草坪草普通狗牙根成熟胚组织培养再生体系的创建及基因枪法遗传转化体系的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草坪在现代生活中起着越来越重要的作用,以至已形成一项方兴未艾的产业――草坪业,对于草坪草的研究也逐渐形成了一门专门的学科――草坪学。草坪学的研究与发展离不开现代生物技术的发展和应用。由于传统育种手段的局限性,运用先进的分子生物学手段――植物遗传转化即转基因技术进行草坪草分子育种,培育理想的新品种,已成为草坪草育种研究的必然趋势。狗牙根是最重要、应用最广泛的暖季型草坪草之一,具备优良草坪草的诸多优点,但其抗寒性差、绿色期短、易感病等缺点极大地限制了它更广泛的应用,在高尔夫球场等运动休闲场地的应用上,矮化也是其亟待解决的问题之一。以目前技术而言,体外组织培养技术是草坪草转基因技术的基础。而狗牙根的组织培养再生非常困难,主要是因其胚性愈伤组织的诱导和分化及其胚性细胞再生能力的保持很困难,至今少有成功报道,这成为其遗传转化研究的瓶颈。
    本文以普通狗牙根(Cynodon dactylon (L.) Pers. cv.‘suncity’)成熟颖果(成熟胚)为外植体,探讨了狗牙根胚性愈伤组织的诱导及分化条件,创建了一个操作简便、稳定有效的普通狗牙根组织培养再生体系。结果表明:用颖果(成熟胚)作外植体,以MS为基本培养基,phytagel 5 g/L,2,4-D浓度在2.0 mg/L-6.0 mg/L之间,都能诱导出高频率的胚性愈伤组织,而以2,4-D 4.0 mg/L为最佳,诱导率达88.5%。不同继代及分化途径对最终分化成苗的影响有显著差异。以在分化前由MS+2,4-D 4.0 mg/L转移到MS+2,4-D 2.0 mg/L及1/2MS+2,4-D 2.0 mg/L中继代,然后无激素的1/2MS中光照培养10天,最后MS+6-BA 3.0 mg/L分化为最佳继代、分化途径,分化率31.7%。环境扫描电镜、透射电镜观察到胚性愈伤组织与非胚性愈伤组织之间形态、结构上的差异,首次在细胞学水平上描述了狗牙根愈伤组织胚性细胞的超微结构特点,证实了再生小苗是从体细胞胚分化而来。
    在建立起组织培养再生体系的基础上,利用Biolistic PDS-1000/He基因枪轰击胚性愈伤组织,导入BIN2和PSAG12-IPT两个外源基因,成功获得大量再生植株。PCR、Northern blot分子检测表明,外源基因已整合入普通狗牙根基因组内,并获得表达。初步表型分析亦显示外源基因在转基因植株中有所表达。从而证明基因枪法可用于狗牙根的遗传转化研究,成功建立起狗牙根遗传转化体系。基因枪轰击法是一种操作简便、无宿主限制的应用广泛的遗传转化方法,本文基因枪轰击参数为氦气压力1 100 psi,真空度27 Torr,射程9 cm,金粉直径1.0 μm,每平皿轰击两次。这是首次以成熟胚为外植体诱导胚性愈伤组织,以基因枪转化,成功获得转基因普通狗牙根植株。
    本文所建立的以成熟颖果(成熟胚)为外植体,以基因枪轰击法直接导入外源基因的普通狗牙根遗传转化系统简便易行,容易获得大量再生植株,而且周期短,外植体来
    
    
    源丰富,可随时进行研究工作,为大量、深入开展狗牙根以及类似的暖季型草坪草生物技术研究工作探索了一条便利、可行的道路。
Turf-grasses play more and more important roles in our modern lives and there are more and more people and companies run into the field of researching on them. As the limits of traditional method, using modern, advanced biotechnology to improve turf-grasses is becoming an unavoidable trend. Burmudagrass is one of the most important worm-season turf-grasses and widely used in the temperate and tropical regions of the world. As for most plant species, improvement of bermudagrass via biotechnology depends on improved tissue culture responses, especially in plant regeneration, and a successful scheme to introduce useful transgenes. Bermudagrass is a recalcitrant species in tissue culture and is highly recalcitrant with respect to the recovery of transgenic plants. This is the bottleneck of burmudagrass transformation research.
