小鼠受精卵雌雄原核重编程能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体细胞重编程是指分化细胞的特异性表观遗传修饰被擦除,细胞基因组重新回到多能性状态。核移植是目前体细胞重编程最有效的方法之一。之前研究证明处于第二次减数分裂中期即MⅡ期的卵母细胞胞质中的重编程因子可以快速高效地重编程体细胞。以受精卵为受体的核移植实验进一步表明重编程因子在受精后集中到合子的雌雄原核中并在第一次有丝分裂中期重新释放到胞质中。因此,只有中期的去核受精卵能支持克隆胚胎的发育。虽然来源于母本的雌原核与来源于父本的雄原核在受精卵中经历了迥然不同的重编程过程以形成全能性的合子。但是,雌雄原核对受精卵重编程能力的影响仍然是一个未知的问题。
     在本研究中,我们对受精卵进行了三次显微操作来解决这个发育生物学的基本问题。首先,我们在小鼠受精卵的间期移除一个雄原核或雌原核。然后,将单倍体的受精卵继续培养并阻滞在有丝分裂的中期并去除染色体。最后,将处于中期的供体细胞染色体注入去核的受精卵。我们的研究表明,去除雌原核(FPD)的小鼠受精卵可以获得由胚胎干细胞(ESCs)作为核供体的克隆小鼠,并且能支持体细胞核移植克隆胚胎发育至囊胚并建立具有多能性的核移植胚胎干细胞(ntESCs)系;而去除雄原核(MPD)的受精卵则无法支持以ESCs为供核细胞的克隆胚胎发育到期,并且也不能支持体细胞克隆胚胎发育到囊胚。对这两种克隆胚胎的表观遗传标记检测表明去除雌原核的受精卵对体细胞组蛋白乙酰化和DNA去甲基化的能力明显强于去除雄原核的受精卵。去除雄原核的受精卵不能使克隆胚胎中多能性基因Oct4的启动子成功地发生去甲基化。进一步的研究表明,受精卵中融合入一个额外的雄原核能明显提高核移植的效率。以ESCs和体细胞为供核细胞的核移植试验表明融合额外雄原核的受精卵能够显著提高克隆胚胎的体外发育率。克隆胚胎的体内发育试验表明增加雄原核可以提高合子获得以ESCs为核供体的克隆小鼠的能力。
     总之,这项研究证明了小鼠合子雌雄原核具有不对称的重编程能力,重编程因子在受精后有选择性地集中在雄原核中,且合子的重编程能力主要由雄原核决定。这些发现为进一步在雄原核中寻找关键的重编程因子奠定了坚实的实验基础。
During nuclear reprogramming, the epigenome of a differentiated cell reversed to the undifferentiated embryonic state. Somatic cell nuclear transfer (SCNT) is one of the most effective methods of nuclear reprogramming. Oocytes enucleated at the metaphase Ⅱ stage of meiosis are traditionally used as the recipients for SCNT. Following fertilization, the reprogramming factors are believed to translocate into the pronuclei of zygotes because zygotes enucleated at M-phase instead of interphase retain the ability to reprogram somatic cells. The parental pronucleus derived either from the sperm or the oocytes in a fertilized egg undergo widely different reprogramming process to form a totipotent zygote, however the contribution of the pronuclei in repromgramming capacity remains elusive.
