细胞周期因子Geminin在斑马鱼体节发生中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体节发生是胚胎发育研究的一个重要内容,体节是沿身体前后轴形成一定数目的重复性结构,是原体节中胚层(presomite mesoderm)细胞通过边缘间充质细胞角质化(MET)以后形成的细胞团,最终在成体中发育成肌肉和骨骼等相关组织。随着研究的深入,研究者们先后提出了几个体节发生模型,其中最重要的一个是时钟-波峰模型(clock-wave frontmodel),用以解释体节发生的周期性复杂过程。Gem是一重要的细胞周期因子,它与DNA复制关键因子Cdt1发生直接相互作用而抑制Cdt1的功能,从而抑制DNA在同一细胞周期里的二次复制。在我们的工作中,通过干扰Geminin表达后体节形态变化和调控体节发生的信号途径活性的变化,研究Gem在体节发生过程中的功能,并以此为体节发生的经典模型提供实验依据。
     我们首先发现,对Geminin翻译阻断(knock down)后,体节前后轴变窄,边缘模糊,正常的“V”形体节发生变形。进一步研究发现,Gem作为一个调控因子在体节发生过程中同时控制了RA-FGF8浓度梯度的形成和调控体节时钟发生的Notch信号途径。当Gem MO后,在体节发生的tailbud和PSM区域,FGF8表达增加,RA合成酶Aldhla2表达减少,从而最终使形成的体节在前后轴方向上变窄。对于控制体节时钟的Notch信号途径,Gem以两种方式参与其调节:一是作为Mib的正调控因子在DNA水平上结合于Mib内含子编码区域,促进Mib的转录;二是以某种不明的方式促进细胞膜表面Notch信号受体DeltaD和DeltaC的转录。因此当其功能缺失以后,Gem以两种方式介导的Notch信号途径的调控均受到阻碍,最后表现为Notch信号活性明显降低,体节发生缺陷。同时我们也发现Gem MO也导致了调节体节极性和细胞粘附的基因表达减弱,使得体节极性和体节发生的MET过程发生缺陷。
     其次我们发现细胞周期因子Geminin的功能被阻断后,胚胎发育延迟,体节发生频率减慢。进一步检测H3P活性和细胞凋亡表明这与细胞周期的延长有关,该结论给体节发生的细胞周期模型(cell cycle model)提供一定的实验依据。
     以Geminin功能缺失以及其他多种方式改变细胞周期后,使体节发生区域细胞的周期时相发生一定的紊乱,结果发现并没导致振荡基因表达的紊乱。这说明在体节发生中细胞周期协同性不是振荡基因协调表达的关键因素,而Notch信号途径才是振荡基因协调表达的主要调控者。同时我们发现振荡基因的协调表达对Notch信号活性的要求又是非剂量依赖性的,对Notch信号强弱的变化并不敏感。
     总之,在胚胎发育中细胞周期因子Geminin作为一多功能分子第一次被发现同时调节体节发生相关的FGF8和Notch信号途径。Geminin功能的缺失上调了FGF8信号途径,同时降低notch信号途径活性,导致体节发生缺陷。Geminin在体节形成过程中的功能也暗示了“clock-front wave”和“cell cycle”两个模型间的内在分子联系。
Somitogenesis is an important developmental event. Somite is a series of repeated structure which appears along the anterior-posterior axis, it is developed from the presomite mesoderm, which undergoes MET at the last step of somitogenesis. After Semites are completely formed, they will further differentiate into muscle, skeleton, and related tissues. With great progresses in the field recently, several research models, including the most important "clock -wave front "model, have been proposed to explain this complicated process. Geminin is a cell cycle regulator directly interacting with the DNA replication initiation factor Cdtl, thus inhibiting DNA rereplication in one cell cycle. In our work, we perturb the function of geminin in zebrafish embryos, and then analyze phenotypes as well as signaling network, hoping to demonstrate the role and mechanism of geminin in somitogenesis. In addition, we hope to provide some experimental evidences to the classic models.
