非洲爪蟾体节发生标志基因Mespo的表达调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脊椎动物的脊柱来源于体节,体节是胚胎发生过程中的过渡性结构。体节的形成过程被称为体节发生,体节发生受到严格的时间和空间控制。功能上,正确的分节保证了脊椎动物具有正常的体轴。因此,对体节发生的分子机制的研究是发育生物学中的重要课题。研究证明,Wnt,FGF和RA信号途径以及转录因子Mespo等参与了体节发生,但具体的分子机制目前所知甚少。通过对下游转录因子Mespo的研究,本文探讨了在体节发生中, Wnt,FGF和RA信号途径控制体节发生的可能作用方式。
     我们用Morpholino基团修饰的寡核苷酸(Mo)阻断Mespo在体内的功能,发现爪蟾的体节发生被破坏。同时,对Wnt在爪蟾轴旁中胚层表达区域的确定,以及改变Wnt信号途径的活性检查体节发生,证明Wnt信号途径存在于预决定体节中胚层,而且,Mespo的表达受到Wnt信号途径的调节。通过克隆Mespo 5’上游调控序列,用转基因实验证明了该序列包含指导Mespo在预决定体节中胚层表达所需的调控元件。该序列上存在一个LEF/TCF结合位点,此位点是Mespo在预决定体节中胚层表达所必需,在体内,LEF1蛋白结合在此位点上。
     进一步的研究发现,FGF信号下游作用因子AKT存在于预决定体节中胚层,在该区域AKT存在活化的磷酸化形式;而且,在预决定体节区域, PI3-K/AKT信号途径通过调节?-catenin的入核,参与了Mespo的表达调控。通过分析Mespo 5’上游不同缺失片段,初步研究了RA对Mespo表达的可能调控方式,实验证明RA信号通路调控Mespo的表达的顺式元件存在于Mespo 5’上游调控区一段326 bp DNA序列里。
     本文揭示了转录因子Mespo在爪蟾体节发生中的作用,以及Mespo表达的转录调控机制。Wnt信号途径在爪蟾体节发生中的作用,Wnt信号途径通过调控Mespo这个关键转录调控因子的表达控制了体节发生。PI3-K/AKT和RA信号也通过调控Mespo的表达参与体节发生。因此,Wnt,PI3-K/AKT以及RA信号途径通过协同调节Mespo的表达,从而使体节发生过程受到严格的时间和空间调控。
The vertebral column is derived from somites, which are transient segments of the paraxial mesoderm that are present in developing vertebrates. The strict spatial and temporal regulation of somitogenesis is of crucial developmental importance. Signals such as Wnt, FGF and RA play roles in somitogenesis, but many details of how these signals function in this process remain unclear. Mespo, a member of bHLH transcription factor family plays important roles in specification of the paraxial mesoderm and regulation of segmentation. However, mechanisms that regulate the expression of Mespo are unclear. Some evidence has shown that Mespo might be regulated by these signals. To address these questions, we isolated a genomic DNA sequence containing 4317 bp of Mespo 5’flanking region in Xenopus. Luciferase assays show that this upstream sequence has a transcription activity. A transgenic assay shows that this genomic contig is sufficient to recapitulate the dynamic stage- and tissue-specific expression pattern of endogenous Mespo from the gastrula to the tailbud stage. Luciferase assay shows that this upstream sequence can respond to Wnt signaling. Transgenic analysis of the Mespo promoter identifies Mespo as a direct downstream target of Wnt/?-catenin signaling pathway. We also show that activity of Wnt/?-catenin signaling in somitogenesis can be enhanced by the PI3-K/AKT pathway. Our data illustrate that Wnt/?-catenin signaling in conjunction with PI3-K/AKT pathway plays a key role in controlling development of the paraxial mesoderm. We further mapped a 326 bp DNA sequence responding to RA signaling. These results shed light on how regulation of Mespo expression is controlled, and this finding provides a powerful tool to study how signaling pathways interact to regulate development of paraxial mesoderm.
引文
Amaya, E., Musci, T. J. and Kirschner, M. W. (1991). Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66, 257-70.
    Amaya, E., Stein, P. A., Musci, T. J. and Kirschner, M. W. (1993). FGF signalling in the early specification of mesoderm in Xenopus. Development 118, 477-87.
    Aulehla, A., Wehrle, C., Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B. and Herrmann, B. G. (2003). Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 4, 395-406.