     In the experiments, three times of micromanipulations were performed to address this fundamental question of developmental biology. First, we removed either male or female pronucleus from a mouse zygote at interphase stage. Then, the haploid zygote was cultured to arrest at M-phase stage of mitosis and the metaphase spindle was subsequently removed by second time micromanipulation. Finally, the M-phase somatic cell chromosomes were microinjected into the enucleated zygote. The results demonstrated that only the female pronucleus-depleted (FPD) zygotes enucleated at M-phase of mitosis can support somatic cell reprogramming, the derivation of chromosome transfer embryonic stem (ctES) cells with full pluripotency and the full-term development of cloned embryos. In striking contrast, male pronucleus-depleted (MPD) zygotes fail to support the pre-implantation development of somatic cell cloned embryos and no cloned pups were got after embryos transfer. Furthermore, the epigenetic markers analysis of cloned embryos reconstructed from MPD or FPD zygotes showed that the ablity to histone acetylation and DNA demethylation of FPD zygotes was obviously stronger than MPD zygotes. Furthermore, bisulfite sequencing analysis indicated that successful demethylation occurred in the promoter of Oct4in cloned embryos reconstructed using FPD zygotes. In contrast, the promoter of Oct4remained highly methylated in the cloned embryos reconstructed using MPD zygotes. Our further studies demonstrate that fusion of an additional male pronucleus into zygote greatly enhances reprogramming efficiency. The results of nuclear transfer using ESCs or somatic cells showed that fusion an additional male pronucleus can significantly improve in vitro development of cloned embryos. In addition, adding a male pronuclear to zygotes can improve the efficiency of the full-term development of cloned embryos in vivo.
     Therefore, our present study provides solid evidence demonstrating that the parental pronuclei of the mouse zygote have asymmetric reprogramming capacities and that the reprogramming factors preferentially translocate into the male pronucleus following fertilization. Our data provide a clue to further identify critical reprogramming factors in the male pronucleus.
引文
Abdalla, H., Yoshizawa, Y., and Hochi, S. (2009). Active demethylation of paternal genome in mammalian zygotes. J Reprod Dev 55,356-360.
    Adenot, P.G., Mercier, Y, Renard, J.P., and Thompson, E.M. (1997). Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124,4615-4625.
    Baguisi, A., Behboodi, E., Melican, D.T., Pollock, J.S., Destrempes, M.M., Cammuso, C, Williams, J.L. Nims, S.D., Porter, C.A., Midura, P., et al. (1999). Production of goats by somatic cell nuclear transfer. Nat Biotechnol 17,456-461.
    Berg, D.K., Li, C, Asher, G, Wells, D.N., and Oback, B. (2007). Red deer cloned from antler stem cells and their differentiated progeny. Biol Reprod 77,384-394.
    Bhutani, N., Brady, J.J., Damian, M., Sacco, A., Corbel, S.Y., and Blau, H.M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463,1042-1047.
    Boiani, M., Eckardt, S., Scholer, H.R., and McLaughlin, K.J. (2002). Oct4 distribution and level in mouse clones:consequences for pluripotency. Genes Dev 16,1209-1219.
    Bortvin, A., Eggan, K., Skaletsky, H., Akutsu, H., Berry, D.L., Yanagimachi, R., Page, D.C., and Jaenisch, R. (2003). Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130,1673-1680.
    Brambrink, T., Hochedlinger, K., Bell, G, and Jaenisch, R. (2006). ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci U S A 103,933-938.
    Brykczynska, U., Hisano, M., Erkek, S., Ramos, L., Oakeley, E.J., Roloff, T.C., Beiset, C, Schubeler, D., Stadler, M.B., and Peters, A.H. (2010). Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17,679-687.
    Byrne, J.A., Pedersen, D.A., Clepper, L.L., Nelson, M., Sanger, W.G., Gokhale, S., Wolf, D.P., and Mitalipov, S.M. (2007). Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450,497-502.
    Bui, H.T., Wakayama, S., Kishigami, S., Kim, J.H., Van Thuan, N., and Wakayama, T. (2008). The cytoplasm of mouse germinal vesicle stage oocytes can enhance somatic cell nuclear reprogramming. Development 135,3935-3945.
    Bui, H.T., Wakayama, S., Kishigami, S., Park, K.K., Kim, J.H., Thuan, N.V., and Wakayama, T. (2010). Effect of trichostatin A on chromatin remodeling, histone modifications, DNA replication, and transcriptional activity in cloned mouse embryos. Biol Reprod 83,454-463.
    Chang, K.H., Lim, J.M., Kang, S.K., Lee, B.C., Moon, S.Y., and Hwang, W.S. (2003). Blastocyst formation, karyotype, and mitochondrial DNA of interspecies embryos derived from nuclear transfer of human cord fibroblasts into enucleated bovine oocytes. Fertil Steril 80,1380-1387.