     By inhibiting geminin translation via Gem MO injection into the embryo, we first find that the length of somite along the anterior-posterior axis is shorter than that in the wild type, and in the GemMO injected embryos, the somite boundary is not clear, the normal V-shape somite gets malformed. To further study, we find that geminin regulates both RA as well as FGF8 gradients and Notch signaling controling segmentation clock. The transcription of FGF8 and Aldhla2 increases and decreases respectively in GemMO injected embryos, leading to the shorter somite. Furthermore, geminin is involved in the regulation of Notch signaling pathway through two different mechanisms. First, Geminin directly binds to the intron sequence of Mib on the chromatin, working as a positive regulator to enhance Mib transcription. Second, geminin positively regulates the transcription of membrane receptors of Notch, DeltaD and DeltaC. Therefore, when GemMO was injected, the positively regulatory roles of Notch activity by geminin via the above two mechanisms are inhibited, resulting in abnormal somitogenesis. In addition, injection of GemMO was shown to inhibit the transcription of somite polarity gene and adhensive gene, which leads somite polarity defects and disturbed MET.
     When the function of geminin was inhibited, the embryonic development is delayed and the rate of somitogenesis decreases. After the activity of phosphorylated histone 3 (H3P) and cell apoptosis in tailbud and PSM region were checked, we find that the delay of somitogenesis is related to the prolonged cell cycle, this result supports the "cell cycle" somitogenesis model.
     Knock down of geminin and other cell cycle regulators perturbs the cell cycle, but does not completely destroy segmentation clock and the expression of oscillators. This result indicates that the cell cycle phase is not critical for oscillation itself, which is mainly controled by Notch signaling pathway. In addition, the synchronized expression pattern of oscillatiors is not sensitive to dose of Notch activity.
     In conclusion, during development, Geminin works as a multifunctional regulator of FGF8 and Notch signaling. Geminin loss-of-function expands the activity of FGF8, but inhibits the activity of Notch, thus together leading to defective somitogenesis. In addition, the roles of geminin in somitogenesis provide a possible link between the "clock-wave front" model and the "cell cycle" model.
引文
A, P. A. (1992). "A mathematical model of the mechanism of vertebrate somitic segmentation." J Theor Biol, 156(2): 169-181.
    A, P. A. (1995(a))." Mathematical modelling of the mechanism of vertebrate somitic segmentation." J Biol Syst 3 (4): 1041-1051.
    A, P. A. (1995(b)). " Mathematical model of segmentation in somitogenesis in vertebrates." Biophysics 40: 583-589.
    A Shetty, M. L., T Fanshawe, AT Prevost, R Sainsbury, GH Williams and K Stoeber (2005). "DNA replication licensing and cell cycle kinetics of normal and neoplastic breast." British Journal of Cancer 93,1295 -1300.
    Abu-Abed S, D. P, Metzger D, Wood C, MacLean G, et al. (2003). "Developing with lethal RA levels: genetic ablation of Rarg can restore the viability of mice lacking Cyp26al." Development 130:1449-1459.
    Akinori Kawamura, S. K., Hiroko Hijikata, Takuya Sakaguchi, Hisato Kondoh, and Shinji Takada. (2005). "Zebrafish Hairy/Enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites." Genes &Dev. 19:1156-1161.
    Amaya E, M. T., KirschnerMW.. (1991). "Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos." Cell 66:257-70.
    Amaya E, S. P., Musci TJ, KirschnerMW. (1993.). " FGF signalling in the early specification of mesoderm in Xenopus." Development 118:477—87.
    Andrew Mara, J. S., Cecile Chalouni and Scott A. Holley (2007). "Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC." nature cell biology 9.
    Astrid Buchberger, K. S., Christian Klein,Heike Eberhardt, and Hans-Henning Arnold (1998). "cMeso-1, a Novel bHLH Transcription Factor, Is Involved in Somite Formation in Chicken Embryos." development 199,201-215.
    Atsushi Sawada, A. F., Yun-Jin Jiang, Akihito Yamamoto, Kyo Yamasu, Atsushi Kuroiwa, and Y. S. a. H. Takeda ( 2000). "Zebrafish Mespfamily genes, mesp-aand mesp-bare segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites." Development 127, 1691-1702.