     In this thesis, a tissue culture system for embryogenic callus (EC) induction and plant regeneration of common bermudagrass using mature caryopses (embryos) as explants was developed. The results showed that embryogenic callus could be induced from caryopses with high frequency, in MS medium with 5 g/L phytagel, and with 2.0-6.0 mg/L 2,4-D, and the best concentration of 2,4-D was 4.0 mg/L with 88.5% induction percentage. The best method for maintaining EC and tissue differentiation was to subculture EC in MS+2,4-D 4.0 mg/L for 1-2 times, follwed by subculturing in 1/2 MS+2,4-D 2.0 mg/L for 1-2 times, then transfer EC to 1/2 MS without hormone for a 10-day-preregeneration in light, followed by transferring to MS+6-BA 3.0 mg/L for regeneration, with regeneration frequency 31.7%. The regenerated plantlets were transplanted to pots or the field and grew healthily. The morphological and micro-structural differences between EC and non-embryogenic callus (NEC) were observed by environmental scanning electron microscopy (ESEM) and transmission electron microscopy (TEM). And ultrastructrual characteristics of the EC cells are described.
     On the basis of above tissue culture system, a useful bermudagrass transformation system was developed. Two foreign genes—BIN2 and PSAG12-IPT(a chimeric gene) have been transfered directly into EC cells derived from common bermudagrass mature caryopses(embryos) by particle bombardment(Biolistic PDS-1000/He) following such parameters: 1 100 psi helium pressure, 27 torr vacuum, 9 cm distance between the stopping screen and target tissue, two shots per target plate, and 1.0 μm gold particles. Numerous plantlets regenerated. PCR and Northern blot results showed that the foreign genes have integrated into common bermudagrass genome and have been expressed. Some transgenic regenerated plantlets’ phenotype also implicated that the foreign genes have likely played roles. This is the first time of recovery of transgenic common bermudagrass using mature caryopses as explant.
    
     The common bermudagrass transformation system developed in this thesis is easy for manipulation and the explant—mature caryopse can be obtained quite conveniently and so research can be conducted all around the year, unlike immature inflorescences which could only be collected during the blooming season (May to September).
引文
[1] 孙吉雄 主编.草坪学.北京:中国农业出版社,1995
    [2] 孙文松,李玲.我国草坪发展现状及前景.北方园艺,2001,4:22-23
    [3] 柴明良.草坪草转基因研究进展.科技通报,2002, 18(1):67-72
    [4] 马忠华,张云芳,徐传祥等.早熟禾的组织培养和基因枪介导的基因转化体系的初步建立.复旦学报(自然科学版),1999,38(5):540-544
    [5] 柴明良,钮友民.若干暖季型草坪草育种和组织培养研究进展.科技通报,1996,12(3):162-167
    [6] 黄复瑞,刘祖祺主编.现代草坪建植与管理技术.北京:中国农业出版社,1999,p79-82
    [7] 孙宗玖,阿不来提,赵清等.狗牙根抗寒性研究.草食家畜,2002,114(1):p50-52
    [8] 郑玉红,刘建秀,陈树元.中国狗牙根〔Cynodon dactylon (L.) Pers.〕耐寒性及其变化规律.植物资源与环境学报,2002,11(2):48-52   
    [9] 刘自学,陈光耀 编著.草坪草品种指南.北京:中国农业出版社,2002,p245-255
    [10] 宣继萍,刘建秀.坪用狗牙根(Cynodon spp.)优良品种(选系)的抗寒性初步鉴定.植物资源与环境学报,2003,12(2):28-32
    [11] 熊曦,吴彦奇,李西.狗牙根抗寒性生理生化研究进展.草业科学,2001,18(3):39-41
    [12] 蒋利媛,刘伟,彭信海等.百慕达草的组织培养快速繁殖.湖南农业大学学报(自然科学版),2002,28(2):125-127
    [13] 卢少云,郭振飞.狗牙根的组织培养及植株再生.植物生理学通讯,2003,39(6):626
    [14] 卢少云,郭振飞,陈永传.狗牙根的组织培养及其矮化变异体研究初报.园艺学报,2003,30(4):482-484
    [15] 侯雷平,李梅兰.油菜素内酯(BR)促进植物生长机理研究进展.植物学通报,2001,18(5):560-566
    [16] 付永彩,刘新仿,曹守云等.水稻中抑制衰老的嵌合基因的基因枪转化和表达分析.农业生物技术学报,7(1):17-22
    [17] 袁政,潘爱虎,简志英等.转基因(SAG12-IPT)青菜的迟衰特性.植物生理与分子生物学学报,2002,28(5):379-383
    [18] 王关林,方宏筠主编.植物基因工程(第二版).北京:科学出版社,2002
    [19] 王亚玲.水稻防卫反应基因P450 CYP72A基因簇和调控因子SGT1的研究.东北农业大学硕士论文,2003,5
    [20] 安韩冰,朱祯.基因枪在植物遗传转化中的应用.生物工程进展,1997,17(1):18-26
    
    [21] 贾士荣,曹冬孙.转基因植物.植物学通报,1992,9:3-15
    [22] 王国英,杜天兵,张宏.用基因枪将Bt毒蛋白基因转入玉米及转基因植株再生.中国科学B辑,1995,25:71-78.
