonic stem cells by tetraploid embryo complementation reveals a role for GATA factors in organogenesis. Biochem Soc Trans,2005.33(Pt 6):1534-6.
    [27]Brinster, R.L. and J.W. Zimmermann, Spermatogenesis following male germ-cell transplantation. Proceedings of the National Academy of Sciences, 1994.91(24):11298-11302.
    [28]Nagano, M., C.J. Brinster, K.E. Orwig, etc., Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proceedings of the National Academy of Sciences,2001.98(23):13090-13095.
    [29]吴应积,罗奋华,旭日干,用精原干细胞移植技术制作转基因动物的研究前景.科学通报,2005.50(19):2061-2068.
    [30]路立里,郝耿,於建国等,精子载体法转基因技术研究进展.中国畜牧兽医,2010(009):p.149-153.
    [31]Lavitrano, M., A. Camaioni, V.M. Fazio, etc., Sperm cells as vectors for introducing foreign DNA into eggs:genetic transformation of mice. Cell, 1989.57(5):717-23.
    [32]Magnano, A.R., R. Giordano, N. Moscufo, etc., Sperm/DNA interaction: integration of foreign DNA sequences in the mouse sperm genome. J Reprod Immunol,1998.41(1-2):187-96.
    [33]Lavitrano, M., M. Forni, M.L. Bacci, etc., Sperm mediated gene transfer in pig:Selection of donor boars and optimization of DNA uptake. Mol Reprod Dev,2003.64(3):284-91.
    [34]Garcia-Vazquez, F.A., S. Ruiz, C. Matas, etc., Production of transgenic piglets using ICSI-sperm-mediated gene transfer in combination with recombinase RecA. Reproduction,2010.140(2):259-72.
    [35]Zhao, Y, M. Yu, L. Wang, etc., Spontaneous uptake of exogenous DNA by goat spermatozoa and selection of donor bucks for sperm-mediated gene transfer. Mol Biol Rep,2012.39(3):2659-64.
    [36]Pereyra-Bonnet, F., A. Gibbons, M. Cueto, etc., Efficiency of sperm-mediated gene transfer in the ovine by laparoscopic insemination, in vitro fertilization and ICSI. J Reprod Dev,2011.57(2):188-96.
    [37]De Cecco, M., M. Spinaci, A. Zannoni, etc., Coupling sperm mediated gene transfer and sperm sorting techniques:a new perspective for swine transgenesis. Theriogenology,2010.74(5):856-62.
    [38]杜伟,崔海信,王琰等,精子载体法制备转基因动物的研究进展.生物技术通报,·2012(12):13-18.
    [39]Zou, K., Z. Yuan, Z. Yang, etc., Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol,2009.11(5):631-6.
    [40]Takahashi, K., K. Tanabe, M. Ohnuki, etc., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007.131(5): 861-72.
    [41]Yu, J., M.A. Vodyanik, K. Smuga-Otto, etc., Induced pluripotent stem cell lines derived from human somatic cells. Science,2007.318(5858):1917-20.
    [42]Ezashi, T, B.P. Telugu, A.P. Alexenko, etc., Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A,2009.106(27): 10993-8.
    [43]Han, X., J. Han, F. Ding, etc., Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res,2011.21(10):1509-12.
    [44]Liu, J., D. Balehosur, B. Murray, etc., Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology,2012. 77(2):338-46 el.
    [45]Li, Y., M. Cang, A.S. Lee, etc., Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One,2011.6(1):e15947.
    [46]Lu, Y., J.L. Mumaw, F.D. West, etc., Livestock induced pluripotent stem cells. Reprod Domest Anim,2012.47 Suppl 4:72-6.
    [47]Zhao, X.Y., W. Li, Z. Lv, etc., iPS cells produce viable mice through tetraploid complementation. Nature,2009.461(7260):86-90.
    [48]Kang, L., J. Wang, Y. Zhang, etc., iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 2009.5(2):135-8.
    [49]Niemann, H. and A. Lucas-Hahn, Somatic cell nuclear transfer cloning: practical applications and current legislation. Reprod Domest Anim,2012.47 Suppl 5:2-10.