    Atsushi Sawada, A. F., Yun-Jin Jiang, Akihito Yamamoto, Kyo Yamasu, Atsushi Kuroiwa,Yumiko Saga and Hiroyuki Takeda ( 2000). "Zebrafish Mespfamily genes, mesp-aand mesp-bare segmentally expressed in the presomitic mesoderm, and Mesp-b confers the anterior identity to the developing somites." Development 127,1691-1702
    Atsushi Sawada, M. S., Yun-Jin Jiang, Atsushi Kawakami, Atsushi Kuroiwa and Hiroyuki Takedal (2001). "Fgf/MAPK signalling is a crucial positional cue in somite boundary formation." Development 128,4873-4880.
    Aulehla, A., Wehrle, C, Brand-Saberi, B., Kemler, R., Gossler, A., Kanzler, B., and Herrmann, B.G (2003). "Wnt3a plays a major role in the segmentation clock controlling somitogenesis." development cell 4: 395-406.
    Axelrod, J. D., Matsuno, K., Artavanis-Tsakonas, S., and Perrimon, N. (1996). "Interaction between Wingless and Notch signaling pathways mediated by dishevelled." Science 271:1826-1832.
    Bessho, Y, Miyoshi, G, Sakata, R., and Kageyama, R (2001)." Hes7: A bHLH-type repressor gene regulated by Notch and expressed in the presomitic mesoderm." genes cells 6: 175-185.
    Blake, W. J., Kaern, M, Cantor, C. R. & Collins, J. J. (2003). "Noise in eukaryotic gene expression." Nature 422,633-637.
    Brennan, J., Norris, D.P., and Robertson, E.J. ( 2002). "Nodal activity in the node governs left-right asymmetry." Genes & Dev. 16:2339-2344.
    Burdsal CA, F., Pedersen RA. (1998.). "FGF-2 alters the fate of mouse epiblast from ectoderm to mesoderm in vitro.." Dev. Biol. 198:231-44.
    Campos-Ortega, C. T. a. J. A. ( 1999). "herl, a zebrafish pair-rule like gene, acts downstream of notch signalling to control somite development." Development 126, 3005-3014.
    Carlos Izpisua Belmonte Itoh, M. M., R. Marina Raya, Ilir Dubova, Joaquin Grego Bessa, Jose Luis de la Pompa and Juan Angel Raya, Yasuhiko Kawakami, Conception Rodriguez-Esteban, Dirk Buscher, Christopher M. Koth, Tohru (2003). "expression and mediates the Nodal Notch activity induces establishment of left-right asymmetry in vertebrate embryos." Genes & Dev. 17:1213-1218.
    Chengjin Zhang, Q. L., Chiaw-Hwee Lim, Xuehui Qiu, Yun-Jin Jiang (2007). "The characterization of zebrafish antimorphic mib alleles reveals that Mib and Mind bomb-2 (Mib2) function redundantly." Developmental Biology 305: 14-27.
    Christian JL, M. R. (1993. ). "Interactions between Xwnt-8 and Spemann organizer signaling pathways generate dorsoventral pattern in the embryonic mesoderm of Xenopus." Genes Dev. 7:13-28:.
    Ciruna BG, S. L., Harpal K, Yamaguchi TP, Rossant J. (1997.). "Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak." Development 124:2829-41.
    Cole, S. E., Levorse, J.M., Tilghman, S.M., and Vogt, T.F (2002)." Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis." Dev. Cell 3: 75-84.103: 27-33.
    Collier J R, M. D., Schnell S, Maini P K, Gavaghan D J, Houston P, Stern C D. (2000). "A Cell Cycle Model for Somitogenesis: Mathematical Formulation and Numerical Simulation.." J Theor Biol, 207(3): 305-316.
    Conlon, R. A., Reaume, A.G, and Rossant, J. (1995). "Notchl is required for the coordinate segmentation of somites." Development 121:1533-1545.