    Barrantes, I. B., Elia, A. J., Wunsch, K., Hrabe de Angelis, M. H., Mak, T. W., Rossant, J., Conlon, R. A., Gossler, A. and de la Pompa, J. L. (1999). Interaction between Notch signalling and Lunatic fringe during somite boundary formation in the mouse. Curr Biol 9, 470-80.
    Behrens, J. (2000). Cross-regulation of the Wnt signalling pathway: a role of MAP kinases. J Cell Sci 113 ( Pt 6), 911-9.
    Blentic, A., Gale, E. and Maden, M. (2003). Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Dev Dyn 227, 114-27.
    Brent, A. E. and Tabin, C. J. (2002). Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev 12, 548-57.
    Cadigan, K. M. and Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes Dev 11, 3286-305.
    Christ, B. and Ordahl, C. P. (1995). Early stages of chick somite development. Anat Embryol (Berl) 191, 381-96.
    Christian, J. L. and Moon, R. T. (1993). Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus. Genes Dev 7, 13-28.
    Cooke, J. (1975). Control of somite number during morphogenesis of a vertebrate, Xenopus laevis. Nature 254, 196-9.
    Cooke, J. and Zeeman, E. C. (1976). A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58, 455-76.
    Delfini, M. C., Dubrulle, J., Malapert, P., Chal, J. and Pourquie, O. (2005). Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc Natl Acad Sci U S A 102, 11343-8.
    Dubrulle, J., McGrew, M. J. and Pourquie, O. (2001). FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219-32.
    Dubrulle, J. and Pourquie, O. (2004). fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419-22.
    Dunwoodie, S. L., Henrique, D., Harrison, S. M. and Beddington, R. S. (1997). Mouse Dll3: a novel divergent Delta gene which may complement the function of other Delta homologues during early pattern formation in the mouse embryo. Development 124, 3065-76.
    Fankhauser, G. (1945). The effect of change in chromosome number on amphibian development. Q Rev Biol 20, 20-78.
    Flint, O. P., Ede, D. A., Wilby, O. K. and Proctor, J. (1978). Control of somite number in normal and amputated mutant mouse embryos: an experimental and a theoretical analysis. J Embryol Exp Morphol 45, 189-202.
    Fukumoto, S., Hsieh, C. M., Maemura, K., Layne, M. D., Yet, S. F., Lee, K. H., Matsui, T., Rosenzweig, A., Taylor, W. G., Rubin, J. S. et al. (2001). Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 276, 17479-83.
    Galceran, J., Farinas, I., Depew, M. J., Clevers, H. and Grosschedl, R. (1999). Wnt3a-/--like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. Genes Dev 13, 709-17.
    Geng, X., Xiao, L., Lin, G. F., Hu, R., Wang, J. H., Rupp, R. A. and Ding, X. (2003). Lef/Tcf-dependent Wnt/beta-catenin signaling during Xenopus axis specification. FEBS Lett 547, 1-6.
    Gont, L. K., Steinbeisser, H., Blumberg, B. and de Robertis, E. M. (1993). Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. Development 119, 991-1004.
    GORODILOV, Y. (1992). Rhythmic processes in lower vertebrates embryogenesis and their role for developmental control. Zoological Science 9, 1101-1111.
    Greco, T. L., Takada, S., Newhouse, M. M., McMahon, J. A., McMahon, A. P. and Camper, S. A. (1996). Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. Genes Dev 10, 313-24.
    Hamilton, L. (1969). The formation of somites in Xenopus. J Embryol Exp Morphol 22, 253-64.
    Haq, S., Michael, A., Andreucci, M., Bhattacharya, K., Dotto, P., Walters, B., Woodgett, J., Kilter, H. and Force, T. (2003). Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 100, 4610-5.
    Ikeya, M. and Takada, S. (2001). Wnt-3a is required for somite specification along the anteroposterior axis of the mouse embryo and for regulation of cdx-1 expression. Mech Dev 103, 27-33.
    Joseph, E. M. and Cassetta, L. A. (1999). Mespo: a novel basic helix-loop-helix gene expressed in the presomitic mesoderm and posterior tailbud of Xenopus embryos. Mech Dev 82, 191-4.
    Jun, T., Gjoerup, O. and Roberts, T. M. (1999). Tangled webs: evidence of cross-talk between c-Raf-1 and Akt. Sci STKE 1999, PE1.
    Kanki, J. P. and Ho, R. K. (1997). The development of the posterior body in zebrafish. Development 124, 881-93.
