牛体外受精胚胎及克隆胚胎发育过程中组蛋白修饰表观遗传重编程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然体细胞克隆技术已经在多种动物中得以实现,但克隆胚胎怀孕率低、出生后异常等问题,严重制约了体细胞克隆技术的开发应用。有研究证实,供体细胞核在受体卵母细胞中不完全或异常的表观遗传重编程是导致克隆胚胎发育异常的重要原因。基因组DNA甲基化、组蛋白的共价修饰是重要的表观遗传修饰,二者具有复杂而广泛的生物学功能。在正常生殖细胞发生和胚胎发育过程中,染色体要经历广泛的DNA甲基化、去甲基化,核小体核心组蛋白也要通过各种共价修饰调节染色体功能,从而完成遗传信息的传递和调控胚胎的发育。目前,虽然已初步证实克隆胚胎存在DNA甲基化的异常,但组蛋白共价修饰是否也存在异常,还不是很清楚。为了深入探讨克隆胚胎组蛋白修饰的重编程,阐明胚胎的发育机理,进而改善克隆效率,本研究较系统的探讨了牛卵母细胞体外成熟、体外受精及胚胎体外发育过程中组蛋白修饰的动态变化,比较了体外受精胚胎与克隆胚胎早期发育过程中组蛋白修饰的差异。使用组蛋白去乙酰化酶抑制剂对供体细胞及受体卵母细胞进行了处理,检测了药物对供、受体表观遗传修饰以及克隆胚胎发育的影响,并对处理后供体核在去核卵母细胞中组蛋白修饰的重编程进行了分析。
     1.牛卵母细胞体外成熟及体外受精胚胎早期发育过程中组蛋白修饰的动态变化
     本研究探讨了组蛋白H3、H4不同甲基化、乙酰化修饰位点在牛卵母细胞体外成熟、体外受精及胚胎体外发育不同阶段的动态变化。结果显示,组蛋白H3、H4甲基化、乙酰化具有明显的阶段性变化。在卵母细胞成熟过程中,不同组蛋白不同修饰位点经历阶段性的、特异性去乙酰化,组蛋白甲基化则在卵母细胞成熟过程中没有明显变化。在精卵融合、精子核解凝集和重凝集过程中,乙酰化组蛋白H3、H4迅速定位于精子染色质,随后强的乙酰化信号定位于雄原核。与此同时,在卵母细胞核中,除H4K5ac,并没有检测到其他乙酰化信号;到染色质重新凝集时,检测到弱乙酰化信号(H3K9ac、H4K5ac、H4K8ac);而到雌原核形成时,乙酰化修饰加强。
     甲基化的H3K9me2和H3K4me3荧光信号在精子核膨大期和染色质再凝集期并没有出现;到原核形成时,雄性染色体组蛋白才逐渐被甲基化。与此同时,上述组蛋白甲基化信号在卵母细胞原核形成过程中维持了较高的水平。
     在随后的胚胎发育过程中,所研究的四种乙酰化组蛋白均存在于牛胚胎发育的各个时期,其中组蛋白H3K9ac,H3K18ac在8-细胞期明显减弱,到桑椹胚时增强。H4K8ac,H4K5ac在胚胎发育的不同阶段都具有较强的荧光信号,但在2-、4-和8-细胞期胚胎的间期卵裂球中,H4K8ac、H4K5ac定位于细胞核周边;而在分裂相的卵裂球中,H4K8ac、H4K5ac定位于凝聚染色体,且H4K5ac信号明显减弱。H3K18ac、H4K8ac、H4K5ac信号在囊胚滋胚层的染色较内细胞团强。与组蛋白乙酰化相比,甲基化H3K4在8-细胞期几乎完全消失,在随后的发育过程中,荧光信号有所恢复,而H3K9me2在8-细胞以后各期胚胎中则明显增强。上述结果表明,卵母细胞成熟有其特异的组蛋白修饰动态转变,组蛋白乙酰化逐渐被去除;受精是组蛋白甲基化、乙酰化逐渐恢复的过程,且不同修饰位点有其自身的动态变化特点;在胚胎发育过程中维持了组蛋白乙酰化、甲基化修饰。在受精及胚胎发育过程中,相同组蛋白的不同位点有相似的变化模式(H3K9ac vsH3K18ac;H4K8ac vs H4K5ac);功能相关的不同组蛋白修饰有其类似的动态变化(H3K9ac、H3K18ac vs H3K4me3),并且组蛋白乙酰化在牛胚胎细胞核中的定位也可能与合子基因组激活有关(H4K8ac、H4K5ac);而且组蛋白修饰与DNA甲基化密切相关(H3K9me2)。
     2.牛体外受精胚胎与体细胞克隆胚胎发育过程中组蛋白修饰的比较
     通过体细胞克隆技术构建重构胚胎并与体外受精来源的胚胎对组蛋白修饰的差别进行了比较。间接免疫荧光技术显示,从原核期到8-细胞期,克隆胚胎与体外受精胚胎存在着明显的组蛋白乙酰化、甲基化修饰的差异。高水平的H3K9ac、H3K18ac、H4K5ac、H4K8ac、H3K4me3和H3K9me2存在于8-细胞期之前的各期克隆胚胎中,并且H4K5ac和H4K8ac在克隆胚胎细胞核中的定位与体外受精胚胎也存在明显差异。8-细胞期以后,除了H3K9me2,其他组蛋白乙酰化、甲基化修饰的荧光强度及定位,在克隆胚胎都与体外受精胚胎类似。因此,克隆胚8-细胞前的发育阶段,存在着明显的组蛋白修饰异常,但当供体核基因组被激活,供体核组蛋白修饰经历较大程度的重编程,使得克隆胚胎与体外受精胚胎具有类似的组蛋白修饰模式。
     3.TSA处理转基因体细胞对克隆胚胎发育的影响
     Trichostatin A(TSA)作为特异的组蛋白去乙酰化酶抑制剂,能够增加细胞的组蛋白乙酰化水平,激活基因的表达,本试验使用TSA处理转基因供体细胞,并对基因组DNA甲基化水平、组蛋白乙酰化水平、报告基因的表达及克隆胚胎的发育进行了分析。结果表明转基因供体细胞对TSA存在明显的剂量效应,TSA浓度为100ng/mL时,产生明显的细胞毒性,大量细胞死亡(P<0.01)。当TSA在较低浓度(5-50ng/mL)时,细胞形态发生改变,细胞增殖明显被抑制,S期细胞明显减少,细胞被抑制于G0/G1期。核型分析显示,TSA处理没有导致转基因细胞异常核型的形成。使用10-50ng/mL TSA处理供体细胞,明显增加了表达报告基因细胞的数量,基因组DNA甲基化水平降低,组蛋白乙酰化水平增加。使用经TSA处理的体细胞作为核供体进行核移植,获得了类似的卵裂、桑椹胚及囊胚率。当TSA浓度为50ng/mL时,抑制了桑椹胚(14.8%vs 27.3%、38.9%,P<0.05),囊胚的发育(9.9%vs 20.7%、26.3%,P<0.05)。转基因体细胞经TSA处理后,表达eGFP基因的囊胚数明显增加。结论:TSA处理供体细胞明显改变了转基因供体细胞的表观遗传特性,激活报告基因表达,报告基因表达的改变可以作为判定基因组DNA甲基化水平转变的标志。TSA处理供体细胞明显增加表达报告基因的囊胚数,但具有低水平DNA甲基化、高水平组蛋白乙酰化的转基因供体细胞并没有提高克隆胚胎的发育率。
     4.TSA处理卵母细胞对克隆胚胎发育及表观遗传重编程的影响
     本试验使用组蛋白去乙酰化酶抑制剂(TSA)处理卵母细胞,探讨其对卵母细胞组蛋白乙酰化、克隆胚胎发育及供体细胞染色质重编程的影响。结果表明卵母细胞成熟率与TSA浓度呈明显的剂量相关,较高浓度TSA(>2.5ng/mL)处理,抑制了卵母细胞体外成熟,卵母细胞被抑制于MI期(10ng/mL、61.9%vs对照、31.4%,P<0.05)。分析处理后卵母细胞核型显示,TSA(1、10ng/mL)处理没有明显影响卵母细胞的核型(85.5%、85.9%vs 81.8%,P>0.05),且药物处理后明显增加了卵母细胞组蛋白乙酰化水平。TSA处理后的卵母细胞既促进了孤雌胚胎的发育(0.5ng/mL、28.7%,1ng/mL、36.4%,2.5ng/mL、25.9%,5ng/mL、27.1%vs对照、19.0%),也促进了克隆胚胎的发育(1ng/mL、39.3%vs对照、25.7%,P<0.05),但是处理组与对照组囊胚细胞数没有明显差异。检测两种克隆胚胎1-细胞阶段的组蛋白修饰显示,供体细胞染色质在受体中经历去乙酰化及乙酰化重建。当供体细胞核发生早期染色体凝集时,对照和处理组H3K9ac、H3K18ac荧光信号消失;对照组供体染色体H4K8ac明显减弱,处理组该位点乙酰化消失;体细胞核H4K5ac信号在对照组卵母细胞中没有明显变化,处理组H4K5ac信号明显减弱。当重构胚被激活时,所用组蛋白乙酰化信号迅速恢复。TSA处理的卵母细胞还明显增加了供体染色质的稳定性(74.2%vs39.6%,P<0.01)。结论:相对高浓度的TSA处理卵母细胞导致乙酰化水平明显升高,并且高的组蛋白乙酰化明显抑制了卵母细胞的成熟,但是TSA处理卵母细胞没有导致其染色体的异常。当将TSA处理后的卵母细胞用于孤雌胚胎和克隆胚胎的发育时,获得了高的孤雌和克隆囊胚率,并且TSA处理后的卵母细胞胞质明显促进了供体核的表观遗传重编程,并且增加了供体核在去核卵母细胞中的稳定性。
Since the birth of Dolly, the first somatic cell nuclear transfer (SCNT) mammal, a number of species such as cattle, mouse, goat, pig, cat, mule, horse, rat, and ferret were produced. However, the low pregnant rate, high abortion occurrence, placental abnormalities, increased birth weight, and perinatal death resulted in a very low cloning efficiency. Differentiated somatic nuclei can be dedifferentiated in oocyte cytoplasm, converte to totipotent, and induce nuclear reprogramming, although the mechanisms involved are not clear. DNA methylation and histone modifications are considered to be importance in nuclear reprogramming. During natural reproduction, asymmetry demethylation, remethylaiton and histone modifications are observed between fertilization and blastocyst formation. Recently, more and more studies show that SCNT embryos exhibit defects during nuclear reprogramming. In this study, changes in histone modifications during bovine oocytes meiosis, fertilization, and embryos development in vitro were examined; histone modifications of embryos derived from IVF and SCNT were compared; Using trichostatin A (TSA), a histone deactylase inhibitor, to treat donor cells and recipient oocytes, change of DNA methylation and histone modifications of the resultant embryos were also investigated.
