杨树胚性悬浮细胞系建立与原生质体融合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以杨树优良无性系为材料,选择组培苗叶片和茎段诱导愈伤组织,建立杨树悬浮细胞系并植株再生,进而筛选原生质体分离的最佳条件;在此基础上,应用PEGΚ高Ca~(2+)高pH法开展杨树原生质体成对融合,为创造杨树新种质提供依据。主要结论如下:
     1 不同基因型材料的愈伤组织诱导率几乎没有差异。2,4-D浓度介于1mg/L和3mg/L之间,经过5次调控继代的愈伤组织,形成的愈伤组织由色泽淡黄而鲜艳的小颗粒组成,生长速度快,适宜建立胚性悬浮细胞系。
     2 胚性愈伤组织转入液体培养基时,杨树种不同建立稳定的悬浮细胞系所需的时间相差不大。以MS培养基为基本培养基,附加1.0-2.0mg/L的2,4-D,悬浮细胞培养起始密度以40ml的液体培养基加入鲜重4g悬浮细胞,5~8d左右继代一次有利于杨树胚性悬浮细胞系的建立和保持。
     3 在悬浮培养条件下,杨树细胞先形成细胞团,再由一些胚性细胞团发育形成一个或几个胚状体。诱导胚状体发生时较高浓度的BA可诱导胚性愈伤组织产生较多的胚状体,低浓度的BA+NAA则可促进胚状体伸长。
     4 酶液的成分组成与浓度对原生质体的游离有明显影响。本实验采用1.0%纤维素酶Cellulase RS、0.5%果胶酶Pectolyase Y23、0.5%半纤维素酶Hemicellulase和1.0%离析酶Macerozyme R-10组合酶液来游离原生质体,其中添加0.6mol/L甘露醇Mannitol、1470mg/LCaCl_2·2H_2O和95mg/L KH_2PO_4,pH值为5.8。
     5 不同材料和不同取材时间对原生质体产量和活力有显著影响:采用继代3d的悬浮细胞游离原生质体所得的产量最高;试管苗则采用继代25d的叶片能获得最高的产量,而且原生质体活力也最高;悬浮细胞游离原生质体得率和活力均明显高于试管苗叶片游离的原生质体。酶解时间对原生质体产量和活力也存在影响:酶解8h的悬浮细胞原生质体产量基本上达到最高产量,酶解10h后,有些原生质体开始破裂,原生质体活力下降。渗透势对游离原生质体的影响则不明显。
     6 PEG—高Ca~(2+)高pH法诱导原生质体融合研究结果表明,35%的PEG浓度能使原生质体融合获得较高的杂种融合率,同时原生质体不易破裂,是杨树PEG—高pH高钙法诱导原生质体融合的适宜浓度。
In this paper, calli were induced from the blades and stems of sterile seedlings of the poplars. Suspension cultures were established. The factors influencing protoplasts isolation were studied. The poplar protoplast fusion was also studied, by use of the polyethylene glycol (PEG) method. The main results described as follows:
    1 There were almost no differences in the ratios of callus induction among different poplar of materials used in the experiments. With the concentration of l~3mg/L 2,4-D and after five subculture periods, the calli were vivid light yellow granules and grew fast, which was ideal to establish suspension culture.
    2 It was showed that there were no significant differences in the time needed to establish suspension culture among different Populus species. Suspension in the liquid MS medium combined with 2,4-D 1.0~2.0mg L -1, KT 0.2mg L-1, with the starting density of 4g fresh suspension cell per 40mL liquid medium, and a subculturing period per 5~8d, were the best for establishment and maintaince of suspension culture.
    3 Under the condition of suspension culture, cell cluster were formed first, and then one or several embryoids were induced from embryogenic cultures. High concentration of BA can induce more embryoids than low concentration, and low concentration of BA combined with NAA promoted the growth of embryoids.
    4 Four enzymes:1.0% Cellulase RS, 0.5% Pectolyase Y23, 0.5% Hemicellulase, andl.0% Macerozyme R-10 combined with 0.6mol/L Mannitol, 1470mg/L CaCl2 2H2O, and 95mg/L KH2PO4,pH value 5.8, were applied to isolate protoplasts. It was indicated that components and concentrations of enzyme distinctly influenced the results of protoplasts isolation.