    Chen, J., Liu, H., Liu, J., Qi, J., Wei, B., Yang, J., Liang, H., Chen, Y., Chen, J., Wu, Y, et al. (2013). H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs. Nat Genet 45, 34-42.
    Chesne, P., Adenot, P.G., Viglietta, C., Baratte, M., Boulanger, L., and Renard, J.P. (2002). Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 20,366-369.
    Chiou, S.H., Jiang, B.H., Yu, Y.L., Chou, S.J., Tsai, P.H., Chang, W.C., Chen, L.K., Chen, L.H., Chien, Y, and Chiou, G.Y. (2013). Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc. J Exp Med 210,85-98.
    Chuang, D.M., Leng, Y., Marinova, Z., Kim, H.J., and Chiu, C.T. (2009). Multiple roles of HDAC inhibition in neurodegenerative conditions. Trends Neurosci 32,591-601.
    Chung, Y.G., Eum, J.H., Lee, J.E., Shim, S.H., Sepilian, V., Hong, S.W., Lee, Y, Treff, N.R., Choi, Y.H., Kimbrel, E.A., et al. (2014). Human Somatic Cell Nuclear Transfer Using Adult Cells. Cell Stem Cell.
    Cowan, C.A., Atienza, J., Melton, D.A., and Eggan, K. (2005). Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309,1369-1373.
    Dean, W., Santos, F., Stojkovic, M., Zakhartchenko, V, Walter, J., Wolf, E., and Reik, W. (2001). Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U SA98,13734-13738.
    Do, J.T., and Scholer, H.R. (2004). Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22,941-949.
    Egli, D., Birkhoff, G., and Eggan, K. (2008). Mediators of reprogramming:transcription factors and transitions through mitosis. Nat Rev Mol Cell Biol 9,505-516.
    Egli, D., and Eggan, K. (2010). Recipient cell nuclear factors are required for reprogramming by nuclear transfer. Development 137,1953-1963.
    Egli, D., Rosains, J., Birkhoff, G., and Eggan, K. (2007). Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature 447,679-685.
    Egli, D., Sandler, V.M., Shinohara, M.L., Cantor, H., and Eggan, K. (2009). Reprogramming after chromosome transfer into mouse blastomeres. Curr Biol 19,1403-1409.
    Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292,154-156.
    Farthing, C.R., Ficz, G, Ng, R.K., Chan, C.F., Andrews, S., Dean, W., Hemberger, M., and Reik, W. (2008). Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 4, e1000116.
    Fulka, H., Mrazek, M., Tepla, O., and Fulka, J., Jr. (2004). DNA methylation pattern in human zygotes and developing embryos. Reproduction 128,703-708.
    Fulka, J., Fulka, H., Slavik, T., Okada, K., and Fulka, J., Jr. (2006). DNA methylation pattern in pig in vivo produced embryos. Histochem Cell Biol 126,213-217.
    Jiang, J., Lv, W., Ye, X., Wang, L., Zhang, M., Yang, H., Okuka, M., Zhou, C, Zhang, X., Liu, L., et al. (2013). Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Res 23,92-106.
    Galli, C., Lagutina, I., Crotti, G., Colleoni, S., Turini, P., Ponderato, N., Duchi, R., and Lazzari, G. (2003). Pregnancy:a cloned horse born to its dam twin. Nature 424,635.
    Gao, S., Gasparrini, B., McGarry, M., Ferrier, T., Fletcher, J., Harkness, L., De Sousa, P., and Wilmut, I. (2002). Germinal vesicle material is essential for nucleus remodeling after nuclear transfer. Biol Reprod 67,928-934.
    Gasparrini, B., Gao, S., Ainslie, A., Fletcher, J., McGarry, M., Ritchie, W.A., Springbett, A.J., Overstrom, E.W., Wilmut, I., and De Sousa, P.A. (2003). Cloned mice derived from embryonic stem cell karyoplasts and activated cytoplasts prepared by induced enucleation. Biol Reprod 68, 1259-1266.
    Greda, P., Karasiewicz, J., and Modlinski, J.A. (2006). Mouse zygotes as recipients in embryo cloning. Reproduction 132,741-748.