     1. Dynamic Changes in Histone Modifications during Bovine Oocytes Meiosis, in vitro Fertilization, and Embryo Development
     This experiment was designed to investigate changes of histone methylation and acetylation during bovine oocytes meiosis, IVF, and embryo development. The results showed that histone acetylations were gradually disappeared from germinal vesicle (GV) stage to MII stage, histone methylations, however, did not change. At the time of sperm chromosome decondensation acetyl-histone H4 appeared. When sperm chromosome was recondensation, acetylation of histone H3 was observed. After male pronuclear formation, intensive histone acetylation signals were observed. When oocyte meiosis was activated, no histone acetylation signals were found, except for H4K5ac which expressed in AII-TII female chromosome. Intensive histone acetylation fluorescence signals were examined in female pronuclear. Methyl-histone H3 was not examined during male chromosome condensation and recondensation. Male pronuclear formed, and the histone methylation was examined. In female chromosome, intensive histone methylation fluorescence signals were examined from oocyte activation to pronuclear formation. When embryos cleaved, acetyl-histone H3 lysine 9 and lysine 18 (H3K9ac, H3K18ac) significantly reduced at 8-cell stage, and increased at morula stage. However, the fluorescence signals of acetyl-histone H4 lysine 8 and lysine 5 (H4K8ac, H4K5ac) did not change. Before zygotic genome activation, the enhanced staining for H4K8ac and H4K5ac were observed at the nuclear periphery. At mitosis, H4K8ac was located at condensing chromosomes, and acetylation signals of H4K5ac significantly reduced. At blastocyst stage, the H3K18ac, H4K8ac and H4K5ac signals were less intense in the inner cell mass (ICM) when compared to the trophectoderm cells (TE). During embryo development, fluorescence signals of trimethyl-histone H3 lysine 4 (H3K4me3) reduced or disappeared. However, the fluorescence intensity of dimethyl-histone H3 lysine 9 (H3K9me2) was gradually increasing during embryos development. At blastocyst stage, the levels of histone methylation between ICM and TE were with no difference. In conclusion, histone deacetylation was a meiotic-stage dependent and lysine residue-specific processes; During fertilization and embryo development, various lysine residues at the same histone had a similar dynamic changes (H3K9ac vs H3K18ac; H4K8ac vs H4K5ac); The similar dynamic changes of lysine residues were functional correlation (H3K9ac, H3K18ac vs H3K4me3); localizations of histone acetylation at nuclear stage was relative with zygotic genome activation (H4K8ac, H4K5ac), and changes of histone modifications were relative with embryonic DNA methylation (H3K9ac, H3K18ac, H3K4me3 vs H3K9me2).
     2. Comparative Study of Histone Modifications in Bovine IVF and SCNT Embryos
     The distribution patterns of acetylation on histone H3, H4, methylation on histone H3 lysine 9 and lysine 4 were examined in bovine preimplantation IVF and cloned embryos by using indirect immunofluorescence and scanning confocal microscopy. As results, high levels of histone acetylation and methylation were located in cloned embryos before donor genome activation (H3K9ac, H3K18ac, H4K5ac, H4K8ac, H3K4me3), and abnormal nuclear localizations of H4K8ac and H4K5ac were observed. Compared IVF with SCNT embryos, high level of H3K9me2 was examined during cloned embryos preimplantation development. When donor genome activation, all histone modifications were similar, except for H3K9me2, between IVF and cloned embryos. Therefore, somatic cells genome was widely epigenetic reprogrmming after somatic cell genome activation.
     3. Effect of Trichostatin A on Epigenetic Modifications of eGFP Transfected Cells and Subsequent Cloned Embryo Development
     Bovine fibroblast cells were transfected with enhancer green fluorescence protein (eGFP), and then treated with a histone-deacetylase inhibitor, trichostatin A (TSA). The results showed that the effect of TSA on transfected cells was in a dose dependent. When the TSA concentration was over 5ng/mL, cell proliferation was significantly inhibited. The majority of the cells died when TSA reached 100ng/mL (P<0.01). Number of cells in S phase was significantly decreased in the 5 to 50ng/mL TSA-treated groups, while the majority of the cells were at G0/G1 phases. The number of eGFP expressed cells was approximately two-fold higher in 25ng/mL (30.5%) and in 50ng/mL (29.5%) TSA treatment groups when compared to the control (15.0%). Reduced DNA methylation and improved histone acetylation were observed when the cells were treated with 10 to 50ng/mL TSA. Transfer of the TSA-treated cells to enucleated recipient oocytes resulted in similar cleavage rates among the experimental groups and the control. Cells treated with 50ng/mL TSA resulted in significantly lower blastocyst development (9.9%) than the other experimental and the control groups (around 20%). Analysis of the blastocysts showed that 86.7% of the embryos derived from TSA-treated cells were eGFP positive, which was higher than that from untreated cells (68.8%). In conclusion, Treatment of transfected cells with TSA decreased the genome DNA methylation level, increased histone acetylation and eGFP gene expression was activated. The donor cells with reduced DNA methylation did not improve subsequent cloned embryo development. However, transgene expression was improved in cloned embryos.
     4. Treatment of oocyts with Trichostatin A, Resulted in Improved Nuclear Reprogramming and Cloned Embryo Development
     Trichostatin A (TSA), a histone deacetylase inhibitor, was used to treat bovine oocytes during in vitro maturation (IVM). Change of oocytes histone acetylation, cloned embryos development, and donor chromosome epigenetic reprogramming in enucleated oocytes was examined. The results showed that the effect of TSA on bovine oocytes was in a dose dependent. When the TSA concentration was over 2.5ng/mL, oocytes IVM were significantly inhibited. The majority of the oocytes inhibited at MI stage when TSA reached 10ng/mL (10ng/mL TSA, 61.9% vs control, 31.4%, P<0.05). However, effect of TSA on oocytes karyotype was not found (1ng/mL 85.5%, 10ng/mL 85.9% TSA vs 81.8% control, P>0.05, respectively). Histone acetylation levels of oocytes from TSA treatment were significantly increased. TSA treated oocytes were used to parthenogenetic development, and high development rates was achieved (0.5ng/mL 28.7%, 1ng/mL 36.4%, 2.5ng/mL 25.9%, 5ng/mL 27.1% vs controls 19.0%, respectively). Meanwhile, Transfer of donor cells to enucleated TSA-treated recipient oocytes resulted in a higher blastocyst development in lng/mL TSA (1ng/mL TSA 39.3% vs control 25.7%, P<0.05). However, similar total cell number per-blastocyst was observed.
     Recently, dynamic reprogramming of histone acetylation and methylation was investigated in the first cell cycle of cloned and TSA-treated cloned embryos. As results, when donor nuclear was induced premature chromosome condensation (PCC), part of somatic lysine acetylation on core histones (H3K9ac, H3K18ac) were quickly deacetylated in cloned and TSA-treated cloned embryos. The fluorescence intensity of H4K8ac was significantly decreased in control embryos, but the signals disappeared in cloned embryos from recipient oocytes treated by TSA. The H4K5ac fluorescence signals were not change in control embryos, and were significantly decreased in TSA treated group. Stability of donor chromosome was significantly increased when TSA treated oocytes were used as cytoplasm recipient (TSA-treated group 74.2% vscontrol 39.6%, P<0.01). In conclusion, bovine oocytes treated with TSA inceased global histione acetylation. Cloned embryos development and epigenetic reprogramming from TSA-treated oocytes were improved, and stability of donor chromosome in TSA-treated oocytes was increased.