    [23] 郑宏红,何锶洁,戴顺洪等.提高水稻基因枪转化效率的研究.生物工程学报,1996,12(增):111-115
    [24] 张俊卫,包满珠,孙振元.草坪草的遗传转化研究进展.林业科学研究,2003,16(1):87-94
    [25] 许新萍,胡明,卫剑文等.用基因枪法转化水稻获得转基因植株.中山大学学报,(自然科学版),1997,36(6):25-29
    [26] 许新萍,胡明,卫剑文等.用高效的基因枪转化系统将抗虫抗病基因导入水稻.遗传,1998,20(增刊):12-14
    [27] 许新萍,卫剑文,范云六等.基因枪法转化籼稻胚性愈伤组织获得可育的转基因植株.遗传学报,1999,26(3):219-227
    [28] 董云洲,贾士荣.基因枪转化小麦悬浮细胞参数的优化.中国农业科学,1998,31(6):79-81
    [29] 赵艳,于彦春,钱前等.无载体主干序列的bar和cecropinB基因表达框共转化水稻.遗传学报,2003,30(2):135-141
    [30] 姜鹏,秦松,曾呈奎.乙肝病毒表面抗原((HBsAg))基因在海带中的表达.科学通报,2002,47(14):1095-1097
    [31] 赵秀英,张晓东,张霆等.乙肝病毒表面抗原基因在胡萝卜中的克隆及表达.微生物学免疫学进展,2002,30(1):1-4 
    [32] 赵彬,薛庆中.基因枪在水稻遗传转化中的应用及其转化技术的优化.生物技术,1998,8(1):4-6
    [33] 冯道荣,许新萍,李宝健.转多基因水稻植株的获得.植物生理学报, 2001,27(4):331-336
    [34] 王鸿鹤,黄霞,邱国华等.基因枪法转化香蕉薄片外植体的参数优化.中山大学学报(自然科学版),2000,39(2):87-91
    [35] 吴姗,梁月荣.植物基因枪转化技术及其在茶树上的应用前景.茶叶, 2002,28(3):138-144
    [36] 崔凯荣,戴若兰 主编.植物体细胞胚发生的分子生物学.北京:科学出版社,2000
    [37] 李浚明 编译.植物组织培养教程.北京:中国农业大学出版社,1992,p95-107
    [38] 陈以峰,周燮,汤日圣等.水稻体细胞培养中胚性细胞出现与IAA的关系.植物学报,1998,40(5):474-477
    [39] 崔德才,徐培文 主编.植物组织培养与工厂化育苗.北京:化学工业出版社, 2003,p56-71
    
    [40] 陆时万,徐祥生,沈敏健 编著.植物学(第二版上册).北京:高等教育出版社,1991,p17-28
    [41] [英]M.S.Clark 主编,顾红雅,瞿礼嘉 主译.植物分子生物学:实验手册.北京:高等教育出版社,1998,8
    [42] 徐淑平,卫志明.基因枪的使用方法介绍. 植物生理学通讯,1998,34(1):41-43
    [43] L.Lee.Turfgrass biotechnology.Plant sci.,1996,115:1-8
    [44] B.Chai,M.B.Sticklen. Applications of biotechnology in turfgrass genetic improvement. Crop Sci.,1998,38:1320-1338
    [45] B.Harriman,L.Lee.Benefits of turfgrass technology are on the horizon. (2003) http://www.turfgrasstrends.com/turfgrasstrends/article/articleDetail.jsp?id=64597
    [46] J.Creemers-Molenaar, J.P.M.Loeffe, M.A.C.M.Zaal.Isolation, culture and regeneration of Lolium perenne and Lolium multiflorum protoplasts. Curr. Plant Sci. Biotech.Agric.,1988, 7: 53-54
    [47] J.Creemers-Molenaar,J.P.M.Loeffen,P.Van der Valk.The effect of 2,4-dichloro -phenoxyactic acid and donor plant environment on plant regeneration from immature infloressence derived callus of Lolium perenne and Lolium multiflorum. Plant Sci.,1988,57:165-172
    [48] J. Creemers-Molenaar, P. Van der Valk, J.P.M. Loeffen,et al.Plant regeneration from suspension cultures and protoplasts of Lolium perenne L..Plant Sci., 1989, 63: 167- 176
    [49] J.P.Xu.Doctoral thesis: Generation and characterization of fertile transgenic perennial ryegrass (Lolium perenne L.) plants with stable integration of an untranslatable coat protein gene from Ryegrass mosaic virus.2001
    [50] Y.C.Lu,V.Vasil,I.K.Vasil.Isolation and culture of protoplasts of Panicum maximum Jacq.(Guinea Grass):somatic embryogenesis and plantlet formation. Z. Pflanzenphysiol., 1981,104:311-318
    [51] P.Van der Valk, M.A.C.M.Zaal, J. Creemers-Molenaar.Somatic embryogenesis and plant regeneration in infloressence and seed derived callus cultures of Poa pratensis. Plant Cell Rep., 1988,7(12):644-647
    [52] Y.Asano.Somatic embryogenesis and protoplast culture in Japanese lawngrass(Zoysia japonica).Plant Cell Rep.,1989,8:141-143
    [53] C.K.Inokuma,Plant regeneration from protoplasts of Japanese lawngrass.International Turfgrass Research Journal 7, Internate Publishing Corp.,USA,1993:780-785
    [54] B.S.Ahloowalia,Regeneration of ryegrass plants in tissue culture. Crop Sci, 1975, 15(4):449-452
    