    Gu, T.P., Guo, F., Yang, H., Wu, H.P., Xu, G.F., Liu, W., Xie, Z.G., Shi, L., He, X., Jin, S.G., et al. (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477,606-610.
    Guibert, S., Forne, T., and Weber, M. (2012). Global profiling of DNA methylation erasure in mouse primordial germ cells. Genome Res 22,633-641.
    Gurdon, J.B., Elsdale, T.R., and Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182,64-65.
    Hall, V.J., Compton, D., Stojkovic, P., Nesbitt, M., Herbert, M., Murdoch, A., and Stojkovic, M. (2007). Developmental competence of human in vitro aged oocytes as host cells for nuclear transfer. Hum Reprod 22,52-62.
    Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P., van Oudenaarden, A., and Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462,595-601.
    Hammoud, S.S., Nix, D.A., Zhang, H., Purwar, J., Carrell, D.T., and Cairns, B.R. (2009). Distinctive chromatin in human sperm packages genes for embryo development. Nature 460,473-478.
    Heng, J.C., Feng, B., Han, J., Jiang, J., Kraus, P., Ng, J.H., Orlov, Y.L., Huss, M., Yang, L., Lufkin, T., et al. (2010). The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6,167-174.
    Hou, J., Liu, L., Zhang, J., Cui, X.H., Yan, F.X., Guan, H., Chen, Y.F., and An, X.R. (2008). Epigenetic modification of histone 3 at lysine 9 in sheep zygotes and its relationship with DNA methylation. BMC Dev Biol 8,60.
    Illmensee, K., and Hoppe, P.C. (1981). Nuclear transplantation in Mus musculus:developmental potential of nuclei from preimplantation embryos. Cell 23,9-18.
    Inoue, K., Kohda, T., Sugimoto, M., Sado, T., Ogonuki, N., Matoba, S., Shiura, H., Ikeda, R., Mochida, K., Fujii, T., et al. (2010). Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer. Science 330,496-499.
    Kafri, T., Gao, X., and Razin, A. (1993). Mechanistic aspects of genome-wide demethylation in the preimplantation mouse embryo. Proc Natl Acad Sci U S A 90,10558-10562.
    Kang, L., Wang, J., Zhang, Y., Kou, Z., and Gao, S. (2009). iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 5,135-138.
    Kato, Y., Tani, T., Sotomaru, Y., Kurokawa, K., Kato, J., Doguchi, H., Yasue, H., and Tsunoda, Y. (1998). Eight calves cloned from somatic cells of a single adult. Science 282,2095-2098.
    Kim, M.K., Jang, G., Oh, H.J., Yuda, F., Kim, H.J., Hwang, W.S., Hossein, M.S., Kim, J.J., Shin, N.S., Kang, S.K., et al. (2007). Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 9,130-137.
    Kim, S.H., Kang, Y.K., Koo, D.B., Kang, M.J., Moon, S.J., Lee, K.K., and Han, Y.M. (2004). Differential DNA methylation reprogramming of various repetitive sequences in mouse preimplantation embryos. Biochem Biophys Res Commun 324,58-63.
    Kimura, H., Tada, M., Nakatsuji, N., and Tada, T. (2004). Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 24,5710-5720.
    Kishigami, S., Hikichi, T., Van Thuan, N., Ohta, H., Wakayama, S., Bui, H.T., Mizutani, E., and Wakayama, T. (2006a). Normal specification of the extraembryonic lineage after somatic nuclear transfer. FEBS Lett 580,1801-1806.
    Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N.V., Wakayama, S., Bui, H.T., and Wakayama, T. (2006b). Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer. Biochem Biophys Res Commun 340,183-189.
    Kishikawa, H., Wakayama, T., and Yanagimachi, R. (1999). Comparison of oocyte-activating agents for mouse cloning. Cloning 1,153-159.
    Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128,693-705.
    Landsverk, H.B., Hakelien, A.M., Kuntziger, T., Robl, J.M., Skalhegg, B.S., and Collas, P. (2002). Reprogrammed gene expression in a somatic cell-free extract. EMBO Rep 3,384-389.