    [50]McCreath, K.J., J. Howcroft, K.H. Campbell, etc., Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 2000.405(6790):1066-9.
    [51]Richt, J.A., P. Kasinathan, A.N. Hamir, etc., Production of cattle lacking prion protein. Nat Biotechnol,2007.25(1):132-8.
    [52]Whyte, J.J., J. Zhao, K.D. Wells, etc., Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. Mol Reprod Dev,2011. 78(1):2.
    [53]Srirattana, K., C. Lorthongpanich, C. Laowtammathron, etc., Effect of donor cell types on developmental potential of cattle (Bos taurus) and swamp buffalo (Bubalus bubalis) cloned embryos. J Reprod Dev,2010.56(1):49-54.
    [54]Wani, N.A., U. Wernery, F. Hassan, etc., Production of the first cloned camel by somatic cell nuclear transfer. Biology of reproduction,2010.82(2): 373-379.
    [55]Keefer, C.L., Lessons learned from nuclear transfer (cloning). Theriogenology,2008.69(1):48-54.
    [56]Keefer, C.L., R. Keyston, A. Lazaris, etc., Production of cloned goats after nuclear transfer using adult somatic cells. Biol Reprod,2002.66(1):199-203.
    [57]Inoue, K., N. Ogonuki, K. Mochida, etc., Effects of donor cell type and genotype on the efficiency of mouse somatic cell cloning. Biology of reproduction,2003.69(4):1394-1400.
    [58]Kato, Y, T. Tani and Y. Tsunoda, Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. Journal of reproduction and fertility,2000.120(2):231-237.
    [59]龚国春,戴蕴平,朱化彬等,供体细胞类型对体细胞克隆牛生产效率的影响.中国科学:C辑,2004.34(3):257-262.
    [60]张德福,刘东,汤琳琳等,不同供体细胞及其处理对猪核移植重构胚体外发育的影响.遗传,2007.29(2):211-217.
    [61]Dutta, R., D. Malakar, K. Khate, etc., A comparative study on efficiency of adult fibroblast, putative embryonic stem cell and lymphocyte as donor cells for production of handmade cloned embryos in goat and characterization of putative ntES cells obtained from these embryos. Theriogenology,2011. 76(5):851-863.
    [62]Cibelli, J.B., S.L. Stice, P.J. Golueke, etc., Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science,1998.280(5367):1256-1258.
    [63]潘登科,张运海,孙秀柱等,供体细胞对猪体细胞克隆胚胎早期发育的影响.畜牧兽医学报,2006.37(004):331-336.
    [64]Wan, Y.-J., Y.-L. Zhang, Z.-R. Zhou, etc., Efficiency of donor cell preparation and recipient oocyte source for production of transgenic cloned dairy goats harboring human lactoferrin. Theriogenology,2012.
    [65]Chen, D., J. Li, Z. Han, etc., Somatic cell bovine cloning:Effect of donor cell and recipients. Chinese Science Bulletin,2003.48(6):549-554.
    [66]Kim, S., S.W. Park, M.S. Hossein, etc., Production of cloned dogs by decreasing the interval between fusion and activation during somatic cell nuclear transfer. Molecular reproduction and development,2009.76(5): 483-489.
    [67]Inoue, K., T. Kohda, M. Sugimoto, etc., Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science, 2010.330(6003):496-499.
    [68]Matoba, S., K. Inoue, T. Kohda, etc., RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proceedings of the National Academy of Sciences,2011.108(51): 20621-20626.
    [69]Huang, Y., X. Tang, W. Xie, etc., Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos. Biochem Biophys Res Commun,2011.411(2):397-401.
    [70]Dai, X., J. Hao, X.J. Hou, etc., Somatic nucleus reprogramming is significantly improved by m-carboxycinnamic acid bishydroxamide, a histone deacetylase inhibitor. J Biol Chem,2010.285(40):31002-10.
    [71]董树华,体细胞克隆牛生产及新生犊牛护理,2010,内蒙古农业大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700