    5 It was showed that different materials and different subculture time distinctly influenced the yield and vitality of protoplasts: after suspension cells subcultured for 3 days, the yield of the protoplasts was the highest. And the yield of the protoplasts isolated from the leaves of sterile seedlings after subculturing for 25 days was the highest and the protoplasts showed the strongest vitality. Higher yield and stronger vitality of the protoplasts isolated from suspension cells than from the leaves of sterile seedlings were observed. The results also showed that the isolation time affected the yield and vitality of the protoplasts. With 8 hours isolation, the protoplasts yield of suspension cells was almost the highest. Some protoplasts began to decomposed and the vitality began to decrease after 10 hours isolation. No significant influences of osmatic pressure to the protoplasts isolation were observed.
    6 The results of the fusion of the selected protoplasts induced by Polyethylene glycol (PEG) showed that a relatively high fusion probability could be obtained when the protoplasts were induced by the concentration of 35% PEG and the protoplasts were not prone to decomposed.
引文
[1] 安利佳,罗希明,张俊敏,等.人参单细胞悬浮培养再生植株.科学通报,1990,15:1180~1183
    [2] 安利佳,张俊敏,李风霞,等.糙黄芪单细胞悬浮培养高频率再生植株的研究.植物学报,1993,35(增刊):153~156.
    [3] 贝丽霞.激素对水稻悬浮细胞生长速率的影响.中国农业通报,1998,14(2):24~25
    [4] 闭静秀,欧阳藩,刘德华,等.悬浮培养中早芹体细胞胚胎发生的工艺条件研究.植物学报,1996,38(6):451~456
    [5] 蔡玲,王以红,等.南方常绿杨再生体系建立.广西林业科学,2002,31(3):144-147
    [6] 曹有龙,贾勇炯,陈放,等.枸杞花药愈伤组织悬浮培养条件下胚状体发生与植株再生.云南植物研究,1999,21(3):346~350
    [7] 陈克贵,张义正.甘薯细胞悬浮培养的建立及其生长研究.应用与环境生物学报,1999,5(3):275~278
    [8] 陈由强,代容香,朱锦懋,等.蔓茎堇菜细胞悬浮培养的研究.应用与环境生物学报,2000,6(1):43~47
    [9] 陈正华.木本植物组织培养及其应用.北京:高等教育出版社,1986,75~91
    [10] 陈志贤,佘建明,等.从棉花胚性细胞原生质体培养获得植株再生.植物学报,1989,31:966~969
    [11] 陈志贤,李淑敏,N L Trolinder等.棉花细胞悬浮培养胚胎发生和植株再生某些特性的研究.中国农学科学,1987,20(5):6~11
    [12] 崔林,范银燕.裸燕麦悬浮细胞系的建立及植株再生.1997,23(1):107~110
    [13] 崔凯荣,戴若兰.植物体细胞胚发生的分子生物学.北京:科学出版社,2000,51:102
    [14] 邓秀新,马湘涛,孙中海,官守国.柑桔体细胞杂种扦插繁育及其有关性状研究.果树科学,1997,14(2):77~81