    Cooke J, Z. E. C. (1976). "A clock and wavefront model for control of the number of repeated structures during animal morphogenesis." J Theor Biol, 58(2): 455-476.
    Corliss, W. C. a. D. C. (2004). "Three modules of zebrafish Mind bomb work cooperatively to promote Delta ubiquitination and endocytosis." Developmental Biology 267: 361-373.
    Deng CX, W.-B. A., ShenMM, Daugherty Ornitz DM, Leder P. (1994). "Murine FGFR-1 is required for early postimplantation growth and axial organization.." Genes Dev. 8:3045-57.
    Diez del Corral R, O.-M. I., Goriely A, Gale E, Maden M, et al. (2003). "Opposing FGF and Retinoid pathways control ventral neural patterning, neuronal differentiation and segmentation during body axis extension." Neuron 40:65-79.
    Dubrulle, J., McGrew, M.J., and Pourquie, O. (2001). " FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation." cell 106: 219-232.
    Dubrulle, J. a. P., O. (2004). "fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo." nature 427: 419-422.
    Efeyan, A., Garcia-Cao, I., Herranz, D., Velasco-Miguel, S. and Serrano, M. (2006). "Tumour biology: policing of oncogene activity by p53." nature 443-159.
    Eloy-Trinquet S, M. L., Nicolas JF. ( 2000). "Retrospective tracing of the developmental lineage of the mouse myotome. ." Curr. Top. Dev. Biol. 47:33-80.
    Enkeleda Nakuci, M. X. (2006). "Geminin is bound to chromatin in G2/M phase to promote proper cytokinesis." The International Journal of Biochemistry & Cell Biology: 1357-2725.
    Ertug rul M. zbudak, J. L. ( 2008). "Notch Signalling Synchronizes the Zebrafish Segmentation Clock but Is Not Needed To Create Somite Boundaries." PLoS Genetics 4(2).
    Essner, J. J., Vogan, K.J., Wagner, M.K., Tabin, C.J., Yost, H.J., and Brueckner, and M. (2002). "Conserved function for embryonic nodal cilia." Nature 418: 37-38.
    Evrard, Y. A., Lun, Y, Aulehla, A., Gan, L., and Johnson, R.L. (1998)." lunatic fringe is an essential mediator of somite segmentation and patterning." nature 394: 377-381.
    F., D. J. ( 2001). "DNA replication: building the perfect switch." CurrBiol 11(9): R367-370.
    R, D. J. ( 2001,). "DNA replication: building the perfect switch." CurrBiol 11(9): R367-370.
    Foltz, D. R., Santiago, M.C, Berechid, B.E, and Nye, J.S ( 2002. ). "Glycogen synthase kinase-3 modulates notch signaling and stability." Curr. Biol. 12: 1006-1011.
    Fredericus J. M. van Eeden, M. G., Ursula Schach, Michael Brand, Makoto Furutani-Seiki, Pascal Haffter, Matthias Hammerschmidt, Carl-Philipp Heisenberg, Yun-Jin Jiang, Donald A. Kane, RobertN. Kelsh, Mary C. Mullins, Jorg Odenthal, Rachel M. Warga, Miguel L. Allende, Eric S. Weinberg and Christiane Nusslein-Volhard (1996). "Mutations affecting somite formation and patterning in the zebrafish, Danio rerio." Development 123,153-164.
    Gilles Crevel, R. H., Sharron Vass, Jake Sherkow, Masamitsu Yamaguchi, Margarete M. S. Heck, Sue Cotterill (2007). "Differential Requirements for MCM Proteins in DNA Replication in DrosophilaS2 Cells." PLoS ONE(9): 1-9.
    Gorgoulis, V. G., Vassiliou, L.-V. R, Karakaidos, P., Zacharatos, P., Kotsinas, A., (2005). "Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions." nature 434, 907-913.
    Green JB, S. J. ( 1990.). "Graded changes in dose of a Xenopus activin A homologue elicit stepwise transitions in embryonic cell fate." Nature 347: 391-94.