引文
[1]Daniels,R.,Hall,V.,Trounson,A.O.Analysis ofgene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei,Biol Reprod,2000,63(4):1034-1040
    [2]Solter,D.Mammalian cloning:advances and limitations,Nat Rev Genet,2000,1(3):199-207
    [3]Sasaki,H.,Matsui,Y.Epigenetic events in mammalian germ-cell development:reprogramming and beyond,Nat Rev Genet,2008,9(2):129-140
    [4]Wang,Q.,Yin,S.,Ai,J.S.et al.Histone deacetylation is required for orderly meiosis,Cell Cycle,2006,5(7):766-774
    [5]Fulka,H.,St John,J.C.,Fulka,J.et al.Chromatin in early mammalian embryos:achieving the pluripotent state,Differentiation,2008,76(1):3-14
    [6]Kouzarides,T.Chromatin modifications and their function,Cell,2007,128(4):693-705
    [7]Klose,R.J.,Zhang,Y.Regulation of histone methylation by demethylimination and demethylation,Nat Rev Mol Cell Biol,2007,8(4):307-318
    [8]Surani,M.A.,Hayashi,K.,Hajkova,P.Genetic and epigenetic regulators of pluripotency,Cell,2007,128(4):747-762
    [9]Agalioti,T.,Chen,G.,Thanos,D.Deciphering the transcriptional histone acetylation code for a human gene,Cell,2002,111(3):381-392
    [10]Grunstein,M.Histone acetylation in chromatin structure and transcription,Nature,1997,389(6649):349-352
    [11]Strahl,B.D.,Allis,C.D.The language of covalent histone modifications,Nature,2000,403(6765):41-45
    [12]Kim,J.M.,Liu,H.,Tazaki,M.et al.Changes in histone acetylation during mouse oocyte meiosis,J Cell Biol,2003,162(1):37-46
    [13]Kageyama,S.,Liu,H.,Kaneko,N.et al.Alterations in epigenetic modifications during oocyte growth in mice,Reproduction,2007,133(1):85-94
    [14]Govin,J.,Caron,C.,Lestrat,C.et al.The role of histones in chromatin remodelling during mammalian spermiogenesis,Eur J Bioehem,2004,271(17):3459-3469
    [15] Adenot, P. G., Merrier, Y., Renard, J. P. et al. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos, Development, 1997,124(22): 4615-4625
    [16]Lepikhov, K., Walter, J. Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote, BMC Dev Biol, 2004,4: 12
    [17] Sega, M. F., Lee, K., Machaty, Z. et al. Pronuclear stage porcine embryos do not possess a strict asymmetric distribution of lysine 9 dimethylation of histone H3 based solely on parental origin, Mol Reprod Dev, 2007, 74(1): 2-7
    [18] Liu, H., Kim, J. M., Aoki, R Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos, Development, 2004,131(10): 2269-2280
    [19] Tang, L. S., Wang, Q., Xiong, B. et al. Dynamic changes in histone acetylation during sheep oocyte maturation, J Reprod Dev, 2007, 53(3): 555-561
    [20] Wilmut, I., Schnieke, A. E., McWhir, J. et al. Viable offspring derived from fetal and adult mammalian cells, Nature, 1997, 385(6619): 810-813
    [21] Santos, F., Hendrich, B., Reik, W. et al. Dynamic reprogramming of DNA methylation in the early mouse embryo, Dev Biol, 2002,241(1): 172-182
    [22]Dean, W., Santos, F., Stojkovic, M. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos, Proc Natl Acad Sci U S A, 2001, 98(24): 13734-13738
    [23]Dean, W., Santos, F., Reik, W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer, Semin Cell Dev Biol, 2003,14(1): 93-100
    [24]Enright, B. P., Kubota, C., Yang, X. et al. Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2'-deoxycytidine, Biol Reprod, 2003,69(3): 896-901
    [25]Enright, B. P., Sung, L. Y, Chang, C. C. et al. Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2'-deoxycytidine, Biol Reprod, 2005, 72(4): 944-948
    [26]Kishigami, S., Mizutani, E., Ohta, H. et al. Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer, Biochem Biophys Res Commun, 2006, 340(1): 183-189
    [27]Rybouchkin, A., Kato, Y, Tsunoda, Y. Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer, Biol Reprod, 2006,74(6): 1083-1089
    [28] Wee, G., Koo, D. B., Song, B. S. et al. Inheritable histone H4 acetylation of somatic chromatins in cloned embryos, J Biol Chem, 2006,281(9): 6048-6057
    [29] Lee, J. H., Campbell, K. H. Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer, Biol Reprod, 2006,74(4): 691-698
    [30] Wang, F., Kou, Z., Zhang, Y. et al. Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos, Biol Reprod, 2007,77(6): 1007-1016
    [31]Kishigami, S., Bui, H. T., Wakayama, S. et al. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer, J Reprod Dev, 2007, 53(1): 165-170
    [32]Zhang, Y., Li, J., Villemoes, K. et al. An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer, Cloning Stem Cells, 2007, 9(3): 357-363
    [33] Shi, L. H., Ai, J. S., Ouyang, Y. C. et al. Trichostatin A and nuclear reprogramming of cloned rabbit embryos, J Anim Sci, 2008,
    [34] lager, A. E., Ragina, N. P., Ross, P. J. et al. Trichostatin A Improves Histone Acetylation in Bovine Somatic Cell Nuclear Transfer Early Embryos, Cloning Stem Cells, 2008,
    [35]Bordignon, V., Keyston, R., Lazaris, A. et al. Transgene expression of green fluorescent protein and germ line transmission in cloned calves derived from in vitro-transfected somatic cells, Biol Reprod, 2003,68(6): 2013-2023
    [36]Lee, S. L., Kumar, B. M., Kim, J. G. et al. Cellular composition and viability of cloned bovine embryos using exogene-transfected somatic cells, Reprod Domest Anim, 2007, 42(1): 44-52
    [1]Davey,C.A.,Sargent,D.F.,Luger,K.et al.Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution,J Mol Biol,2002,319(5):1097-1113
    [2]Kurdistani,S.K.,Tavazoie,S.,Grunstein,M.Mapping global histone acetylation patterns to gene expression,Cell,2004,117(6):721-733
    [3]Martin,C.,Zhang,Y.The diverse functions of histone lysine methylation,Nat Rev Mol Cell Biol,2005,6(11):838-849
    [4]De Ruijter AJ,V.G.A.Histone deacetylases(HDACs):Characterization of the classical HDAC family,Biochem J,2003,370:737-749
    [5]O'Neill,L.P.,Turner,B.M.Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner, Embo J, 1995,14(16): 3946-3957
    [6] Agalioti, T., Chen, G., Thanos, D. Deciphering the transcriptional histone acetylation code for a human gene, Cell, 2002,111(3): 381-392
    [7] Grunstein, M. Histone acetylation in chromatin structure and transcription, Nature, 1997, 389(6649): 349-352
    [8] Strahl, B. D., Allis, C. D. The language of covalent histone modifications, Nature, 2000, 403(6765): 41-45
    [9] Bannister, A. J., Schneider, R., Kouzarides, T. Histone methylation: dynamic or static?, Cell, 2002,109(7): 801-806
    [10]Bannister, A. J., Schneider, R., Myers, F. A. et al. Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes, J Biol Chem, 2005,280(18): 17732-17736
    [11] Bernstein, B. E., Kamal, M., Lindblad-Toh, K. et al. Genomic maps and comparative analysis of histone modifications in human and mouse, Cell, 2005,120(2): 169-181
    [12]Pokholok, D. K., Harbison, C. T., Levine, S. et al. Genome-wide map of nucleosome acetylation and methylation in yeast, Cell, 2005,122(4): 517-527
    [13]Cao, R., Wang, L.,Wang, H. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing, Science, 2002,298(5595): 1039-1043
    [14]Peters, A. H., O'Carroll, D., Scherthan, H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability, Cell, 2001, 107(3): 323-337
    [15]Rice, J. C., Briggs, S. D., Ueberheide, B. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains, Mol Cell, 2003, 12(6): 1591-1598
    [16]Schotta, G., Lachner, M., Sarma, K. et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin, Genes Dev, 2004, 18(11): 1251-1262
    [17]Kruhlak, M. J., Hendzel, M. J., Fischle, W. et al. Regulation of global acetylation in mitosis through loss of histone acetyltransferases and deacetylases from chromatin, J Biol Chem, 2001,276(41): 38307-38319
    [18]Kim, J. M., Liu, H., Tazaki, M. et al. Changes in histone acetylation during mouse oocyte meiosis, J Cell Biol, 2003,162(1): 37-46
    [19]Endo, T., Naito, K., Aoki, F. et al. Changes in histone modifications during in vitro maturation of porcine oocytes, Mol Reprod Dev, 2005, 71(1): 123-128
    [20]Tang, L. S., Wang, Q., Xiong, B. et al. Dynamic changes in histone acetylation during sheep oocyte maturation, J Reprod Dev, 2007, 53(3): 555-561
    [21]Wang, Q., Yin, S., Ai, J. S. et al. Histone deacetylation is required for orderly meiosis, Cell Cycle, 2006, 5(7): 766-774
    [22]Sarmento, O. F., Digilio, L. C., Wang, Y. et al. Dynamic alterations of specific histone modifications during early murine development, J Cell Sci, 2004,117(Pt 19): 4449-4459
    [23]Liu, H., Kim, J. M., Aoki, F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos, Development, 2004,131(10): 2269-2280
    [24]Turner, B. M. Histone acetylation and control of gene expression, J Cell Sci, 1991,99 (Pt 1): 13-20
    [25]Turner, B. M. Histone acetylation as an epigenetic determinant of long-term transcriptional competence, Cell Mol Life Sci, 1998, 54(1): 21-31
    [26] Santos-Rosa, H., Schneider, R., Bannister, A. J. et al. Active genes are tri-methylated at K4 of histone H3, Nature, 2002,419(6905): 407-411
    [27]Nielsen, S. J., Schneider, R., Bauer, U. M. et al. Rb targets histone H3 methylation and HP1 to promoters, Nature, 2001,412(6846): 561-565
    [28]Brackett, B. G., Oliphant, G.Capacitation of rabbit spermatozoa in vitro, Biol Reprod, 1975,12(2): 260-274
    [29]Tervit, H. R., Whittingham, D. G., Rowson, L. E. Successful culture in vitro of sheep and cattle ova, J Reprod Fertil, 1972, 30(3): 493-497
    [30]Kim, J. M., Ogura, A., Nagata, M. et al. Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer, Biol Reprod, 2002, 67(3): 760-766
    [31]Noma, K., Allis, C. D., Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries, Science, 2001,293(5532): 1150-1155
    [32]Dean, W., Santos, F., Reik, W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer, Semin Cell Dev Biol, 2003, 14(1): 93-100