    [55] L.Wu,J.Antonovics.Zinc and copper tolerance of Agrostis stolonifera in the tissue culture.Am. J. Bot.,1978,65:268-271
    [56] J.V.Krans, V.T.Henning, K.C.Torres, Callus in duction,maintenance and plantlet regenetation in creeping bentgrass. Crop Sci, 1982,22(6):1193-1197
    [57] O.M.F.Zaghmot, W.A.Torello.Restoration of regeneration potential of long-term cultures of red fescue(Festuca rubra).Plant Cell Rep.,1992,11(3):142-145
    [58] W. A. Torello, A. J. Symingto, R. Rufneer. Callus initiation, plant regeneration and evidence of somatic embryogenesis in red fescue.Crop Sci, 1984,24(6):1037-1040
    [59] H.F.Van Ark, M.A.C.M.Zaal, J.Creemers-Molenaar, et al. Improvement of the tissue culture response of seed derived callus culture of Poa pratensis: effect of gelling agent and basic acid. Plant Cell,Tiss, Org. Cult.,1991,27(3):275-280
    [60] L.A.Boyd, P.J.Dale.Callus production and plant regeneration from mature embryos of Poa pratensis.Plant Breeding,1986,97(3):246-254
    [61] R.E.McDonnell,B.V.Conger.Callus induction and plantlet formation from mature embryo explants of Kentucky blue grass. Crop Sci.,1984,24(3):573-578
    [62] Y.Bai,R.Qu.Factors influencing tissue culture responses of mature seeds and immature embryos in turf type tall fescue. Plant Breeding,2001,120(2):239-242
    [63] P.J.Dale.Meristem tip culture in Lolium, Festuca and Dactylis. Plant Sci. Lett., 1977,9:333-338
    [64] K.W.Lowe,B.V.Conger,Root and shoot formation from callus cultures of tall fescue. Crop Sci.,1979,19(3):397-400
    [65] B.J.Ahn,F.H.Huang,J.W.King.Plant regeneration through somatic embryogenesis in common bermudagrass tissue culture.Crop Sci., 1985,25:1107-1109
    [66] B.J.Ahn, F.H.Huang, J.W.King.Regeneration of bermudagrass cultivars and evidence of somatic embryogenesis.Crop Sci., 1987,27:594-597
    [67] A.Chaudhury,R.Qu.Somatic embryogenesis and plant regeneration of turf-type bermudagrass:effect of 6-benzyladenine in callus induction medium.Plant Cell Tiss.Org.Cult., 2000,60:113-120
    [68] O.M.F.Zaghmot,W.A.Torello,Somatic embryogenesis and plant regeneration from suspension cultures of red fescue. Crop Sci.,1989,29(3):815-817
    [69] S.J. Dalton, Plant regeneration from cell suspension protoplasts of Festuca aundinacea, Lolium perenne and L. multiflorum, Plant Tiss. Org. Cult., 1988,12(2):137-140
    [70] C.K.Inokuma, K.Sugiura, C.Cho,et al. Plant regeneration from protoplasts of Japanese lawngrass. Plant Cell Rep., 1996,15(12):737-741
    
    [71] Z.Y.Wang,M.P.Valles,P.Montavon.Fertile plant regeneration from protoplasts of meadow fescue(Festuca pratensis). Plant Cell Re.,1993,12(2):95-100
    [72] T.Terakawa,T.Sato,M.Koike,Plant regeneration from protoplasts isolated from embryogenic suspension cultures of creeping bentgrass(Agrostis palustris).Plant Cell Rep.,1992,11(9):457-461
    [73] F.E.C.Blanceh,J.V.Krans,G.E.Coats.Improvement in callus and plantlet formation in creeping bentgrass, Crop Sci., 1986,26(6):1245-1248
    [74] K.A.Nielsen, E.Larsen, E.Knudsen, Regeneration of protoplast derived green plants of Kentucky bluegrass(Poa pratensis). Plant Cell Rep.,1993,12(10):537-540