    [15] 邓秀新,章文才.柑橘原生质体培养与融合研究.自然科学进展——国家重点实验室通讯,1995,(1):35~39
    [16] 董辰波,等.三倍体毛白杨组培快繁技术,山东林业科技,2000,3:43-45
    [17] 董晋江,夏镇澳.小米原生质体再生小植株.植物生理学通讯.1989,2:56~57
    [18] 董雁,等.三倍体山杨组培繁育技术的研究,辽宁林业科技,1999,6:11-15
    [19] 董云洲,段胜军.谷子胚性悬浮细胞系植株再生体系的建立及转基因技术研究.应用基础与工程科学学报,1999,7(1):34~38
    [20] 谷瑞升,蒋湘宁,郭仲琛.胡杨离体器官发生及试管无性系的建立.植物学报,1999,41(1):29—33
    [21] 甘霖,邓秀新,萧顺元,章文才.柑桔属与九里香属的原生质体融合及植株再
    
    生.农业生物技术学报.1995,3(2):53~56
    [22] 甘霖,邓秀新,萧顺元,章文才.一个新的柑桔属间体细胞杂种.湖南农学院学报.1995,21(2):116~119
    [23] 龚峥.杨树杂交品系NC5331再生植株诱导和离体繁殖的研究.广西林业科技,1995,11(3):34-37
    [24] 郭喜军,高亚芹,等.银中杨组培育苗技术.防护林科技,2002,53(4):93
    [25] 郝建平,陈柔如.植物细胞工程进展.河南科学.1999,17专辑:168~171
    [26] 黄学林,李筱菊.高等植物组织离体培养的形态建成及其调控.北京:科学出版社,1995
    [27] 黄粤,翟晓灵,李姗姗,夏光敏,陈惠民.单倍体小麦与羊草的属间体细胞杂交.西北植物学报,1999,19(4):659~664
    [28] 何丽君,等.濒危植物四合木悬浮培养下体细胞胚胎发生.内蒙古农业大学学报,2001,22(2):16~22
    [29] Janssen A.利用组培法早期测定各杨树无性系对细菌性花叶病的抗性.Meeting of the IUFRO Working party, Hann.Munden, 1989,176-184.国外林业文摘,1990,(4):36
    [30] 贾敬芬.植物体细胞杂交研究进展.郑国铝,翟中和主编.细脆生物学进展(第三卷).高等教育出版社,1993,pp:223~246
    [31] 李锋.不对称体细胞杂交与作物育种.惠州大学学报,1999,19(4):47~50
    [32] 李凤霞,安利佳,张俊敏,等.白香草木犀游历培养细胞高频再生植株的激素调控.植物学报,1993,35(5):374~378
    [33] 李名扬,唐岱,徐淳.谷子细胞悬浮培养的体细胞胚胎发生和植株再生.西南农业大学学报,1990,12(4):379~383
    [34] 李毅,等.箭胡毛杨愈伤组织诱导、保存与再分化.西北植物学报,2002,22(2):656-660
    [35] 李映红,郭仲琛.青杆在不同条件下的体细胞胚胎发生及苗的形成.植物学报,1990,32(7):568~570
    [36] 刘公社,王伏雄.向日葵悬浮培养再生芽.植物学报,1989,31(9):668~672
    [37] 刘明志.酚类化合物促进含双元载体农杆菌对胡萝卜悬浮细胞的转化和植株再生.Acta Botanica Sinica(植物学报:英文版),1996,038(003):203~208
    [38] 刘庆昌,米凯霞,鲁迪慧,等.Establishment of embryogenie cell suspensionculture in sweet potato Lpomoea batatas (L.) Lam.作物学报,1997,23(1):22~26
    [39] 陆荣生,韩美丽.木本植物原生质体培养研究进展.广西林业科学,1998,27(4):197~201
    [40] 路铁钢,叶和春.细胞悬浮培养.见:孙敬三,桂耀林主编.植物细胞工程实验技术.北京:科学出版社.1995,36~47
    [41] 宁涛,宁军,等.银中杨茎的组织培养及快速无性繁殖.辽宁大学学报,2002,29(4):382-384
    
    
    [42] 牛德水,秦金山.枸杞悬浮培养条件下的胚状体发生.遗传,1990,12(6):5~7
    [43] 潘增光.苹果原生质体培养再生及融合研究.武汉:华中农业大学,1998,7,50
    [44] 潘增光,邓秀新,章文才.落叶果树原生质体技术研究进展.山东农业大学学报,1997,(2):215~220