    [33]Bachman, K. E., Park, B. H., Rhee, I. et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene, Cancer Cell, 2003, 3(1): 89-95
    [34]Belyaev, N. D., Keohane, A. M., Turner, B. M. Histone H4 acetylation and replication timing in Chinese hamster chromosomes, Exp Cell Res, 1996,225(2): 277-285
    [35]Vogelauer, M., Rubbi, L., Lucas, I. et al. Histone acetylation regulates the time of replication origin firing, Mol Cell, 2002,10(5): 1223-1233
    [36]Brownell, J. E., Zhou, J., Ranalli, T. et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation, Cell, 1996, 84(6): 843-851
    [37]Courey, A. J., Jia, S. Transcriptional repression: the long and the short of it, Genes Dev, 2001,15(21): 2786-2796
    [38]Arney, K. L., Fisher, A. G.Epigenetic aspects of differentiation, J Cell Sci, 2004, 117(Pt 19): 4355-4363
    [39]Thorne, A. W., Kmiciek, D., Mitchelson, K. et al. Patterns of histone acetylation, Eur J Biochem, 1990,193(3): 701-713
    [40]Mattson, B. A., Albertini, D. F. Oogenesis: chromatin and microtubule dynamics during meiotic prophase, Mol Reprod Dev, 1990,25(4): 374-383
    [41]Debey, P., Szollosi, M. S., Szollosi, D. et al. Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics, Mol Reprod Dev, 1993,36(1): 59-74
    [42]Kageyama, S., Liu, H., Kaneko, N. et al. Alterations in epigenetic modifications during oocyte growth in mice, Reproduction, 2007,133(1): 85-94
    [43]Ekwall, K., Olsson, T., Turner, B. M. et al. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres, Cell, 1997, 91(7): 1021-1032
    [44]Fuks, F., Burgers, W. A., Godin, N. et al. Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription, Embo J, 2001,20(10): 2536-2544
    [45]Sengupta, N., Seto, E. Regulation of histone deacetylase activities, J Cell Biochem, 2004, 93(1): 57-67
    [46]Smillie, D. A., Llinas, A. J., Ryan, J. T. et al. Nuclear import and activity of histone deacetylase in Xenopus oocytes is regulated by phosphorylation, J Cell Sci, 2004, 117(Pt 9): 1857-1866
    [47]Cai, R., Kwon, P., Yan-Neale, Y. et al. Mammalian histone deacetylase 1 protein is posttranslationally modified by phosphorylation, Biochem Biophys Res Commun, 2001, 283(2): 445-453
    [48]Margueron, R., Trojer, P., Reinberg, D. The key to development: interpreting the histone code?, Curr Opin Genet Dev, 2005,15(2): 163-176
    [49] Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression, Annu Rev Biochem, 2006, 75: 243-269
    [50]Czermin, B., Melfi, R., McCabe, D. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites, Cell, 2002,111(2): 185-196
    [51]Tamaru, H., Zhang, X., McMillen, D. et al. Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa, Nat Genet, 2003,34(1): 75-79
    [52]Zhang, Y, Reinberg, D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails, Genes Dev, 2001, 15(18): 2343-2360
    [53] Schneider, R., Bannister, A. J., Myers, F. A. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes, Nat Cell Biol, 2004,6(1): 73-77
    [54] Schubeler, D., MacAlpine, D. M., Scalzo, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote, Genes Dev, 2004,18(11): 1263-1271
    [55] Bernstein, B. E., Humphrey, E. L., Erlich, R. L. et al. Methylation of histone H3 Lys 4 in coding regions of active genes, Proc Natl Acad Sci U S A, 2002,99(13): 8695-8700
    [56]Ng, H. H., Robert, E, Young, R. A. et al. Targeted recruitment of Setl histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity, Mol Cell, 2003,11(3): 709-719
    [57]Liang, G., Lin, J. C., Wei, V. et al. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome, Proc Natl Acad Sci U S A, 2004,101(19): 7357-7362
    [58]Yan, C., Boyd, D. D. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression, Mol Cell Biol, 2006, 26(17): 6357-6371
    [59]Fulka, H. Changes in global histone acetylation pattern in somatic cell nuclei after their transfer into oocytes at different stages of maturation, Mol Reprod Dev, 2008, 75(3): 556-564
    [60]Oliveri, R. S., Kalisz, M., Schjerling, C. K. et al. Evaluation in mammalian oocytes of gene transcripts linked to epigenetic reprogramming, Reproduction, 2007, 134(4): 549-558
    
    [61]Khalil, A. M., Driscoll, D. J. Histone H3 lysine 4 dimethylation is enriched on the inactive sex chromosomes in male meiosis but absent on the inactive X in female somatic cells, Cytogenet Genome Res, 2006,112(1-2): 11-15
    [62]Rougeulle, C., Chaumeil, J., Sarma, K. et al. Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome, Mol Cell Biol, 2004,24(12): 5475-5484
    [63]Tachibana, M., Ueda, J., Fukuda, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9, Genes Dev, 2005,19(7): 815-826
    [64]Lucifero, D., Mann, M. R., Bartolomei, M. S. et al. Gene-specific timing and epigenetic memory in oocyte imprinting, Hum Mol Genet, 2004,13(8): 839-849
    [65] Adenot, P. G., Szollosi, M. S., Geze, M. et al. Dynamics of paternal chromatin changes in live one-cell mouse embryo after natural fertilization, Mol Reprod Dev, 1991, 28(1): 23-34
    [66]Kimmins, S., Sassone-Corsi, P. Chromatin remodelling and epigenetic features of germ cells, Nature, 2005,434(7033): 583-589
    [67] Adenot, P. G., Mercier, Y., Renard, J. P. et al. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos, Development, 1997,124(22): 4615-4625
    [68]van der Heijden, G.W., Derijck, A. A., Ramos, L. et al. Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin, Dev Biol, 2006,298(2): 458-469
    [69]Thompson, E. M., Legouy, E., Christians, E. et al. Progressive maturation of chromatin structure regulates HSP70.1 gene expression in the preimplantation mouse embryo, Development, 1995,121(10): 3425-3437
    [70]Worrad, D. M., Turner, B. M., Schultz, R. M. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo, Development, 1995,121(9): 2949-2959
    [71]Brevini, T. A., Cillo, F., Antonini, S. et al. Temporal and spatial control of gene expression in early embryos of farm animals, Reprod Fertil Dev, 2007,19(1): 35-42
    [72]van der Heijden, G.W., Dieker, J. W., Derijck, A. A. et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote, Mech Dev, 2005,122(9): 1008-1022
    [73]Lepikhov, K., Walter, J. Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote, BMC Dev Biol, 2004,4:12
    [74]Nishioka, K., Chuikov, S., Sarma, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation, Genes Dev, 2002,16(4): 479-489
    [75] Santos, F., Hendrich, B., Reik, W. et al. Dynamic reprogramming of DNA methylation in the early mouse embryo, Dev Biol, 2002,241(1): 172-182
    [76]Amey, K. L., Bao, S., Bannister, A. J. et al. Histone methylation defines epigenetic asymmetry in the mouse zygote, Int J Dev Biol, 2002,46(3): 317-320
    [77] Jeong, Y. S., Yeo, S., Park, J. S. et al. Gradual development of a genome-wide H3-K9 trimethylation pattern in paternally derived pig pronucleus, Dev Dyn, 2007, 236(6): 1509-1516
    [78]Park, J. S., Jeong, Y. S., Shin, S. T. et al. Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes, Dev Dyn, 2007,236(9): 2523-2533
    [79]Peterson, C. L., Workman, J. L. Promoter targeting and chromatin remodeling by the SWI/SNF complex, Curr Opin Genet Dev, 2000,10(2): 187-192
    [80] Santos, F., Zakhartchenko, V., Stojkovic, M. et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos, Curr Biol, 2003, 13(13): 1116-1121
    [81]Bilodeau-Goeseels S, S. G.Changes in ribosomal ribonucleic acid content within in vitro-produced bovine embryos, Biol Reprod, 1997, 56(5): 1323-1329
    [82]Schiltz, R. L., Mizzen, C. A.,Vassilev, A. et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates, J Biol Chem, 1999,274(3): 1189-1192
    [83]Vigneault, C., McGraw, S., Massicotte, L. et al. Transcription factor expression patterns in bovine in vitro-derived embryos prior to maternal-zygotic transition, Biol Reprod, 2004, 70(6): 1701-1709
    [84] Dean, W., Santos, F., Stojkovic, M. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos, Proc Natl Acad Sci U S A, 2001,98(24): 13734-13738
    [85] Huang, J. C., Lei, Z. L., Shi, L. H. et al. Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos, Biochem Biophys Res Commun, 2007, 354(1): 77-83
    [86] Santos, F., Dean, W. Epigenetic reprogramming during early development in mammals, Reproduction, 2004,127(6): 643-651
    [87] Yeo, S., Lee, K. K., Han, Y. M. et al. Methylation changes of lysine 9 of histone H3 during preimplantation mouse development, Mol Cells, 2005, 20(3): 423-428
    [88] Santos, F., Peters, A. H., Otte, A. P. et al. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos, Dev Biol, 2005,280(1): 225-236
    [1]Wilmut,I.,Schnieke,A.E.,McWhir,J.et al.Viable offspring derived from fetal and adult mammalian cells,Nature,1997,385(6619):810-813
    [2]Daniels,R.,Hall,V.,Trounson,A.O.Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei,Biol Reprod,2000,63(4):1034-1040
    [3]Bourc'his,D.,Le Bourhis,D.,Patin,D.et al.Delayed and incomplete reprogramming of chromosome methylation pattems in bovine cloned embryos,Curt Biol,2001,11(19):1542-1546
    [4]Santos,F.,Zakhartehenko,V.,Stojkovic,M.et al.Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos,Curr Biol,2003,13(13):1116-1121
    [5]Suteevun,T.,Parnpai,R.,Smith,S.L.et al.Epigenetic characteristics of cloned and in vitro-fertilized swamp buffalo(Bubalus bubalis) embryos,J Anim Sci,2006,84(8):2065-2071
    [6]Liu,X.Y.,Mal,S.F.,Miao,D.Q.et al.Cortical granules behave differently in mouse oocytes matured under different conditions,Hum Reprod,2005,20(12):3402-3413
    [7]Tecirlioglu,R.T.,Cooney,M.A.,Lewis,I.M.et al.Comparison of two approaches to nuclear transfer in the bovine:hand-made cloning with modifications and the conventional nuclear transfer technique,Reprod Fertil Dev,2005,17(5):573-585