    Keynes, R. J. and Stern, C. D. (1988). Mechanisms of vertebrate segmentation. Development 103, 413-29.
    Kim, S. H., Jen, W. C., De Robertis, E. M. and Kintner, C. (2000). The protocadherin PAPC establishes segmental boundaries during somitogenesis in xenopus embryos. Curr Biol 10, 821-30.
    Kim, S. H., Park, H. C., Yeo, S. Y., Hong, S. K., Choi, J. W., Kim, C. H., Weinstein, B. M. and Huh, T. L. (1998). Characterization of two frizzled8 homologues expressed in the embryonic shield and prechordal plate of zebrafish embryos. Mech Dev 78, 193-201.
    Knezevic, V., De Santo, R. and Mackem, S. (1998). Continuing organizer function during chick tail development. Development 125, 1791-801.
    Knight, Z. A., Gonzalez, B., Feldman, M. E., Zunder, E. R., Goldenberg, D. D., Williams, O., Loewith, R., Stokoe, D., Balla, A., Toth, B. et al. (2006). A Pharmacological Map of the PI3-K Family Defines a Role for p110alpha in Insulin Signaling. Cell.
    Kroll, K. L. and Amaya, E. (1996). Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation. Development 122, 3173-83.
    Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R. and Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22, 361-5.
    Maden, M., Graham, A., Zile, M. and Gale, E. (2000). Abnormalities of somite development in the absence of retinoic acid. Int J Dev Biol 44, 151-9.
    Makita, R., Mizuno, T., Koshida, S., Kuroiwa, A. and Takeda, H. (1998). Zebrafish wnt11: pattern and regulation of the expression by the yolk cell and No tail activity. Mech Dev 71, 165-76.
    Mao, B., Wu, W., Davidson, G., Marhold, J., Li, M., Mechler, B. M., Delius, H., Hoppe, D., Stannek, P., Walter, C. et al. (2002). Kremen proteins are Dickkopf receptors that regulate Wnt/beta-catenin signalling. Nature 417, 664-7.
    Mitsiadis, T. A., Henrique, D., Thesleff, I. and Lendahl, U. (1997). Mouse Serrate-1 (Jagged-1): expression in the developing tooth is regulated by epithelial-mesenchymal interactions and fibroblast growth factor-4. Development 124, 1473-83.
    Moreno, T. A. and Kintner, C. (2004). Regulation of segmental patterning by retinoic acid signaling during Xenopus somitogenesis. Dev Cell 6, 205-18.
    Niederreither, K., Subbarayan, V., Dolle, P. and Chambon, P. (1999). Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21, 444-8.
    Novak, A. and Dedhar, S. (1999). Signaling through beta-catenin and Lef/Tcf. Cell Mol Life Sci 56, 523-37.
    Packard, D. S., Jr. (1978). Chick somite determination: the role of factors in young somites and the segmental plate. J Exp Zool 203, 295-306.
    Palmeirim, I., Henrique, D., Ish-Horowicz, D. and Pourquie, O. (1997). Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91, 639-48.
    Polakis, P. (1999). The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9, 15-21.
    Pourquie, O. (2003). The segmentation clock: converting embryonic time into spatial pattern. Science 301, 328-30.
    Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A. and Hanken, J. (1998). Somite number and vertebrate evolution. Development 125, 151-60.
    Roelink, H. and Nusse, R. (1991). Expression of two members of the Wnt family during mouse development--restricted temporal and spatial patterns in the developing neural tube. Genes Dev 5, 381-8.
    Sachs, L. M. and Shi, Y. B. (2000). Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc Natl Acad Sci U S A 97, 13138-43.
    Sakai, Y., Meno, C., Fujii, H., Nishino, J., Shiratori, H., Saijoh, Y., Rossant, J. and Hamada, H. (2001). The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15, 213-25.
    Sawada, A., Shinya, M., Jiang, Y. J., Kawakami, A., Kuroiwa, A. and Takeda, H. (2001). Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development 128, 4873-80.
    Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211-25.
    Smith, J. (1999). T-box genes: what they do and how they do it. Trends Genet 15, 154-8.
    Sparrow, D. B., Jen, W. C., Kotecha, S., Towers, N., Kintner, C. and Mohun, T. J. (1998). Thylacine 1 is expressed segmentally within the paraxial mesoderm of the Xenopus embryo and interacts with the Notch pathway. Development 125, 2041-51.
    Takada, S., Stark, K. L., Shea, M. J., Vassileva, G., McMahon, J. A. and McMahon, A. P. (1994). Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev 8, 174-89.