    [75] P. Van der Valk, M.A.C.M.Zaal, J. Creemers-Molenaar.Regeneration of albino plantlets from suspension culture dericed protoplasts of Kentucky bluegrass(Poa pratensis).Euphytica, 1988,5:159-176
    [76] S. J. Dalton. Plant regeneration from cell suspension protoplasts of Festuca arundinacea and Lolium perenne. J.Plant Physiol., 1988,132:170-175
    [77] M.E.Horn, R.D.Shillito, B.V.Conger, C.T.Harms, Transgenic plants of Orchardgrass ( Dactylis glomerata L.) from protoplasts. Plant Cell Rep.,1988,7:469-472
    [78] Z.Y.Wang,T.Takamizo,V.A.Iglesias.Transgenic plants of tall fescue(Festuca arundinacea)obtained by direct gene transfer to protoplasts. Biotechnology.,1992,10: 691-696
    [79] S.B.Ha,F.S.Wu,K.Thorne.Transgenic turf type tall fescue(Festuca arundinacea) plants regenerated from protoplasts. Plant Cell Rep.,1992,11(12):601-604
    [80] Y.Asano,Y.Ito,M.Fukami.Herbicide resistant transgenic creeping bentgrass plants obtained by electroporatin using an altered buffer. Plant Cell Rep.,1997,16(12):874-878
    [81] Y.Asano,M.Ugaki.Transgenic plants obtained by electroporatin mediated direct gene transfer into protoplasts. Plant Cell Rep.,1994,13(5):243-246
    [82] L.Xiao, S.B.Ha.Efficient selection and regeneration of creepingbentgrass transformation following particle bombardment. Plant Cell Rep., 1997, 16(12): 874-878
    [83] C.L.Hartman,L.Lee,P.R.Day.Herbicide resistant turfgrass(Agrostis palustris) by biolistic transformation. Biotechnology., 1994, 12: 919-923
    [84] H.Zhong, M.G.Bolyard, C.Srinivasan.Transgenic plants of turfgrass (Agrostis palustris) from microjection bombardment of embryogenic callus. Plant Cell Rep.,1993,12(1):1-6
    [85] M.Heleen,Van der Maas,R.Eliza.Stable transformation and long term expression of
    
    
    the GUS-A report gene in callus lines of perennial ryegrass(Lolium perenne).Plant Mol.Biol.,1994,24(2):401-405
    [86] G..Spangenberg, Z.Y.Wang,X.Wu. Transgenic perennial ryegrass(Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci.,1995,108:209-217
    [87] X.Ye, Z.Y.Wang, X.Wu, Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells. Plant Cell Reports, 1997, 16 (6): 379-384
    [88] G. R. Wang, H.Binding, U.K.Posselt. Fertile transgenic plants from direct gene transfer to protoplasts of Lolium perenne and Lolium multiflorum,. J.Plant Physiol.,1997,151:83-90
    [89] S.J.Dalton,A.J.E.Bettany,E.Timms,Co-transformed,diploid Lolium perenne, Lolium multiflorum, and Lolium temulentu plants produced by microprojectile bombardment. Plant Cell Rep., 1999,18(9):721-726
    [90] G..Spangenberg, Z.Y.Wang, X.Wu. Transgenic tall fescue(Festuca arundinacea) and red fescue(F.rubra) plants from microprojectile bombardment of embryogenic suspension cells. J.Plant Physiol., 1995,145:693-701
    [91] C.Inokuma, K.Sugiura, N.Imaizumi. Transgenic Japanese lawngrass(Zoysia japonica) plants regenerated from protoplasts. Plant Cell Rep., 1998,17(5):334-338
    [92] M.L.Chai,K.Senthil,S.Y.Mo.Embryogenic casllus induction and Ag robacterium-mediated transformation in bentgrass (Agrostis spp.) .J. Korean Soc.Hort. Sci.,2000,41(5):450-454
    [93] M.L.Chai,D.H.Kim. Agrobacterium-mediated transformation of Korean Lawngrass (Zoysia japonica). J. Korean Soc.Hort. Sci.,2000,41(5): 455-458.