    [8]Grunstein,M.Histone acetylation in chromatin structure and transcription,Nature,1997,389(6649):349-352
    [9]Belyaev,N.D.,Keohane,A.M.,Turner,B.M.Histone H4 acetylation and replication timing in Chinese hamster chromosomes,Exp Cell Res,1996,225(2):277-285
    [10]Vogelauer,M.,Rubbi,L.,Lucas,I.et al.Histone acetylation regulates the time of replication origin firing,Mol Cell,2002,10(5):1223-1233
    [11]Brownell,J.E.,Zhou,J.,Ranalli,T.et al.Tetrahymena histone acetyltransferase A:a homolog to yeast GcnSp linking histone acetylation to gene activation,Cell,1996,84(6):843-851
    [12]Courey,A.J.,Jia,S.Transcriptional repression:the long and the short of it,Genes Dev,2001,15(21):2786-2796
    [13]Ng,H.H.,Robert,F.,Young,R.A.et al.Targeted recruitment of Set1 histone methylase by elongating Pol Ⅱ provides a localized mark and memory of recent transcriptional activity,Mol Cell,2003,11(3):709-719
    [14]Tachibana,M.,Ueda,J.,Fukuda,M.et al.Historic methyltransferases G9a and GLP form heteromerie complexes and are both crucial for methylation of euchromatin at H3-K9,Genes Dee,2005,19(7):815-826
    [15]Amey,K.L.,Fisher,A.G.Epigenetie aspects of differentiation,J Cell Sci,2004,117(Pt 19):4355-4363
    [16]Wang,Q.,YEn_,S.,Ai,J.S.et al.Histone deacetylation is required for orderly meiosis,Cell Cycle,2006,5(7):766-774
    [17]Adenot,P.G,Mercier,Y.,Renard,J.P.et al.Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos,Development,1997,124(22):4615-4625
    [18]Van Stekelenburg-Hamers,A.E.,Van Inzen,W.G.,Van Achterberg,T.A.et al.Nuclear transfer and electrofusion in bovine in vitro-matured/in vitro-fertilized embryos:effect of media and electrical fusion parameters,Mol Reprod Dev,1993,36(3):307-312
    [19]Zhu,J.,Telfer,E.E.,Fletcher,J.et al.Improvement of an electrical activation protocol for porcine oocytes,Biol Reprod,2002,66(3):635-641
    [20]Kikuchi,K.,Naito,K.,Noguchi,J.ct al.Maturation/M-phase promoting factor:a regulator of aging in porcine oocytcs,Biol Reprod,2000,63(3):715-722
    [21]Tanaka,H.,Kanagawa,H.Influence of combined activation treatments on the success of bovine nuclear transfer using young or aged ooeytes,Anim Reprod Sci,1997,49(2-3):113-123
    [22]Dean,W.,Santos,F.,Reik,W.Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer,Semin Cell Dev Biol,2003,14(1):93-100
    [23]Han,Y.M.,Kang,Y.K.,Koo,D.B.et al.Nuclear reprogramming of cloned embryos produced in vitro,Theriogenology,2003,59(1):33-44
    [24]Worrad, D. M., Turner, B. M.,Schultz, R. M. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo, Development, 1995,121(9): 2949-2959
    [25]Brevini, T. A., Cillo, F., Antonini, S. et al. Temporal and spatial control of gene expression in early embryos of farm animals, Reprod Fertil Dev, 2007,19(1): 35-42
    [26]Schiltz, R. L., Mizzen, C. A., Vassilev, A. et al. Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates, J Biol Chem, 1999,274(3): 1189-1192
    [27]Vigneault, C., McGraw, S., Massicotte, L. et al. Transcription factor expression patterns in bovine in vitro-derived embryos prior to maternal-zygotic transition, Biol Reprod, 2004, 70(6): 1701-1709
    [28] Shi, L. H., Ai, J. S., Ouyang, Y. C. et al. Trichostatin A and nuclear reprogramming of cloned rabbit embryos, J Anim Sci, 2008,
    [29]Holker, M., Petersen, B., Hassel, P. et al. Duration of in vitro maturation of recipient oocytes affects blastocyst development of cloned porcine embryos, Cloning Stem Cells, 2005,7(1): 35-44
    [30]Kato, Y., Tani, T., Tsunoda, Y Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows, J Reprod Fertil, 2000,120(2): 231-237
    [31] Hall, V. J., Ruddock, N. T., French, A. J. Expression profiling of genes crucial for placental and preimplantation development in bovine in vivo, in vitro, and nuclear transfer blastocysts, Mol Reprod Dev, 2005, 72(1): 16-24
    [32] Santos-Rosa, H., Schneider, R., Bannister, A. J. et al. Active genes are tri-methylated at K4 of histone H3, Nature, 2002,419(6905): 407-411
    [33]Noma, K., Allis, C. D., Grewal, S. I. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries, Science, 2001,293(5532): 1150-1155
    [34]Yan, C., Boyd, D. D. Histone H3 acetylation and H3 K4 methylation define distinct chromatin regions permissive for transgene expression, Mol Cell Biol, 2006, 26(17): 6357-6371
    [35]Bernstein, B. E., Kamal, M., Lindblad-Toh, K. et al. Genomic maps and comparative analysis of histone modifications in human and mouse, Cell, 2005,120(2): 169-181
    [36]Fuks, F., Hurd, P. J., Wolf, D. et al. The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation, J Biol Chem, 2003,278(6): 4035-4040
    [37] Dean, W., Santos, F., Stojkovic, M. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos, Proc Natl Acad Sci U S A, 2001, 98(24): 13734-13738
    [1]Ailenberg,M.,Silverman,M.Trichostatin A-histone deacetylase inhibitor with clinical therapeutic potential-is also a selective and potent inhibitor of gelatinase A expression,Bioehem Biophys Res Commun,2002,298(1):110-115
    [2]Solter,D.Mammalian cloning:advances and limitations,Nat Rev Genet,2000,1(3):199-207
    [3]Gurdon,J.B.,Laskey,R.A.,De Robertis,E.M.et al.Reprogramming of transplanted nuclei in amphibia,Int Rev Cytol Suppl,1979,(9):161-178
    [4]Santos,F.,Hendrich,B.,Reik,W.et al.Dynamic reprogramming of DNA methylation in the early mouse embryo,Dev Biol,2002,241(1):172-182
    [5]Dean,W.,Santos,F.,Reik,W.Epigenetie reprogramming in early mammalian development and following somatic nuclear transfer,Semin Cell Dev Biol,2003,14(1):93-100
    [6]Dean,W.,Santos,F.,Stojkovie,M.et al.Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos,Proe Natl Acad Sci U S A,2001,98(24):13734-13738
    [7]Yoshida,M.,Kijima,M.,Akita,M.et al.Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by triehostatin A,J Biol Chem,1990,265(28):17174-17179
    [8]Enright,B.P.,Kubota,C.,Yang,X.et al.Epigenetie characteristics and development of embryos cloned from donor cells treated by triehostatin A or 5-aza-2′-deoxycytidine,Biol Reprod,2003,69(3):896-901
    [9]Monk,M.,Boubelik,M.,Lehnert,S.Temporal and regional changes in DNA methylation in the embryonic,extraembryonic and germ cell lineages during mouse embryo development,Development,1987,99(3):371-382
    [10]Kishigami,S.,Mizutani,E.,Ohta,H.et al.Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer,Biochem Biophys Res Commun,2006,340(1):183-189
    [11]Mogal,A.,Abdulkadir,S.A.Effects of Histone Deacetylase Inhibitor(HDACi);Triehostatin-A(TSA) on the expression of housekeeping genes,Mol Cell Probes,2006,20(2):81-86
    [12]E1 Kharroubi,A.,Piras,G,Stewart,C.L.DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts,J Biol Chem,2001,276(12): 8674-8680
    [13]Hu, J. F., Nguyen, P. H., Pham, N. V. et al. Modulation of Igf2 genomic imprinting in mice induced by 5-azacytidine, an inhibitor of DNA methylation, Mol Endocrinol, 1997, 11(13): 1891-1898
    [14]Pedone, P. V., Pikaart, M. J., Cerrato, F. et al. Role of histone acetylation and DNA methylation in the maintenance of the imprinted expression of the H19 and IgG genes, FEBS Lett, 1999,458(1): 45-50
    [15]Grassi, G., Maccaroni, P., Meyer, R. et al. Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87, Carcinogenesis, 2003, 24(10): 1625-1635
    
    [16] Choi, K. H., Basma, H., Singh, J. et al. Activation of CMV promoter-controlled glycosyltransferase and beta -galactosidase glycogenes by butyrate, tricostatin A, and 5-aza-2'-deoxycytidine, Glycoconj J, 2005,22(1-2): 63-69
    [17]Hoshikawa, Y., Kwon, H. J., Yoshida, M. et al. Trichostatin A induces morphological changes and gelsolin expression by inhibiting histone deacetylase in human carcinoma cell lines, Exp Cell Res, 1994,214(1): 189-197
    [18] Shin, H. J., Baek, K. H., Jeon, A. H. et al. Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation, Oncogene, 2003,22(25): 3853-3858
    [19] Akiyama, T., Nagata, M., Aoki, F. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice, Proc Natl Acad Sci U S A, 2006, 103(19): 7339-7344
    [20]Verma IM, S. N. Gene therapy—promises, problems and prospects, nature, 1997, 389: 239-242
    [21]Mutskov, V., Felsenfeld, G.Silencing of transgene transcription precedes methylation of promoter DNA and histone H3 lysine 9, Embo J, 2004,23(1): 138-149
    [22] Krishnan, M., Park, J. M., Cao, F. et al. Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging, Faseb J, 2006, 20(1): 106-108
    [23] Ou, J. N., Torrisani, J., Unterberger, A. et al. Histone deacetylase inhibitor Trichostatin A induces global and gene-specific DNA demethylation in human cancer cell lines, Biochem Pharmacol, 2007, 73(9): 1297-1307
    [24]Szyf, N. C. M. Demethylase Activity Is Directed by Histone Acetylation, THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (44) : 40778 - 40787
    [25]Enright,B.P.,Sung,L.Y.,Chang,C.C.et al.Methylation and acetylation characteristics of cloned bovine embryos from donor cells treated with 5-aza-2′-deoxycytidine,Biol Reprod,2005,72(4):944-948
    [26]Wade,P.A.,Kikyo,N.Chromatin remodeling in nuclear cloning,Eur J Biochem,2002,269(9):2284-2287
    [27]Reik,W.,Dean,W.,Walter,J.Epigenetic reprogramming in mammalian development,Science,2001,293(5532):1089-1093
    [28]Wee,G.,Koo,D.B.,Song,B.S.et al.Inheritable histone H4 acetylation of somatic chromatins in cloned embryos,J Biol Chem,2006,281(9):6048-6057
    [29]Wang,F.,Kou,Z.,Zhang,Y.et al.Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos,Biol Reprod,2007,77(6):1007-1016
    [30]Rybouchkin,A.,Kate,Y.,Tsunoda,Y.Role of historic acetylation in reprogramming of somatic nuclei following nuclear transfer,Biol Reprod,2006,74(6):1083-1089
    [31]Zhou Q,B.S.,Brochard V,Smith LC,Renard JP.DONOR NUCLEI ARE NOT WELL REPROGRAMMED BY NUCLEAR TRANSFER PROCEDURE,Biol Reprod 2002,66(suppl 1):237-238(abstract 345)