    Tam, P. P. (1981). The control of somitogenesis in mouse embryos. J Embryol Exp Morphol 65 Suppl, 103-28.
    Tam, P. P. and Trainor, P. A. (1994). Specification and segmentation of the paraxial mesoderm. Anat Embryol (Berl) 189, 275-305.
    Vermot, J., Gallego Llamas, J., Fraulob, V., Niederreither, K., Chambon, P. and Dolle, P. (2005). Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo. Science 308, 563-6.
    Walker, E. H., Pacold, M. E., Perisic, O., Stephens, L., Hawkins, P. T., Wymann, M. P. and Williams, R. L. (2000). Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 6, 909-19.
    Weisblat, D. A., Wedeen, C. J. and Kostriken, R. G. (1994). Evolution of developmental mechanisms: spatial and temporal modes of rostrocaudal patterning. Curr Top Dev Biol 29, 101-34.
    Wilson, V. and Beddington, R. (1997). Expression of T protein in the primitive streak is necessary and sufficient for posterior mesoderm movement and somite differentiation. Dev Biol 192, 45-58.
    Wilson, V. and Beddington, R. S. (1996). Cell fate and morphogenetic movement in the late mouse primitive streak. Mech Dev 55, 79-89.
    Wilson, V., Rashbass, P. and Beddington, R. S. (1993). Chimeric analysis of T (Brachyury) gene function. Development 117, 1321-31.
    Wolpert, L. (1971). Positional information and pattern formation. Curr Top Dev Biol 6, 183-224.
    Wood, A. and Thorogood, P. (1994). Patterns of cell behaviour underlying somitogenesis and notochord formation in intact vertebrate embryos. Dev Dyn 201, 151-67.
    Xu P, H. R., Ding X. (2006). An optimized adaptor-PCR method for efficient genomic walking. Acta Biochim Biophys Sin (Shanghai) (In Press).
    Yamaguchi, T. P., Takada, S., Yoshikawa, Y., Wu, N. and McMahon, A. P. (1999). T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 13, 3185-90.
    Yamamoto, A., Amacher, S. L., Kim, S. H., Geissert, D., Kimmel, C. B. and De Robertis, E. M. (1998a). Zebrafish paraxial protocadherin is a downstream target of spadetail involved in morphogenesis of gastrula mesoderm. Development 125, 3389-97.
    Yamamoto, H., Kishida, S., Uochi, T., Ikeda, S., Koyama, S., Asashima, M. and Kikuchi, A. (1998b). Axil, a member of the Axin family, interacts with both glycogen synthase kinase 3beta and beta-catenin and inhibits axis formation of Xenopus embryos. Mol Cell Biol 18, 2867-75.
    Yang, J., Mei, W., Otto, A., Xiao, L., Tao, Q., Geng, X., Rupp, R. A. and Ding, X. (2002). Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm. Mech Dev 115, 79-89.
    Yoon, J. K., Moon, R. T. and Wold, B. (2000). The bHLH class protein pMesogenin1 can specify paraxial mesoderm phenotypes. Dev Biol 222, 376-91.
    Yoon, J. K. and Wold, B. (2000). The bHLH regulator pMesogenin1 is required for maturation and segmentation of paraxial mesoderm. Genes Dev 14, 3204-14.
    Yoshikawa, Y., Fujimori, T., McMahon, A. P. and Takada, S. (1997). Evidence that absence of Wnt-3a signaling promotes neuralization instead of paraxial mesoderm development in the mouse. Dev Biol 183, 234-42.
    Youn, B. W. and Malacinski, G. M. (1981). Somitogenesis in the amphibian Xenopus laevis: scanning electron microscopic analysis of intrasomitic cellular arrangements during somite rotation. J Embryol Exp Morphol 64, 23-43.
    Zakany, J., Kmita, M., Alarcon, P., de la Pompa, J. L. and Duboule, D. (2001). Localized and transient transcription of Hox genes suggests a link between patterning and the segmentation clock. Cell 106, 207-17.
    Zeng, L., Fagotto, F., Zhang, T., Hsu, W., Vasicek, T. J., Perry, W. L., 3rd, Lee, J. J., Tilghman, S. M., Gumbiner, B. M. and Costantini, F. (1997). The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181-92.
    Zhang, N. and Gridley, T. (1998). Defects in somite formation in lunatic fringe-deficient mice. Nature 394, 374-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700