    [45] 祁新,王权,顾德峰,等.马铃薯悬浮细胞培养.吉林农业大学学报,1996,18(1):21~24
    [46] 邵宏波,初立业.禾本科植物细胞悬浮培养和影响胚胎发生的几个因素.生物技术通报,1990,(3):1~5
    [47] 史永忠,邓秀新.果树原生质体研究进展.见:华南农业大学主编,农业科学集刊(第二集),农作物原生质体培养专辑.北京:中国农业出版社,1995:172~182
    [48] 舒常庆.体细胞杂交在植物育种中的应用研究进展.经济林研究,1995,13(4):69~72
    [49] 司少鹏,等.84K杨树的离体快速繁殖试验,江苏林业科技,2002,29(3):28-29
    [50] 宋玉霞,等.银河Ⅰ号杨叶外植体再生体系建立.西北植物学报,2002,22(3):661-666
    [51] 苏晓华,张绮纹.杨树无性系灰斑病离体培养的早期选择.林业科学研究,1993,6(3):317-320
    [52] 孙蒙祥,杨弘远,周嫦.用聚乙二醇诱导选定的成对原生质体间的融合.植物学报,1994,36(7):489~493
    [53] 孙世孟,赛吉庆,谢友菊.玉米获白X莱1029的悬浮细胞系的建立及其再生植株的研究.作物学报,1994,20(2):168~175
    [54] 孙勇如,安锡培主编.植物原生质体培养.北京:科学出版社,1991,pp:7~14
    [55] 唐巍,欧阳藩.火炬松细胞悬浮培养体细胞胚胎发生的研究.西北植物学报,1996,16(4):399~402 ’
    [56] 王大元.禾谷类植物的细胞培养和体细胞胚胎发生.细胞生物学杂志,1984,6(1):16~20
    [57] 王海波.禾谷类作物原生质体培养.见:魏建昆主编.农业高新技术论.北京:科学技术文献出版社,1993:136~141
    [58] 王海波.植物组织及细胞培养通用分析模式的探讨.北京:中国农业科学院,1996,29(6):8~14
    [59] 王海波.组织培养中的细胞状态调控.作物杂志,1991,3:3~6
    [60] 王海波,方仁,王培,等.小麦胚性细胞系的建立及原生质体的培养.作物杂志,1989,3:26~28
    [61] 王海波,李向辉,孙勇如,等.小麦原生质体培养——高频率细胞团形成与植株再生.中国科学(B辑),1989,8:828~835
    [62] 王海波,魏景芳,葛亚新,等.小麦愈伤组织状态调控与原生质体培养.中国农业科学,1996,29(6):8~14
    [63] 汪垫仁,薛绍白,柳惠图.细胞生物学.北京:北京师范大学出版社,1988:11
    
    
    [64] 王义强,林俐,等.银杏原生质体制备及其融合研究.经济林研究,2003,21(3):5~7
    [65] 王影,黄敏仁.林木原生质体研究进展:南京林业大学学报,1993,17(2):91~96
    [66] 王影,黄敏仁.杨树细胞悬浮培养及体细胞胚胎发生的研究.南京林业大学学报,1991,15(3):31~36
    [67] 夏光敏,王槐,陈惠民.小麦与新麦草及高冰草属间不对称体细胞杂交的植株再生.科学通报,1996,41(15):1423~1426
    [68] 夏光敏,向凤宁,周爱芬,王槐,何世贤,陈惠民.小麦与高冰草属间体细胞杂交获可育杂种植株.植物学报,1999,41(4):349~352
    [69] 夏惠君,周嫦.烟草原生质体微滴培养及细胞早期分裂的定点观察.实验生物学报,1989,22:477~481
    [70] 夏镇澳.植物原生质体培养研究新进展.植物生理学通讯,1989(2):1~6
    [71] 向凤宁,黄贤荣,等.柴胡与高寒藏药—川西獐芽菜科间体细胞杂交.山东大学学报(理学版),2003,38(2):93~96
    [72] 向太和,杨检波,吴家道.水稻、玉米胚性悬浮细胞系的有效建立.安徽农业科学,1996,24(1):1~3
    [73] 邢登辉,吴琴生,刘大钧.黑麦胚性悬浮细胞系的建立和植株再生.作物学报,1995,21(6):759~761
    [74] 许智宏,卫志明.植物原生质体培养和遗传操作(第一版)(第二篇,作物各论).上海科技出版社,1997,pp:2~6,105
    [75] 杨金玲,等.白杆体细胞胚悬浮培养的动力学研究.生物工程学报,2000,16(2):218~220
    [76] 杨世湖.离体细胞的内源性诱变原理及其在水稻生物技术中的应用.农业科学集刊(第二集,农作物原生质休培养专辑,简玉瑜主编).北京:中国农业出版社,1995
    [77] 杨向辉,徐跃进,吕娟.我国蔬菜原生质体培养研究进展.长江蔬菜,1998,10:1~3 .