    Lane, N., Dean, W., Erhardt, S., Hajkova, P., Surani, A., Walter, J., and Reik, W. (2003). Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35,88-93.
    Lanza, R.P., Cibelli, J.B., Diaz, F., Moraes, C.T., Farin, P.W., Farin, C.E., Hammer, C.J., West, M.D., and Damiani, P. (2000). Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2,79-90.
    Lee, B.C., Kim, M.K., Jang, G., Oh, H.J., Yuda, F., Kim, H.J., Hossein, M.S., Kim, J.J., Kang, S.K., Schatten, G., et al. (2005). Dogs cloned from adult somatic cells. Nature 436,641.
    Lepikhov, K., and Walter, J. (2004). Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol 4,12.
    Lepikhov, K., Wossidlo, M., Arand, J., and Walter, J. (2010). DNA methylation reprogramming and DNA repair in the mouse zygote. Int J Dev Biol 54,1565-1574.
    Lepikhov, K., Zakhartchenko, V., Hao, R., Yang, F., Wrenzycki, C., Niemann, H., Wolf, E., and Walter, J. (2008). Evidence for conserved DNA and histone H3 methylation reprogramming in mouse, bovine and rabbit zygotes. Epigenetics Chromatin 1,8.
    Le, R., Kou, Z., Jiang, Y, Li, M., Huang, B., Liu, W., Li, H., Kou, X., He, W., Rudolph, K.L., et al. (2014). Enhanced Telomere Rejuvenation in Pluripotent Cells Reprogrammed via Nuclear Transfer Relative to Induced Pluripotent Stem Cells. Cell Stem Cell 14,27-39.
    Li, Z., Sun, X., Chen, J., Liu, X., Wisely, S.M., Zhou, Q., Renard, J.P., Leno, G.H., and Engelhardt, J.F. (2006). Cloned ferrets produced by somatic cell nuclear transfer. Dev Biol 293,439-448.
    Lin, J., Shi, L., Zhang, M., Yang, H., Qin, Y, Zhang, J., Gong, D., Zhang, X., Li, D., and Li, J. (2011). Defects in trophoblast cell lineage account for the impaired in vivo development of cloned embryos generated by somatic nuclear transfer. Cell Stem Cell 8,371-375.
    Liu, H., Kim, J.M., and Aoki, F. (2004). Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development 131,2269-2280.
    Loi, P., Ptak, G., Barboni, B., Fulka, J., Jr., Cappai, P., and Clinton, M. (2001). Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol 19,962-964.
    Lorthongpanich, C., Solter, D., and Lim, C.Y. (2010). Nuclear reprogramming in zygotes. Int J Dev Biol 54,1631-1640.
    Matoba, S., Inoue, K., Kohda, T., Sugimoto, M., Mizutani, E., Ogonuki, N., Nakamura, T., Abe, K., Nakano, T., Ishino, F., et al. (2011). RNAi-mediated knockdown of Xist can rescue the impaired postimplantation development of cloned mouse embryos. Proc Natl Acad Sci U S A 108, 20621-20626.
    Mayer, W., Niveleau, A., Walter, J., Fundele, R., and Haaf, T. (2000). Demethylation of the zygotic paternal genome. Nature 403,501-502.
    McGrath, J., and Solter, D. (1983). Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220,1300-1302.
    McGrath, J., and Solter, D. (1984). Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 226,1317-1319.
    Meng, L., Ely, J.J., Stouffer, R.L., and Wolf, D.P. (1997). Rhesus monkeys produced by nuclear transfer. Biol Reprod 57,454-459.
    Meng, Q., Polgar, Z., Liu, J., and Dinnyes, A. (2009). Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells 11, 203-208.
    Meo, S.C., Leal, C.L., and Garcia, J.M. (2004). Activation and early parthenogenesis of bovine oocytes treated with ethanol and strontium. Anim Reprod Sci 81,35-46.
    Modlinski, J.A. (1975). Haploid mouse embryos obtained by microsurgical removal of one pronucleus. J Embryol Exp Morphol 33,897-905.