    [94] L.Li,R.Qu.In vitro somatic embryogenesis in turf-type bermudagrass: roles of abscisic acid and gibberellic acid,and occurrence of secondary somatic embryogenesis.Plant Breeding,2002,121:155-158
    [95] R.Qu,A.Chaudhury. Improved young inflorescence culture and regeneration of “Tifway” bermudagrass (Cynodon transvaalensis×C.dactylon).Int.Turfgrass Soc.Res. J., 2001,9:198-201
    [96] I.R.Artunduaga, C.M.Taliaferro, B.L.Johnson, Effects of auxin concentration on induction and growth of embryogenic callus from young inflorescences explants of Old World bluestem (Bothriochloa spp.) and Bermuda (Cynodon spp.) grasses.Plant Cell Tiss.Org.Cult., 1988,12:13-19
    [97] I.R.Artunduaga,C.M.Taliaferro,B.L.Johnson. Induction and growth of callus from
    
    
    immature inflorescences of “Zebra” bermudagrass as affected by casein hydrolysate and 2,4-D concentration.In Vitro Cell.Dev.Biol.,1989,25:753-756
    [98] L. Li, R. Qu. Development of highly regenerable callus lines and biolistic transformation of turf-type common bermudagrass [ Cynodon dactylon (L.) Pers.], Plant Cell Rep.,2004,22:403-407(online published:Oct. 2003)
    [99] J.Li,P.Nagpal,V.Vitart, et al. A role for brassinosteroids in light-dependent development of Arabidopsis. Science,1996,272:398-401.
    [100] J.Li,K.H.Nam.Regulation of brassinosteroid signalling by a GSK3/SHAGGY-like kinase. Science,2002,295:1299-1301
    [101] M. Szekeres, K.Nemeth, Z.Konczkalman, et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-elongation in Arabidopsis . Cell, 1996,85:171-182
    [102] J.M.Perez-Perez,M.R.Ponce,J.M.Micol.The UCU1 Arabidopsis gene encodes a SHAGGY/GSK3-like kinase required for cell expansion along the proximodistal axis. Developmental Biology,2002,242:161-173
    [103] Y.Yin,Z.Y.Wang,S.Mora-Garcia, et al. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell, 2002, 109:181-191
    [104] J.X.He,J.M.Gendron,Y.Yang, et al.The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signalling pathway in Arabidopsis. Proc. Nat. Aca. Sci. USA,2002,99:10185-10190
    [105] J.Li,K.H.Nam,D.Vafeados et al. BIN2,a new brassinosteroid- insensitive locus in Arabidopsis.Plant Physiol.,2001,127(1):14-22
    [106] J.Li, K.H.Nam.BRI/BAK1,a receptor kinase pair mediating brassinosteroid signaling. Cell,2002,110:203-212
    [107] J.Zhao, P.Peng, R.J.Schmitz, et al.Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol.,2002,130:1221-1229
    [108] S.Gan,R.M.Amasion.Inhibition of leaf senescence by autoregulated production of cytokinin. Science,1995,270:1986-1988
    [109] S.Gan,R.M.Amasion.Making sense of senescence:Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol., 1997,113:313-319
    [110] S.Gan,R.M.Amasion,Cytokinins in plant senescence:from spray and pray to clone and play.BioEssays,1996,18:557-565
    [111] K.N.Lohman,S.Gan,M.C.John, et al.Molecular analysis of natural leaf s enescence in Arabidopsis thaliana. Physiol.Plant, 1994, 92: 322-328
    
    [112] M.S.McCabe,L.C.Garratt,F.Schepers, et al. Effects of PSAG12-IPT Gene Expression on Development and Senescence in Transgenic Lettuce.Plant Physiol.?2001,127(2): 505-516
    [113] L.Herrera-Estrella,A.Depicker,M.van Montagu, et al.Expression of chimeric genes transfered into plant cells using a Ti-plasmid-derived vector. Nature, 1983, 303: 209-213.