    [1]Gurdon,J.B.,Laskey,R.A.,De Robertis,E.M.et al.Reprogramming of transplanted nuclei in amphibia,Int Rev Cytol Suppl,1979,(9):161-178
    [2]SoRer,D.Mammalian cloning:advances and limitations,Nat Rev Genet,2000,1(3):199-207
    [3]Daniels,R.,Hall,V.,Trounson,A.O.Analysis of gene transcription in bovine nuclear transfer embryos reconstructed with granulosa cell nuclei,Biol Reprod,2000,63(4):1034-1040
    [4]Santos,F.,Hendrich,B.,Reik,W.et al.Dynamic reprogramming of DNA methylation in the early mouse embryo,Dev Biol,2002,241(1):172-182
    [5]Dean,W.,Santos,F.,Stojkovic,M.et al.Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos,Proc Natl Acad Sci U S A,2001,98(24):13734-13738
    [6]Dean,W.,Santos,F.,Reik,W.Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer,Semin Cell Dev Biol,2003,14(1):93-100
    [7]Turner,B.M.Histone acetylation and an epigenetie code,Bioessays,2000,22(9):836-845
    [8]Kouzarides,T.Chromatin modifications and their function,Cell,2007,128(4):693-705
    [9]Klose,R.J.,Zhang,Y.Regulation of histone methylation by demethylimination and demethylation,Nat Rev Mol Cell Biol,2007,8(4):307-318
    [10]Surani,M.A.,Hayashi,K.,Hajkova,P.Genetic and epigenetic regulators of pluripotency,Cell,2007,128(4):747-762
    [11]Grunstein,M.Histone acetylation in chromatin structure and transcription,Nature,1997,389(6649):349-352
    [12]Kuo,M.H.,Allis,C.D.Roles of histone acetyltransferases and deaeetylases in gene regulation,Bioessays,1998,20(8):615-626
    [13]Sarmento,O.F.,Digilio,L.C.,Wang,Y.et al.Dynamic alterations of specific histone modifications during early murine development,J Cell Sci,2004,117(Pt 19):4449-4459
    [14]Spinaci,M.,Seren,E.,Mattioli,M.Maternal chromatin remodeling during maturation and after fertilization in mouse oocytes,Mol Reprod Dev,2004,69(2):215-221
    [15]Yoshida,M.,Kijima,M.,Akita,M.et al.Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A,J Biol Chem,1990,265(28):17174-17179
    [16]Mogal,A.,Abdulkadir,S.A.Effects of Historic Deacetylase Inhibitor(HDACi);Trichostatin-A(TSA) on the expression of housekeeping genes,Mol Cell Probes,2006,20(2):81-86
    [17]Kim,J.M.,Liu,H.,Tazaki,M.et al.Changes in histone acetylation during mouse oocyte meiosis,J Cell Biol,2003,162(1):37-46
    [18]Enright,B.P.,Kubota,C.,Yang,X.et al.Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine,Biol Reprod,2003,69(3):896-901
    [19]Wee,G.,Shim,J.J.,Koo,D.B.et al.Epigenetic alteration of the donor cells does not recapitulate the reprogramming of DNA methylation in cloned embryos,Reproduction,2007,134(6):781-787
    [20]Rybouchkin,A.,Kato,Y.,Tsunoda,Y.Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer,Biol Reprod,2006,74(6):1083-1089
    [21]Kishigami,S.,Mizutani,E.,Ohta,H.et al.Significant improvement of mouse cloning technique by treatment with trichostatin A after somatic nuclear transfer, Biochem Biophys Res Commun, 2006, 340(1): 183-189
    [22]Kishigami, S., Bui, H. T., Wakayama, S. et al. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer, J Reprod Dev, 2007, 53(1): 165-170
    [23] Wee, G., Koo, D. B., Song, B. S. et al. Inheritable histone H4 acetylation of somatic chromatins in cloned embryos, J Biol Chem, 2006,281(9): 6048-6057
    [24] Wang, F., Kou, Z., Zhang, Y. et al. Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos, Biol Reprod, 2007, 77(6): 1007-1016
    [25]Wehrend, A., Meinecke, B. Kinetics of meiotic progression, M-phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the length of the meiotic stages, Anim Reprod Sci, 2001,66(3-4): 175-184
    [26] Wang, Q., Yin, S., Ai, J. S. et al. Histone deacetylation is required for orderly meiosis, Cell Cycle, 2006, 5(7): 766-774
    [27] Campbell, K. H., Loi, P., Otaegui, P. J. et al. Cell cycle co-ordination in embryo cloning by nuclear transfer, Rev Reprod, 1996,1(1): 40-46
    [28] Akiyama, T., Nagata, M., Aoki, F. Inadequate histone deacetylation during oocyte meiosis causes aneuploidy and embryo death in mice, Proc Natl Acad Sci U S A, 2006, 103(19): 7339-7344
    [29]Vogelauer, M., Rubbi, L., Lucas, I. et al. Histone acetylation regulates the time of replication origin firing, Mol Cell, 2002,10(5): 1223-1233
    [30]Ekwall, K., Olsson, T., Turner, B. M. et al. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres, Cell, 1997, 91(7): 1021-1032
    [31]Cimini, D., Mattiuzzo, M., Torosantucci, L. et al. Histone hyperacetylation in mitosis prevents sister chromatid separation and produces chromosome segregation defects, Mol Biol Cell, 2003,14(9): 3821-3833
    [32] Shin, H. J., Baek, K. H., Jeon, A. H. et al. Inhibition of histone deacetylase activity increases chromosomal instability by the aberrant regulation of mitotic checkpoint activation, Oncogene, 2003,22(25): 3853-3858
    [33]Zhang, Y, Li, J., Villemoes, K. et al. An epigenetic modifier results in improved in vitro blastocyst production after somatic cell nuclear transfer, Cloning Stem Cells, 2007, 9(3): 357-363
    [34]Shi,L.H.,Miao,Y.L.,Ouyang,Y.C.et al.Trichostatin A(TSA) improves the development of rabbit-rabbit intraspecies cloned embryos,but not rabbit-human interspecies cloned embryos,Dev Dyn,2008,237(3):640-648
    [35]Shi,L.H.,Ai,J.S.,Ouyang,Y.C.et al.Trichostatin A and nuclear reprogramming of cloned rabbit embryos,J Anim Sci,2008,
    [36]Huang,J.C.,Yan,L.Y.,Lei,Z.L.et al.Changes in histone acetylation during postovulatory aging of mouse oocyte,Biol Reprod,2007,77(4):666-670
    [37]Adenot,P.G.,Mercier,Y.,Renard,J.P.et al.Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuelei of 1-cell mouse embryos,Development,1997,124(22):4615-4625
    [38]Worrad,D.M.,Turner,B.M.,Schultz,R.M.Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase Ⅱ in the 2-cell mouse embryo,Development,1995,121(9):2949-2959
    [39]Bannister,A.J.,Zegerman,P.,Partridge,J.F.et al.Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain,Nature,2001,410(6824):120-124
    [40]Latimer,M.,O'Carroll,D.,Rea,S.et al.Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins,Nature,2001,410(6824):116-120
    [41]Heard,E.,Rougeulle,C.,Amaud,D.et al.Methylation ofhistone H3 at Lys-9 is an early mark on the X chromosome during X inactivation,Cell,2001,107(6):727-738
    [42]Lepikhov,K.,Walter,J.Differential dynamics of historic H3 methylation at positions K4and K9 in the mouse zygote,BMC Dev Biol,2004,4:12
    [43]Nishioka,K.,Chuikov,S.,Sarma,K.et al.Set9,a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heteroehromatin formation,Genes Dev,2002,16(4):479-489
    [44]Park,J.S.,Jeong,Y.S.,Shin,S.T.et al.Dynamic DNA methylation reprogramming:active demethylation and immediate remethylation in the male pronucleus of bovine zygotes,Dev Dyn,2007,236(9):2523-2533
    [45]Lee,J.H.,Campbell,K.H.Effects of enueleation and caffeine on maturation-promoting factor(MPF) and mitogen-activated protein kinase(MAPK) activities in ovine oocytes used as recipient eytoplasts for nuclear transfer,Biol Reprod,2006,74(4):691-698
    [46]Cibelli,J.B.,Stice,S.L.,Golueke,P.J.et al.Cloned transgenic calves produced from nonquiescent fetal fibroblasts,Science,1998,280(5367):1256-1258
    [47]Wells,D.N.,Misiea,P.M.,Tervit,H.R.Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells, Biol Reprod, 1999, 60(4): 996-1005
    [48]Du, F., Sung, L. Y., Tian, X. C. et al. Differential cytoplast requirement for embryonic and somatic cell nuclear transfer in cattle, Mol Reprod Dev, 2002,63(2): 183-191
    [49] Choi, J. Y, Kim, C. I., Park, C. K. et al. Effect of activation time on the nuclear remodeling and in vitro development of nuclear transfer embryos derived from bovine somatic cells, Mol Reprod Dev, 2004, 69(3): 289-295
    [50] Sung, L. Y, Shen, P. C., Jeong, B. S. et al. Premature chromosome condensation is not essential for nuclear reprogramming in bovine somatic cell nuclear transfer, Biol Reprod, 2007, 76(2): 232-240
    [1]Goldberg,A.D.,Allis,C.D.,Bernstein,E.Epigcnetics:a landscape takes shape,Cell,2007,128(4):635-638
    [2]Surani,M.A.,Hayashi,K.,Hajkova,P.Genetic and epigenetic regulators of pluripotency,Cell,2007,128(4):747-762
    [3]Kimmins,S.,Sassone-Corsi,P.Chromatin remodelling and epigenetic features of germ cells,Nature,2005,434(7033):583-589
    [4]Reik,W.Stability and flexibility of epigenetic gene regulation in mammalian development,Nature,2007,447(7143):425-432
    [5]De Rycke,M.,Liebaers,I.,Van Steirteghem,A.Epigenetic risks related to assisted reproductive technologies:risk analysis and epigenetic inheritance,Hum Reprod,2002,17(10):2487-2494
    [6] Ginsburg, M., Snow, M. H., McLaren, A. Primordial germ cells in the mouse embryo during gastrulation, Development, 1990,110(2): 521-528
    [7] Saitou, M., Barton, S. C., Surani, M. A. A molecular programme for the specification of germ cell fate in mice, Nature, 2002,418(6895): 293-300
    [8] Sato, M., Kimura, T., Kurokawa, K. et al. Identification of PGC7, a new gene expressed specifically in preimplantation embryos and germ cells, Mech Dev, 2002,113(1): 91-94
    [9] Ohinata, Y., Payer, B., O'Carroll, D. et al. Blimpl is a critical determinant of the germ cell lineage in mice, Nature, 2005,436(7048): 207-213
    [10]Schaner, C. E., Deshpande, G., Schedl, P. D. et al. A conserved chromatin architecture marks and maintains the restricted germ cell lineage in worms and flies, Dev Cell, 2003, 5(5): 747-757
    [11] Sasaki, H., Matsui, Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond, Nat Rev Genet, 2008, 9(2): 129-140
    [12]Seki, Y, Yamaji, M., Yabuta, Y et al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice, Development, 2007, 134(14): 2627-2638