    Mohammed, A.A., Karasiewicz, J., and Modlinski, J.A. (2008). Developmental potential of selectively enucleated immature mouse oocytes upon nuclear transfer. Mol Reprod Dev 75,1269-1280.
    Monk, M., Boubelik, M., and Lehnert, S. (1987). Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99,371-382.
    Noggle, S., Fung, H.L., Gore, A., Martinez, H., Satriani, K.C., Prosser, R., Oum, K., Paull, D., Druckenmiller, S., Freeby, M., et al. (2011). Human oocytes reprogram somatic cells to a pluripotent state. Nature 478,70-75.
    Ogonuki, N., Inoue, K.., Yamamoto, Y., Noguchi, Y., Tanemura, K.., Suzuki, O., Nakayama, H., Doi, K., Ohtomo, Y, Satoh, M., et al. (2002). Early death of mice cloned from somatic cells. Nat Genet 30, 253-254.
    Ogura, A., Inoue, K., Ogonuki, N., Noguchi, A., Takano, K., Nagano, R., Suzuki, O., Lee, J., Ishino, F., and Matsuda, J. (2000a). Production of male cloned mice from fresh, cultured, and cryopreserved immature Sertoli cells. Biol Reprod 62,1579-1584.
    Ogura, A., Inoue, K.., Takano, K., Wakayama, T., and Yanagimachi, R. (2000b). Birth of mice after nuclear transfer by electrofusion using tail tip cells. Mol Reprod Dev 57,55-59.
    Ogushi, S., Fulka, J., Jr., and Miyano, T. (2005). Germinal vesicle materials are requisite for male pronucleus formation but not for change in the activities of CDK1 and MAP kinase during maturation and fertilization of pig oocytes. Dev Biol 286,287-298.
    Okada, Y., Yamagata, K.., Hong, K., Wakayama, T., and Zhang, Y. (2010). A role for the elongator complex in zygotic paternal genome demethylation. Nature 463,554-558.
    Onishi, A., Iwamoto, M., Akita, T., Mikawa, S., Takeda, K., Awata, T, Hanada, H., and Perry, A.C. (2000). Pig cloning by microinjection of fetal fibroblast nuclei. Science 289,1188-1190.
    Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean, W., Reik, W., and Walter, J. (2000). Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10,475-478.
    Park, I.H., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., Lerou, P.H., Lensch, M.W., and Daley, G.Q. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451,141-146.
    Pasque, V, Jullien, J., Miyamoto, K., Halley-Stott, R.P., and Gurdon, J.B. (2011). Epigenetic factors influencing resistance to nuclear reprogramming. Trends Genet 27,516-525.
    Popp, C, Dean, W., Feng, S., Cokus, S.J., Andrews, S., Pellegrini, M., Jacobsen, S.E., and Reik, W. (2010). Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463,1101-1105.
    Prather, R.S., Eichen, P.A., Nicks, D.K., and Peters, M.S. (1991). Artificial activation of porcine oocytes matured in vitro. Mol Reprod Dev 28,405-409.
    Rais, Y, Zviran, A., Geula, S., Gafni, O., Chomsky, E., Viukov, S., Mansour, A.A., Caspi,1., Krupalnik, V., Zerbib, M., et al. (2013). Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502,65-70.
    Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241,172-182.
    Santos, F., Peters, A.H., Otte, A.P., Reik, W., and Dean, W. (2005). Dynamic chromatin modifications characterise the first cell cycle in mouse embryos. Dev Biol 280,225-236.
    Santos, F., Zakhartchenko, V., Stojkovic, M., Peters, A., Jenuwein, T., Wolf, E., Reik, W., and Dean, W. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol 13,1116-1121.
    Sayaka, W., Satoshi, K., Van Thuan, N., Hiroshi, O., Takafusa, H., Eiji, M., Thuy, B.H., Masashi, M, and Teruhiko, W. (2008). Effect of volume of oocyte cytoplasm on embryo development after parthenogenetic activation, intracytoplasmic sperm injection, or somatic cell nuclear transfer. Zygote 16,211-222.
    Schumann, A., Wells, D.N., and Oback, B. (2006). Early zygotes are suitable recipients for bovine somatic nuclear transfer and result in cloned offspring. Reproduction 132,839-848.