    [114] M.W.Bevan,R.B. Flavell, M.D. Chilton. A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature,1983,304:184-187
    [115] M.T.Chan, H.H.Chang,S.L.Ho, et al. Agrobacterium-mediated production of transgenic rice plants expressing a chimerica-amylase promoter/b-glucuronidase gene. Plant Mol. Biol.,1993,22:491-506
    [116] Y.Hiei, S.Ohta,T.Komari.Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J., 1994,6:271-282
    [117] M.A.W.Hinchee, D.V.Connor-Ward, C.A.Newell, et al. Production of transgenic soybean plants using Agrobacterium- mediated gene transfer. Bio/Technol., 1988, 6: 915-922
    [118] J.C.Sanford,T.M.Klein, E.D.Wolf, et al. Delivery of substances into cells and tissues using a particle bombardment process. J.Part. Sci. Tech. 1987,5:27-37
    [119] T.M.Klein, E.D Wolf, R.Wu, et al. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature ,1987,327:70-73
    [120] T.M.Klein, M.E.Fromm, A. Weissinger, et al.Transfer of foreign genes into intact maize cells with high velocity microprojectiles. Proc. Nat. Aca. Sci. USA,1988,85: 4305-4309
    [121] T.M.Klein, M.E.Fromm,T.Gradziel, et al. Factors influencing gene delivery into Zea mays cells by high-velocity microprojectiles. Biotechnology., 1988,6:559-563
    [122] T.M.Klein, E.C.Harper, Z.Svab, et al. M.E.Fromm,P.Maliga. Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc. Nat. Aca. Sci. USA,1988,85:8502-8505
    [123] Y.C.Wang,T.M.Klein, M.Fromm, et al. Transient expression of foreign genes in rice, wheat, and soybean cells following particle bombardment. Plant Mol. Biol., 1988,11: 433-439
    [124] P.Christou. Morphological description of transgenic soybean chimeras created by the delivery, integration and expression of foreign DNA using electric discharge particle acceleration. Ann Bot. J., 1990,66:379-386
    
    [125] J.R.Kikkert.The?biolistic PDS-1000/He?device. Plant?Cell, Tiss. Org. Cult., 1993, 33 (3): 221-226
    [126] S.A.Johnston, P.Q. Anziano, K.Shark, et al. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science, 1988,240:1538-1541
    [127] J.E.Boynton, N. W.Gillham, E. H. Harris, et al. Chloroplast transformation of Chlamydomonas with high velocity microprojectiles. Science,1988,240:1534-1538
    [128] J.C.Sanford, M.J.DeVit,J.A.Russell, et al. An improved, helium driven biolistic device. Technique,1991,3:3-16.
    [129] D.E.McCabe,W.F.Swain,B.J.Martinell, et al. Stable transformation of soybean (Glycine max) by particle acceleration. Biotechnology,1988,6:923-926
    [130] W.J.Gordon-Kamm, T.M. Spencer, M.L. Mangano, et al. Transformation of Maize Cellsand Regeneration of Fertile Transgenic Plants. Plant Cell, 1990,2:603-618
    [131] I.Dupuis,G.R.Pace. Gene transfer to maize male reproductive structure by particle bombardment of tassel primordia. Plant Cell Rep.,1993,12:607-611
    [132] J.L.Rasmussen,J.R.Kikkert, M.K.Roy, et al. Biolistic transformation of tobacco and maize suspension cells using bacterial cells as microprojectiles. Plant Cell Rep., 1994,13:212-217
    [133] J.C.Register,D.J.Peterson,P.J.Bell, et al. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol.,1994,25:951-961
    [134] P.G. Caimi,L.M. McCole,T.M.Klein, et al. Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a bacillus amyloliquefaciens SacB Gene. Plant Physiol.1996,110: 355-363
    [135] P.Christou,T.Ford, M.Kofron. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Biotechnology, 1991,9: 957-962
    [136] J.Cooley, T.Ford, P.Christou. Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration. Theor. Appl. Genet., 1995,90:97-104
    [137] J.T.Weeks, O.D.Anderson,A.E.Blechl. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol., 1993, 102: 1077- 1084.
    [138] J.Cao,X.Duan,D.McElroy, et al. Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells.