    [13]Seki, Y, Hayashi, K., Itoh, K. et al. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice, Dev Biol, 2005,278(2): 440-458
    [14]Bernstein, B. E., Mikkelsen, T. S., Xie, X. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, 2006,125(2): 315-326
    [15]Spivakov, M., Fisher, A. G. Epigenetic signatures of stem-cell identity, Nat Rev Genet, 2007, 8(4): 263-271
    [16]Maatouk, D. M., Kellam, L. D., Mann, M. R. et al. DNA methylation is a primary mechanism for silencing postmigratory primordial germ cell genes in both germ cell and somatic cell lineages, Development, 2006,133(17): 3411-3418
    [17]Graham, P. L., Kimble, J. The mog-1 gene is required for the switch from spermatogenesis to oogenesis in Caenorhabditis elegans, Genetics, 1993,133(4): 919-931
    [18]Ancelin, K., Lange, U. C., Hajkova, P. et al. Blimpl associates with Prmt5 and directs histone arginine methylation in mouse germ cells, Nat Cell Biol, 2006, 8(6): 623-630
    [19]Hajkova, P., Erhardt, S., Lane, N. et al. Epigenetic reprogramming in mouse primordial germ cells, Mech Dev, 2002,117(1-2): 15-23
    [20] Lee, J., Inoue, K., Ono, R. et al. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells, Development, 2002, 129(8): 1807-1817
    [21]Kawahara, M., Wu, Q., Takahashi, N. et al. High-frequency generation of viable mice from engineered bi-matemal embryos, Nat Biotechnol, 2007,25(9): 1045-1050
    [22]Kono, T., Obata, Y., Wu, Q. et al. Birth of parthenogenetic mice that can develop to adulthood, Nature, 2004,428(6985): 860-864
    [23] Tarn, P. P., Zhou, S. X., Tan, S. S. X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lacZ transgene, Development, 1994, 120(10): 2925-2932
    [24]Monk, M., McLaren, A. X-chromosome activity in foetal germ cells of the mouse, J Embryol Exp Morphol, 1981,63: 75-84
    [25] de Napoles, M., Nesterova, T., Brockdorff, N. Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells, PLoS ONE, 2007,2(9): e860
    [26] Sugimoto, M., Abe, K. X chromosome reactivation initiates in nascent primordial germ cells in mice, PLoS Genet, 2007,3(7): e116
    
    [27] Lane, N., Dean, W., Erhardt, S. et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse, Genesis, 2003, 35(2): 88-93
    [28]Chong, S., Whitelaw, E. Epigenetic germline inheritance, Curr Opin Genet Dev, 2004, 14(6): 692-696
    [29] Richards, E. J. Inherited epigenetic variation-revisiting soft inheritance, Nat Rev Genet, 2006,7(5): 395-401
    [30]Jirtle, R. L., Skinner, M. K. Environmental epigenomics and disease susceptibility, Nat Rev Genet, 2007,8(4): 253-262
    [31]Bowles, J., Knight, D., Smith, C. et al. Retinoid signaling determines germ cell fate in mice, Science, 2006,312(5773): 596-600
    [32]Bowman, A. B., Levorse, J. M., Ingram, R. S. et al. Functional characterization of a testis-specific DNA binding activity at the H19/Igf2 imprinting control region, Mol Cell Biol, 2003,23(22): 8345-8351
    [33]Klenova, E. M., Morse, H. C., Ohlsson, R. et al. The novel BORIS + CTCF gene family is uniquely involved in the epigenetics of normal biology and cancer, Semin Cancer Biol, 2002,12(5): 399-414
    [34]Kato, Y, Kaneda, M., Hata, K. et al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse, Hum Mol Genet, 2007,16(19): 2272-2280
    [35]Kaneda, M., Okano, M., Hata, K. et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting, Nature, 2004,429(6994): 900-903
    [36]Webster, K. E., O'Bryan, M. K., Fletcher, S. et al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis, Proc Natl Acad Sci U S A, 2005, 102(11): 4068-4073
    [37]Bourclhis, D., Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L, Nature, 2004,431(7004): 96-99
    [38]Lucifero, D., Mann, M. R., Bartolomei, M. S. et al. Gene-specific timing and epigenetic memory in oocyte imprinting, Hum Mol Genet, 2004,13(8): 839-849
    [39]Hiura, H., Obata, Y, Komiyama, J. et al. Oocyte growth-dependent progression of maternal imprinting in mice, Genes Cells, 2006,11(4): 353-361
    [40]Bourc'his, D., Xu, G.L., Lin, C. S. et al. Dnmt3L and the establishment of maternal genomic imprints, Science, 2001,294(5551): 2536-2539
    [41]Hata, K., Okano, M., Lei, H. et al. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice, Development, 2002, 129(8): 1983-1993
    [42]Ooi, S. K., Qiu, C., Bernstein, E. et al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA, Nature, 2007,448(7154): 714-717
    [43]Jia, D., Jurkowska, R. Z., Zhang, X. et al. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation, Nature, 2007,449(7159): 248-251
    [44]Kaneda, M., Sado, T., Hata, K. et al. Role of de novo DNA methyltransferases in initiation of genomic imprinting and X-chromosome inactivation, Cold Spring Harb Symp Quant Biol, 2004,69: 125-129
    [45] Gatewood, J. M., Cook, G. R., Balhom, R. et al. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones, J Biol Chem, 1990,265(33): 20662-20666
    [46]Zalensky, A. O., Siino, J. S., Gineitis, A. A. et al. Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization, J Biol Chem, 2002, 277(45): 43474-4348O
    [47] Gardiner-Garden, M., Ballesteros, M., Gordon, M. et al. Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm, Mol Cell Biol, 1998,18(6): 3350-3356
    [48]Khalil, A. M., Boyar, F. Z., Driscoll, D. J. Dynamic histone modifications mark sex chromosome inactivation and reactivation during mammalian spermatogenesis, Proc Natl Acad Sci U S A, 2004,101(47): 16583-16587
    [49] Peters, A. H., O'Carroll, D., Scherthan, H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability, Cell, 2001, 107(3): 323-337
    [50]Hayashi, K., Yoshida, K., Matsui, Y. A histone H3 methyltransferase controls epigenetic events required for meiotic prophase, Nature, 2005,438(7066): 374-378
    [51]Takada, Y, Isono, K., Shinga, J. et al. Mammalian Polycomb Scmhl mediates exclusion of Polycomb complexes from the XY body in the pachytene spermatocytes, Development, 2007,134(3): 579-590
    [52]Caron, N., Veilleux, S., Boissonneault, G.Stimulation of DNA repair by the spermatidal TP1 protein, Mol Reprod Dev, 2001, 58(4): 437-443
    [53]Zhao, M., Shirley, C. R., Mounsey, S. et al. Nucleoprotein transitions during spermiogenesis in mice with transition nuclear protein Tnp1 and Tnp2 mutations, Biol Reprod, 2004,71(3): 1016-1025
    [54] Shirley, C. R., Hayashi, S., Mounsey, S. et al. Abnormalities and reduced reproductive potential of sperm from Tnpl- and Tnp2-null double mutant mice, Biol Reprod, 2004, 71(4): 1220-1229
    [55]Lewis, J. D., Saperas, N., Song, Y. et al. Histone H1 and the origin of protamines, Proc Natl Acad Sci U S A, 2004,101(12): 4148-4152
    [56] Lee, K., Haugen, H. S., Clegg, C. H. et al. Premature translation of protamine 1 mRNA causes precocious nuclear condensation and arrests spermatid differentiation in mice, Proc Natl Acad Sci U S A, 1995,92(26): 12451-12455
    [57]Cho, C., Jung-Ha, H., Willis, W. D. et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice, Biol Reprod, 2003,69(1): 211-217
    [58]Wykes, S. M., Krawetz, S. A. The structural organization of sperm chromatin, J Biol Chem, 2003,278(32): 29471-29477
    [59]Okada, Y., Scott, G., Ray, M. K. et al. Histone demethylase JHDM2A is critical for Tnpl and Prml transcription and spermatogenesis, Nature, 2007,450(7166): 119-123
    [60]Doenecke, D., Albig, W., Bouterfa, H. et al. Organization and expression of H1 histone and H1 replacement histone genes, J Cell Biochem, 1994, 54(4): 423-431
    [61]Tanaka, M., Kihara, M., Hennebold, J. D. et al. H1FOO is coupled to the initiation of oocytic growth, Biol Reprod, 2005,72(1): 135-142
    [62]Dimitrov, S., Almouzni, G., Dasso, M. et al. Chromatin transitions during early Xenopus embryogenesis: changes in histone H4 acetylation and in linker histone type, Dev Biol, 1993,160(1): 214-227
    [63]Debey, P., Szollosi, M. S., Szollosi, D. et al. Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics, Mol Reprod Dev, 1993, 36(1): 59-74
    [64] De La Fuente, R. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes, Dev Biol, 2006,292(1): 1-12
    [65]Hodgman, R., Tay, J., Mendez, R. et al. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes, Development, 2001,128(14): 2815-2822
    [66] Stebbins-Boaz, B., Hake, L. E., Richter, J. D. CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus, Embo J, 1996,15(10): 2582-2592
    [67]De La Fuente, R., Eppig, J. J. Transcriptional activity of the mouse oocyte genome: companion granulosa cells modulate transcription and chromatin remodeling, Dev Biol, 2001,229(1): 224-236
    [68]De La Fuente, R., Viveiros, M. M., Burns, K. H. et al. Major chromatin remodeling in the germinal vesicle (GV) of mammalian oocytes is dispensable for global transcriptional silencing but required for centromeric heterochromatin function, Dev Biol, 2004, 275(2): 447-458
    [69] Cheung, P., Allis, C. D., Sassone-Corsi, P. Signaling to chromatin through histone modifications, Cell, 2000,103(2): 263-271
    [70]Fischle, W., Wang, Y., Allis, C. D. Binary switches and modification cassettes in histone biology and beyond, Nature, 2003,425(6957): 475-479
    [71]Jenuwein, T., Allis, C. D. Translating the histone code, Science, 2001, 293(5532): 1074-1080
    [72] Peterson, C. L., Laniel, M. A. Histones and histone modifications, Curr Biol, 2004, 14(14): R546-551
    [73]Grunstein, M. Histone acetylation in chromatin structure and transcription, Nature, 1997, 389(6649): 349-352
    [74]Bannister, A. J., Schneider, R., Kouzarides, T. Histone methylation: dynamic or static?, Cell, 2002,109(7): 801-806
    [75] Rouleau, M., Aubin, R. A., Poirier, G. G. Poly(ADP-ribosyl)ated chromatin domains: access granted, J Cell Sci, 2004,117(Pt 6): 815-825