    Shin, T., Kraemer, D., Pryor, J., Liu, L., Rugila, J., Howe, L., Buck, S., Murphy, K., Lyons, L., and Westhusin, M. (2002). A cat cloned by nuclear transplantation. Nature 415,859.
    Shinagawa, T., Takagi, T., Tsukamoto, D., Tomaru, C., Huynh, L.M., Sivaraman, P., Kumarevel, T., Inoue, K., Nakato, R., Katou, Y., et al. (2014). Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 14,217-227.
    Shinozawa, T., Mizutani, E., Tomioka, I., Kawahara, M., Sasada, H., Matsumoto, H., and Sato, E. (2004). Differential effect of recipient cytoplasm for microtubule organization and preimplantation development in rat reconstituted embryos with two-cell embryonic cell nuclear transfer. Mol Reprod Dev 68,313-318.
    Smallwood, S.A., Tomizawa, S., Krueger, E., Ruf, N., Carli, N., Segonds-Pichon, A., Sato, S., Hata, K., Andrews, S.R., and Kelsey, G. (2011). Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43,811-814.
    Svensson, K., Mattsson, R., James, T.C., Wentzel, P., Pilartz, M., MacLaughlin, J., Miller, S.J., Olsson, T., Eriksson, U.J., and Ohlsson, R. (1998). The paternal allele of the H19 gene is progressively silenced during early mouse development:the acetylation status of histones may be involved in the generation of variegated expression patterns. Development 125,61-69.
    Tachibana, M., Amato, P., Sparman, M., Gutierrez, N.M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H.S., Sritanaudomchai, H., et al. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153,1228-1238.
    Tada, M., Tada, T., Lefebvre, L., Barton, S.C., and Surani, M.A. (1997). Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 16,6510-6520.
    Tamashiro, K.L., Wakayama, T., Blanchard, R.J., Blanchard, D.C., and Yanagimachi, R. (2000). Postnatal growth and behavioral development of mice cloned from adult cumulus cells. Biol Reprod 63,328-334.
    Tanabe, K., Nakamura, M., Narita, M., Takahashi, K., and Yamanaka, S. (2013). Maturation, not initiation, is the major roadblock during reprogramming toward pluripotency from human fibroblasts. Proc Natl Acad Sci U S A 110,12172-12179.
    Tanaka, S., Oda, M., Toyoshima, Y., Wakayama, T., Tanaka, M., Yoshida, N., Hattori, M., Ohgane, J., Yanagimachi, R., and Shiota, K. (2001). Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol Reprod 65,1813-1821.
    Thuan, N.V., Kishigami, S., and Wakayama, T. (2010). How to improve the success rate of mouse cloning technology. J Reprod Dev 56,20-30.
    Tsuji, Y., Kato, Y., and Tsunoda, Y. (2009). The developmental potential of mouse somatic cell nuclear-transferred oocytes treated with trichostatin A and 5-aza-2'-deoxycytidine. Zygote 17, 109-115.
    van der Heijden, G.W., Dieker, J.W., Derijck, A.A., Muller, S., Berden, J.H., Braat, D.D., van der Vlag, J., and de Boer, P. (2005). Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev 122,1008-1022.
    Van Thuan, N., Bui, H.T., Kim, J.H., Hikichi, T., Wakayama, S., Kishigami, S., Mizutani, E., and Wakayama, T. (2009). The histone deacetylase inhibitor scriptaid enhances nascent mRNA production and rescues full-term development in cloned inbred mice. Reproduction 138,309-317.
    Wakayama, S., Cibelli, J.B., and Wakayama, T. (2003). Effect of timing of the removal of oocyte chromosomes before or after injection of somatic nucleus on development of NT embryos. Cloning Stem Cells 5,181-189.
    Wakayama, S., Kohda, T, Obokata, H., Tokoro, M., Li, C., Terashita, Y., Mizutani, E., Nguyen, V.T., Kishigami, S., Ishino, F., et al. (2013). Successful serial recloning in the mouse over multiple generations. Cell Stem Cell 12,293-297.