    
    
    Plant Cell Rep., 1992,11:586-591
    [139] L.Li, R.Qu, A.deKochko, et al. An improved rice transformation system using the biolistic approach. Plant Cell Rep.,1993,12:250-255
    [140] M.G.Koziel, G.L.Beland, C.Bowman, et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Tech., 1993,11:194–200
    [141] H.Kodama, K.Irifune, H.Kamada, et al. Transgenic roots produced by introducing rirol genes into cucumber cotyledons by particle bombardment.Transgenic Res., 1993, 2: 147-152
    [142] M.Nishihara, M.Ito, I.Tanaka, et al. Expression of the β-glucuronidase gene in pollen of lily (Lilium longiflorum), tobacco (Nicotiana tabacum), Nicotiana rustica, and peony (Paeonia lactiflora) by particle bombardment. Plant Physiol.,1993,102:357- 361
    [143] M.Seki, Y.Komeda, A.Lida, et al. Transient expression of β-glucuronidase in Arabidopsis thaliana leaves and roots and Brassica napus stems using a pneumatic particle gun. Plant Mol. Biol.,1991,17:259-263
    [144] P.Vain, M.D.McMullen, J.J.Finer. Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep.,1993,12:84-88
    [145] Y.L. Nandadeva, C.G. Lupi, C.S.Meyer. Microprojiectile-mediated transient and integrative transformation of rice em-bryogenic suspension cells: effects of osmotic cell conditioning and of the physical configuration of plasmid DNA. Plant Cell Rep., 1999, 18:500-504
    [146] J.Alfonso-Rubi, P.Carbonero, I.Diaz. Parameters influencing the regeneration capacity of calluses derived from mature indica and japonica rice seeds after microprojectile bombardment. Euphytica, 1999,107:115-122
    [147] C.I..Jarl. Stable transformation of regenerated plants of Swedish breeding lines of barley (Hordeum vulgare L.) by particle bombardment. Hereditas, 1999, 130:83-87
    [148] X.Duan, X.Li, Q.Xue, et al. Transgenic rice plants harbouring an introduced potato proteinase inhibitor II gene are insect resistant. Nature Biotech.,1996,14:494-498
    [149] R.K.Jain, S.Jain, B.Wang, et al. Optimization of biolistic method for transient gene expression and production of agronomically useful transgenic Basmati rice plants. Plant Cell Rep.,1996,15, 963-968
    [150] S.Zhang, L.Chen, R.Qu, et al. Regeneration of fertile transgenic Indica (Group1) rice plants following microprojectile-transformation of embryogenic suspension culture
    
    
    cells. Plant Cell Rep., 1996,15: 465-469
    [151] I.J.Puddevhat, N.Thompson, H.T.Roinson.Biolistictrans- formation of broccoli (Brassica oleraceavar. italica) for transient expression of the β- glucuronidase gene. J. Hort. Biotech.,1999,76(6):714-720
    [152] F.PereiraL, L.Erickson. Stable transformation of alfalfa (Medicago sativa) by particle bombardment. Plant Cell Rep., 1995,14:290-293
    [153] D.E.McCabe, P.Christou. Direct DNA transfer using electric discharge particle acceleration (ACCELL technology). Plant Cell, Tiss.Org.Cult.,1993,33:227-236
    [154] J.A.Russell, M.K.Roy,J.C.Sanford. Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol.,1992,98:1050-1056
    [155] J.A.Russell, M.K.Roy, J.C.Sanford. Major improvements in biolistic transformation of suspension-cultured tobacco cells. In Vitro Cell. Dev. Biol. Plant,1992,28:97-105
    [156] A.Perl, H.Kless, A.Blumenthal, et al. Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA-microprojectile delivery procedures. Mol. Gen. Genet.,1992,235:279-284
    [157] Z.Q.Cheng, X.Q.Huang, R.Wu. Comparison of Biolistic and Agrobacterium - mediated Transformation Methods on Transgene Copy Number and Rearrangement Frequency in Rice.Acta Botanica Sinica,2001,43(8):826-833
    [158] T.Murashige, F.Skoog. A revised medium for rapid growth and bioassays with tobacco tissue cultures.Physiol.Plant, 1962, 15:473-497
    [159] S.Bhaskaran,R.H.Smith. Cell biology & molecular genetics: Regeneration in cereal tissue culture:A review.Crop Sci.,1990,30:1328-1337
    [160] D.Dudits,L.Bogre,Y.Gyorgye.Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro.J.Cell. Sci.,1991,99:473-482
    [161] L.Michalczuk,T.J.Cooke,J.D.Cohen. Auxin levels at different stages of carrot somatic embryogenesis.Phytochemistry, 1992,31:1097-1103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700