    [78] 杨跃生,简玉瑜,郑迎冬.铜在水稻愈伤组织培养再生植株中促进作用.中国水稻科学,1999,13(2):95~98
    [79] 叶和春.水稻细胞悬浮培养及再生植株的研究.植物学报,1984,26(1):52~59
    [80] 于志水,金红,等.黑杨派杨树组培再生系统的研究.辽宁林业科技,2002,6:11-13
    [81] 余晓丽.植物原生质体培养研究进展及应用.生物学通报,1998,33(5):7~9
    [82] 余舜武,朱永生,余毓君,等.快速建立胚性细胞悬浮系的培养程序初探.华中农业大学学报,2001,20(4):325~328
    [83] 臧新,梅兴国,等.中国红豆杉悬浮培养细胞聚集体异质性的初步研究.生命科学研究,2002,6(1):60~63
    [84] 张喜春,吴绛云.软枣猕猴桃细胞系的建立及其影响因素.植物学研究,1991,11(3):77~83
    [85] 张航宁,吴琴生,刘大钧.药用植物原生质体培养及其应用.南京农业大学学报,1995,18(4):25~32
    
    
    [86] 张进仁,陈善春,高峰.柑橘细胞悬浮培养及再生植株的研究.热带作物学报,1993,14(2):67~70
    [87] 张立钦.用组织培养技术筛选杨树耐盐种质.浙江林学院学报,1996,13(4):397-404
    [88] 张绮纹,等.群众杨39无性系耐盐悬浮细胞系的建立和体细胞变异体完整植株的诱导.林业科学研究,1995,8(4):395~401
    [89] 张卫芳,等.胡杨离体快繁技术,新疆农业科学,2001,38(6):320-322
    [90] 张晓东,林延安.苜蓿细胞悬浮培养与耐受高浓度PEG变异体的筛选.核农学报,1994,8(1):7~13
    [91] 中国科学院上海植物生理研究所细胞室.植物组织和细胞培养.上海:上海科学技术出版社,1978:171
    [92] 周爱芬,夏光敏,陈惠民.普通小麦与簇毛麦的不对称体细胞杂交及植株再生.科学通报,1995,40(6):575~576
    [93] 周春江.草莓悬浮细胞培养及原生质体技术研究.保定:河北农业大学,1997:52
    [94] 周俊彦.植物体细胞在组织培养中产生的胚状体二:影响植物胚状体发生和发展的因素.植物生理学报,1982,8(1):91~99
    [95] 周立刚,郑光植.生产次生物质的植物细胞大量培养.生物工程进展,1991,11(1):29~35
    [96] 诸葛强,黄敏仁,王明庥.杨树体细胞融合研究.南京林业大学学报,2000,24(2):6~10
    [97] 诸葛强,王洁琛等.新疆杨植株再生体系的建立.南京林业大学学报,2003,7:23-26
    [98] 朱根发,余毓君.水稻愈伤组织状态的调控.华中农业大学学报,1995,14(3):213~218
    [99] 朱忠荣.响叶杨优树无性繁殖技术,贵州农学院学报,1996,15(2):17-22
    [100] 邹高治,叶鸣明,葛扣麟,等.水稻单细胞培养及植株再生.复旦学报(自然科学版),1986,25(3):335~340
    [101] Carl A H, John E P. Thidiazuron (TDZ): a potent cytokinin for woody plant tissue culture. Plant Cell-tissue and Organ Culture, 1993,33:105~119.