    [76]Zhang,Y.Transcriptional regulation by histone ubiquitination and deubiquitination,Genes Dev,2003,17(22):2733-2740
    [77]Kuo,M.H.,Allis,C.D.Roles of histone acetyltransferases and deacetylascs in gene regulation,Bioessays,1998,20(8):615-626
    [78]Kim,J.M.,Liu,H.,Tazaki,M.et al.Changes in histone acetylation during mouse oocyte meiosis,J Cell Biol,2003,162(1):37-46
    [79]Sarmento,O.E,Digilio,L.C.,Wang,Y.et al.Dynamic alterations of specific histone modifications during early murine development,J Cell Sci,2004,117(Pt 19):4449-4459
    [80]Wang,Q.,Y'm,S.,Ai,J.S.et al.Histone deacetylation is required for orderly meiosis,Cell Cycle,2006,5(7):766-774
    [81]Tang,L.S.,Wang,Q.,Xiong,B.et al.Dynamic changes in histone acetylation during sheep oocyte maturation,J Reprod Dee,2007,53(3):555-561
    [82]De La Fuente,R.,Viveiros,M.M.,Wigglesworth,K.et al.ATRX,a member of the SNF2family of helicase/ATPases,is required for chromosome alignment and meiotic spindle organization in metaphase Ⅱ stage mouse oocytes,Dee Biol,2004,272(1):1-14
    [83]Rougier,N.,Bourc'his,D.,Gomes,D.M.et al.Chromosome methylation patterns during mammalian preimplantation development,Genes Dee,1998,12(14):2108-2113
    [84]Mayer,W.,Niveleau,A.,Walter,J.et al.Demethylation of the zygotic paternal genome,Nature,2000,403(6769):501-502
    [85]McLay,D.W.,Clarke,H.J.Remodelling the paternal chromatin at fertilization in mammals,Reproduction,2003,125(5):625-633
    [86]Beaujean,N.,Hartshorne,G,Cavilla,J.et al.Non-conservation of mammalian preimplantation methylation dynamics,Curr Biol,2004,14(7):R266-267
    [87]Fulka,J.,Fulka,H.,Slavik,T.et al.DNA methylation pattern in pig in vivo produced embryos,Histochem Cell Biol,2006,126(2):213-217
    [88]Zaitseva,I.,Zaitsev,S.,Alenina,N.et al.Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro,Mol Reprod Dev,2007,74(10):1255-1261
    [89]Fulka,H.,Mrazek,M.,Tepla,O.et al.DNA methylation pattern in human zygotes and developing embryos,Reproduction,2004,128(6):703-708
    [90]Chen,T.,Zhang,Y.L.,Jiang,Y.et al.The DNA methylation events in normal and cloned rabbit embryos,FEBS Lett,2004,578(1-2):69-72
    [91]Shi,W.,Dirim,F.,Wolf,E.et al.Methylation reprogramming and chromosomal anenploidy in in vivo fertilized and cloned rabbit preimplantation embryos,Biol Reprod, 2004,71(1): 340-347
    [92]Park, J. S., Jeong, Y. S., Shin, S. T. et al. Dynamic DNA methylation reprogramming: active demethylation and immediate remethylation in the male pronucleus of bovine zygotes, Dev Dyn, 2007, 236(9): 2523-2533
    [93]Fulka, H. Changes in global histone acetylation pattern in somatic cell nuclei after their transfer into oocytes at different stages of maturation, Mol Reprod Dev, 2008, 75(3): 556-564
    [94]Howell, C. Y., Bestor, T. H., Ding, F. et al. Genomic imprinting disrupted by a maternal effect mutation in the Dnmtl gene, Cell, 2001,104(6): 829-838
    [95]Grohmann, M., Spada, F., Schermelleh, L. et al. Restricted mobility of Dnmtl in preimplantation embryos: implications for epigenetic reprogramming, BMC Dev Biol, 2005, 5: 18
    [96]Ratnam, S., Mertineit, C., Ding, F. et al. Dynamics of Dnmtl methyltransferase expression and intracellular localization during oogenesis and preimplantation development, Dev Biol, 2002,245(2): 304-314
    [97] Dean, W., Santos, F., Stojkovic, M. et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos, Proc Natl Acad Sci U S A, 2001,98(24): 13734-13738
    [98] Santos, F., Zakhartchenko, V., Stojkovic, M. et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos, Curr Biol, 2003, 13(13): 1116-1121
    [99] Santos, F., Dean, W. Epigenetic reprogramming during early development in mammals, Reproduction, 2004,127(6): 643-651
    [100] Yang, J., Yang, S., Beaujean, N. et al. Epigenetic marks in cloned rhesus monkey embryos: comparison with counterparts produced in vitro, Biol Reprod, 2007, 76(1): 36-42
    [101] Xu, Y., Zhang, J. J., Grifo, J. A. et al. DNA methylation patterns in human tripronucleate zygotes, Mol Hum Reprod, 2005,11(3): 167-171
    [102] Gioia, L., Barboni, B., Turriani, M. et al. The capability of reprogramming the male chromatin after fertilization is dependent on the quality of oocyte maturation, Reproduction, 2005,130(1): 29-39
    [103] Beaujean, N., Taylor, J., Gardner, J. et al. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer, Biol Reprod, 2004, 71(1): 185-193
    [104] Hou, J., Lei, T. H., Liu, L. et al. DNA methylation patterns in in vitro-fertilised goat zygotes, Reprod Fertil Dev, 2005,17(8): 809-813
    [105] Fulka, H., St John, J. C., Fulka, J. et al. Chromatin in early mammalian embryos: achieving the pluripotent state, Differentiation, 2008,76(1): 3-14
    [106] BourcTiis, D., Le Bourhis, D., Patin, D. et al. Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos, Curr Biol, 2001, 11(19): 1542-1546
    [107] Chung, Y. G., Ratnam, S., Chaillet, J. R. et al. Abnormal regulation of DNA methyltransferase expression in cloned mouse embryos, Biol Reprod, 2003, 69(1): 146-153
    [108] Kang, Y. K., Park, J. S., Koo, D. B. et al. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos, Embo J, 2002, 21(5): 1092-1100
    [109] Martin, C., Brochard, V., Migne, C. et al. Architectural reorganization of the nuclei upon transfer into oocytes accompanies genome reprogramming, Mol Reprod Dev, 2006, 73(9): 1102-1111
    [110] Wee, G., Koo, D. B., Song, B. S. et al. Inheritable histone H4 acetylation of somatic chromatins in cloned embryos, J Biol Chem, 2006,281(9): 6048-6057
    [111] Inoue, K., Kohda, T., Lee, J. et al. Faithful expression of imprinted genes in cloned mice, Science, 2002,295(5553): 297
    [112] Wakayama, S., Jakt, M. L., Suzuki, M. et al. Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts, Stem Cells, 2006, 24(9): 2023-2033
    [113] Brambrink, T., Hochedlinger, K., Bell, G. et al. ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable, Proc Natl Acad Sci U S A, 2006,103(4): 933-938
    [114] van der Heijden, G. W., Dieker, J. W., Derijck, A. A. et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote, Mech Dev, 2005,122(9): 1008-1022
    [115] Adenot, P. G., Mercier, Y, Renard, J. P. et al. Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1 -cell mouse embryos, Development, 1997,124(22): 4615-4625
    [116] Sobel, R. E., Cook, R. G., Perry, C. A. et al. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4, Proc Natl Acad Sci U S A, 1995,92(4): 1237-1241
    [117] Aoki, F., Worrad, D. M., Schultz, R. M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo, Dev Biol, 1997, 181(2): 296-307
    [118] Wiekowski, M., Miranda, M., DePamphilis, M. L. Requirements for promoter activity in mouse oocytes and embryos distinguish paternal pronuclei from maternal and zygotic nuclei, Dev Biol, 1993,159(1): 366-378
    [119] Thompson, E. M., Legouy, E., Christians, E. et al. Progressive maturation of chromatin structure regulates HSP70.1 gene expression in the preimplantation mouse embryo, Development, 1995,121(10): 3425-3437
    [120] Worrad, D. M., Turner, B. M., Schultz, R. M. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo, Development, 1995,121(9): 2949-2959
    [121] Tachibana, M., Ueda, J., Fukuda, M. et al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9, Genes Dev, 2005,19(7): 815-826
    [122] Ng, H. H., Robert, F., Young, R. A. et al. Targeted recruitment of Setl histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity, Mol Cell, 2003,11(3): 709-719
    [123] Nishioka, K., Chuikov, S., Sarma, K. et al. Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation, Genes Dev, 2002,16(4): 479-489
    [124] Liu, H., Kim, J. M., Aoki, R Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos, Development, 2004,131(10): 2269-2280
    [125] Arney, K. L., Bao, S., Bannister, A. J. et al. Histone methylation defines epigenetic asymmetry in the mouse zygote, Int J Dev Biol, 2002,46(3): 317-320
    [126] Verreault, A. De novo nucleosome assembly: new pieces in an old puzzle, Genes Dev, 2000,14(12): 1430-1438
    [127] Santos, F., Peters, A. H., Otte, A. P. et al. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos, Dev Biol, 2005,280(1): 225-236
    [128] Jeong, Y. S., Yeo, S., Park, J. S. et al. Gradual development of a genome-wide H3-K9 trimethylation pattern in paternally derived pig pronucleus, Dev Dyn, 2007, 236(6): 1509-1516
    [129] Huang, J. C., Lei, Z. L., Shi, L. H. et al. Comparison of histone modifications in in vivo and in vitro fertilization mouse embryos,Biochem Biophys Res Commun,2007,354(1):77-83
    [130]Inoue,K.,Ogonuki,N.,Miki,H.et al.Inefficient reprogramming of the hematopoietic stem cell genome following nuclear transfer,J Cell Sci,2006,119(Pt 10):1985-1991
    [131]Enright,B.P.,Kubota,C.,Yang,X.et al.Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2′-deoxycytidine,Biol Reprod,2003,69(3):896-901
    [132]Rybouchkin,A.,Kato,Y.,Tsunoda,Y.Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer,Biol Reprod,2006,74(6):1083-1089
    [133]Wang,F.,Kou,Z.,Zhang,Y.et al.Dynamic reprogramming of histone acetylation and methylation in the first cell cycle of cloned mouse embryos,Biol Reprod,2007,77(6):1007-1016
    [134]Shi,L.H.,Ai,J.S.,Ouyang,Y.C.et al.Trichostatin A and nuclear reprogramming of cloned rabbit embryos,J Anim Sci,2008,
    [135]Toth,K.F.,Knoch,T.A.,Wachsmuth,M.et al.Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin,J Cell Sci,2004,117(Pt 18):4277-4287
    [136]Okita,K.,Ichisaka,T.,Yamanaka,S.Generation of germline-competent induced pluripotent stem cells,Nature,2007,448(7151):313-317
    [137]Wernig,M.,Meissner,A.,Foreman,R.et al.In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state,Nature,2007,448(7151):318-324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700