    Wakayama, S., Ohta, H., Hikichi, T., Mizutani, E., Iwaki, T., Kanagawa, O., and Wakayama, T. (2008). Production of healthy cloned mice from bodies frozen at-20 degrees C for 16 years. Proc Natl Acad Sci U S A 105,17318-17322.
    Wakayama, S., Suetsugu, R., Thuan, N.V., Ohta, H., Kishigami, S., and Wakayama, T. (2007). Establishment of mouse embryonic stem cell lines from somatic cell nuclei by nuclear transfer into aged, fertilization-failure mouse oocytes. Curr Biol 17, R120-121.
    Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369-374.
    Wakayama, T., Rodriguez, I., Perry, A.C., Yanagimachi, R., and Mombaerts, P. (1999). Mice cloned from embryonic stem cells. Proc Natl Acad Sci U S A 96,14984-14989.
    Wakayama, T., Tateno, H., Mombaerts, P., and Yanagimachi, R. (2000). Nuclear transfer into mouse zygotes. Nat Genet 24,108-109.
    Wakayama, T., and Yanagimachi, R. (1999). Cloning of male mice from adult tail-tip cells. Nat Genet 22,127-128.
    Wakayama, T., and Yanagimachi, R. (2001). Effect of cytokinesis inhibitors, DMSO and the timing of oocyte activation on mouse cloning using cumulus cell nuclei. Reproduction 122,49-60.
    Wang, S., Kou, Z., Jing, Z., Zhang, Y., Guo, X., Dong, M., Wilmut, I., and Gao, S. (2010). Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci U S A 107,17639-17644.
    Wani, N.A., Wernery, U., Hassan, F.A., Wernery, R., and Skidmore, J.A. (2010). Production of the first cloned camel by somatic cell nuclear transfer. Biol Reprod 82,373-379.
    Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L., and Schubeler, D. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37,853-862.
    Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R. (2007). In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448,318-324.
    Wilmut, I., Schnieke, A.E., Me Whir, J., Kind, A.J., and Campbell, K.H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature 385,810-813.
    Woods, G.L., White, K.L., Vanderwall, D.K., Li, G.P., Aston, K.I., Bunch, T.D., Meerdo, L.N., and Pate, B.J. (2003). A mule cloned from fetal cells by nuclear transfer. Science 301,1063.
    Wossidlo, M., Arand, J., Sebastiano, V., Lepikhov, K., Boiani, M., Reinhardt, R., Scholer, H., and Walter, J. (2010). Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J 29,1877-1888.
    Wu, S.C., and Zhang, Y. (2010). Active DNA demethylation:many roads lead to Rome. Nat Rev Mol Cell Biol 11,607-620.
    Yamada, M., Johannesson, B., Sagi, I., Burnett, L.C., Kort, D.H., Prosser, R.W., Paull, D., Nestor, M.W., Freeby, M, Greenberg, E., et al. (2014). Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature.
    Yamanaka, S., and Blau, H.M. (2010). Nuclear reprogramming to a pluripotent state by three approaches. Nature 465,704-712.
    Yamauchi, N., Sasada, H., Sugawara, S., and Nagai, T. (1996). Effect of culture conditions on artificial activation of porcine oocytes matured in vitro. Reprod Fertil Dev 8,1153-1156.
    Yang, H., Shi, L., Wang, B.A., Liang, D., Zhong, C., Liu, W., Nie, Y, Liu, J., Zhao, J., Gao, X., et al. (2012). Generation of genetically modified mice by oocyte injection of androgenetic haploid embryonic stem cells. Cell 149,605-617.
    Yoshizawa, Y., Kato, M., Hirabayashi, M., and Hochi, S. (2010). Impaired active demethylation of the paternal genome in pronuclear-stage rat zygotes produced by in vitro fertilization or intracytoplasmic sperm injection. Mol Reprod Dev 77,69-75.
    Zhou, Q., Renard, J.P., Le Friec, G., Brochard, V., Beaujean, N., Cherifi, Y, Fraichard, A., and Cozzi, J. (2003). Generation of fertile cloned rats by regulating oocyte activation. Science 302,1179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700