    [102] Carlson P S et al. Parasexual interspecific plant hybridization. Proc Natl Acad Sci USA, 1972,69:2292~2294
    [103] Currinder S, Cheema. Somatic embryogenesis and plant regeneration from cell suspension and tissue culture of mature Himalayan popular (Populus ciliata). Plant Cell reports, 1989,8:124~127
    [104] Dornenburg H. and Knorr D. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme and microbial technology, 1995, 17:674~684
    [105] Dudits D, Hadlazky G Y, Bajszar G Y, Konez C S, Lazar G B and Horvath G.
    
    Plant regeneration from intergenetic cell hybrids. Plant Sci Lett, 1979, 15:101~112
    [106] Durzan D J and Gupta P K. Somatic embryogenesis and polyembryogenesis in Douglas fir cell suspension culture. Plant Sci, 1987,52:229~235
    [107] Eigel L, Koop H U. Nurse culture of individual cells: Regeneration of colonies from single protoplasts of Nicotianata bacum, Brassica napus and Hordeum vulgate. Plant Physiol, 1989,134:577~581
    [108] Eigel L, Koop H U. Transfer of difined numbers of chloroplasts using an improved subprotoplast/protoplast microfusion procedure: Transfer of only two chloroplasts leads to variegated progeny. Mol Gen Genet,1991,227:446~451
    [109] Gamborg O L, Shyluk J P. Nutrition media and characteristics of plant cell and tissue cultures. In: Thorpe T A, et al. Plant Tissue Culture: Methods and Application in Agriculture. New York: Academic Press,1981,21~42.
    [110] Gleba Y Y and Hoffmann F. Arabidodrassica: A novel plant obtained by protoplast fusion. Planta,1980,149:112~117
    [111] Grosser JW, Ollitrault P, Olivares-Fuster O. Somatic hybridization in Citrus: an effective tool to facilitate variety improvement. Vitro Cell Dev Biol-plant, 2000, 36(6):434~449
    [112] Hgawara T, Kobayashi S, Ohgawara E, Uchimiya H and Ishii S. Somatic hybrid plants obtained by protoplast fusion between Cirtus sinensis and Poncirus trifdiata. Theor Appl Genet, 1985,71 : 1~4
    [113] Kao K N, Michayluk M R. A method for high frequency intergeneric fusion of plant protoplasts. Planta, 1974,115:355~367
    [114] Kao K N, Michayluk M R. Fusion of plant protoplast-techniques. In: Bajaj V P Seds, Biotechnology in Agriculture and Forestry Vol.8: Plant Protoplast and Genetic Engineering. Berlin: Springer~Vezlag, 1989,277~288
    [115] Koop H U, Dirk J, Wolff D et al. Somatic hybridization of two selected single cells. Cell Biol Int Rep,1983,7:1123~11282
    [116] Koop H U, Eigel L, Sporlein B. Protoplasts in organelle research: Transfer and transformation of plastids. Physiol Plant, 1992,85:339~344
    [117] Koop H U, Schweiger H G. Regeneration of plants after electrofusion of selected parirs of protoplasts. Eur J Cell Biol, 1985,39:46~49
    [118] Koop H U, Schweiger H G. Regeneration of plants from individually cultivated protoplasts using an improved microculture system. Plant Physiol,1985,121:245~ 257
    [119] Kranz E, Bautor J, Lorz H. Invitro fertilization of single, isolated gametes of maize mediated by electrofusion. Sex Plant Rep, 1991,4:12~16
    [120] Kranz E, Lorz H. Invitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. The Plant Cell,1993,5:739~746
    
    
    [121] Kumar A S, O L Gamborg, M V Nabors. Plant regeneration from cell suspension cultures of Vigna axonitifolia. Plant Cell Rep, 1988,7:138~141
    [122] Maeda E. Callus formation and isolation of single cells from rice seeding. Proc. Crop Sci. Japan, 1967,34:139~147.
    [123] Maeda E, Proliferation and properation and properties of rice cells subcultured in a liquid medium. Proc Crop Sci Japan, 1973, 42:110~115
    [124] Maliga P, Lorz H, Lazar Getal. Cytoplast-protoplast fusion for interspecific chloroplast transfer in Nicotiana. Mol Gen Genet, 1982,185:211~215
    [125] Mathes MC. The in vitro formation of plantlets from isolated aspen tissues. Phyton,1964,(21):137-141
    [126] Melchers G, Sacristan M D and Holder A A. Somatic hybrid plant of potato and tomato regeneted from fused protoplasts. Carlsberg Res Commun,1978,43:203~218
    [127] Mezentseva O Y. Use of tissue and cell cultures in breeding for resistance to phytopathogens. Selektsiyaii Semenowadstwo, 1990:59-62
    [128] Mii M, Ochashi H. Plantlet regeneration from protoplasts of kiwifruit, Actinidia chinenses Planch. Acta Horticulturae,1988,230:167~170.
    [129] Nagata J and Takebel. Cell wall regeneration and cell division in isolated tobacco mesophyll protoplast. Planta, 1970,92:301~308
    [130] Noguchi M, Matsumoto T, Hirata Y, et al. Improvement of growth rates of plant cell cultures. In: Plant Tissue Culture and Its Bio~technology Application. New York: Springer.
    [131] Ohira K, K Ojima, A Fujiwara. Studies on the nutrition of rice cell culture I: A simple, defined medium of rapid growth in suspension culture. Plant Cell Physiology, 1973,14:1113~1121
    [132] Oliveira M M, Pais MSS. Plant regeneration from protoplasts of long-term callus cultures of Actinidia deliciosa cv. Hayward (kiwifruit). Plant Cell Reports, 1991,9:643~646.
    [133] Power J B, Chapman J V. Somatic hybridization of plants. In: Dixon R A ed., Plant Cell Culture: A Practical Approach. Oxford: IRL Press,1985,49~54
    [134] Puite K J. Progress in plant protoplast research. Physiolplant, 1992,85:403~410
    [135] Schweiger H G, Dirk J, Koop H U. Individual selection, culture and manipulation of higher plant cells. Theor Appl Genet,1987,73:769~7833
    [136] Somers D A, Narayanan K R, Kleinhofs A, Cooper-Bland S and Cocking E C. Immunological evidence for transfer of the barley nitrate reductase structural gene to N. tabacum by protoplast fusion. Mol Gen Genet, 1986,201:296~301
    [137] Spangenberg G, Koop H U, Lichter R, and Schweiger H G. Microculture of single protoplast of Brassica napus. Physiol, 1986,66:1~8
    
    
    [138] Spangenberg G, Schweiger H G. Controlled electrofusion of different types of protoplasts including cell reconstitution in Brassica napus L. Eur d Cell Biol,1986, 41:51~564
    [139] Steward F C, Mapes M O, Keut A E, Holsten R D. Growth and development of cultured plant cells. Science,1964,20:143
    [140] Tiina Vahala, et al. Callus production from willow protoplasts. Plant Cell-tissue and Organ Culture, 1991,27:213~218
    [141] Vardi A, Spiegel-Roy P. Plant regeneration from citrus protoplasts: variability in methodological requirements among cultivars and species. Theor Appl Genet, 1982,62:171~176.
    [142] Vasil I K. Developing cell and tissue culture system for the improvement of cereal and tissue culture system for the improvement of cereal and grass crops. Plant Physiology,1987,128:193~218.
    [143] Wang D Y, Miller P D and Somdahl M R. Plant regeneration from protoplasts of indica type rice and CMS rice. Plant cell report,1989,8:329~332
    [144] Wei Z M and xu Z H. Plant regeneration from protoplasts of soybean (Glycine max L.). Plant cell report,1988,7:348~351
    [145] Winton LL. Plantlet formation from aspen tissue culture. Science,1968,(160): 1234-1235
    [146] Wolter KE. Root and shoot initiation in aspen callus culture. Science, 1968,(219): 509~510
    [147] Zhang S B, Kuo C S, Qian Y Q, et al. Factors influencing isolation, division and plant regeneration in maize(Zen mays L.) protoplast culture. Chinese J Bot,1990, 2:18~25
    [148] Zenk M H, El-Shagi H, Schulte U. Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med Suppl,1975,p:97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700