    Griffin K, P. R., Holder N. (1995.). "Analysis of FGF function in normal and no tail zebrafish embryos reveals separate mechanisms for formation of the trunk and the tail." Development 121: 2983-94.
    Griffin KJ, A. S., Kimmel CB, Kimelman D (1998). "Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes." Development 125: 3379-88.
    H., M. (1986). "Models of segmentation. In Somites in developing embryos " New York: Plenum Press, 118:179 - 189.
    H., M. (1996). "Models of biological pattern formation: common mechanism in plant and animal development." Int J Dev Biol, 40(1): 123-134.
    Heisenberg CP, T. M., Rauch GJ, Saude L,Concha ML, et al. (2000.). "Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation.." Nature 405: 76-81.
    Henry CA, U. M, Dill KK, Merlie JP, Page MF, Kimmel CB, Amacher SL (2002). "Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries." development 129: 3693-3704.
    Ho, J. P. K. a. R. K. (1997). "The development of the posterior body in zebrafish. ." Development 124: 881-893.
    Holley SA, G. R., Nusslein-Volhard C (2000). "Control of herl expression during zebrafish somitogenesis by a deltadependent oscillator and an independent wave-front activity." Genes Dev 14:1678-1690.
    Hoppler S, B. J., Moon RT. (1996.). "Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos." Genes Dev. 10:2805-17.
    Hrabe de Angelis, M., McIntyre, J.N., and Gossler, A. (1997). " Maintenance of somite borders in mice requires the Delta homologue" nature 386: 717-721.
    J., C. (1975). " Control of somite number during morphogenesis of a vertebrate, Xenopus laevis." Nature, 254 (5497): 196-199.
    J., S. (1999. ). "T-box genes: what they do and how they do it. ." Trends Genet. 15:154-58.
    James A. Wohlschlegel, B. T. D., Suman K. Dhar,Christin Cvetic, Johannes C. Walter, Anindya Duttal (200). "Inhibition of Eukaryotic DNA Replication by Geminin Binding to Cdt1." science 290(22): 2309-2312.
    Jiang YJ, A. B., Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000). "Notch signalling and the synchronization of the somite segmentation clock." nature 408:475-479.
    Jun K. Takeuchi, H. L., Brent W. Bisgrove, Xin Sun, Masamichi Yamamoto, Kallayanee ( 2007). "Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry." PNAS 104;846-851.
    Jun, T., Gjoerup, O., and Roberts, T.M. (1999). "Tangled webs: Evidence of cross-talk between c-Raf-1 and Akt." Sci. STKE 1999: PEL
    Kazuki Horikawa, K. I., Eiichi Yoshimoto, Shigeru Kondo,Hiroyuki Takeda (2006). "Noise-resistant and synchronized oscillation of the segmentation clock." Nature 441: 719-723.
    Kerszberg M, W. L. ( 2000). "A clock and trail model for somite formation, specialization and polarization.." J Theor Biol, 205 (3): 505-510.
    Kessler DS, M. D. (1995.). " Induction of dorsal mesoderm by soluble, mature Vg1 protein." Development 121:2155-64.
    Kevin J. P. Griffin, S. L. A., Charles B. Kimmel and David Kimelmanl (1998). "Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes." Development 125,3379-3388
    Kiku-e K. Tachibanal, M. A. G., Giulia Guarguaglini , Erich A. Nigg & Ronald A. Laskey (2005). "Depletion of licensing inhibitor geminin causes centrosome overduplication and mitotic defects." EMBO report.
    Kim SH, Y. A., BouwmeesterT, Agius E, Robertis EM. (1998.). "The role of paraxial protocadherin in selective adhesion and cell movements of the mesoderm during Xenopus gastrulation.." Development 125:4681-90.
    Kimelman D, G. K. (2000.). "Vertebrate mesendoderm induction and patterning. ." Curr.Opin. Genet. Dev. 10:350-56.
    Kimmel CB, K. D., Walker C, Warga RM, Rothman MB (1989). "Amutation that changes cell movement and cell fate in the zebrafish embryo." Nature 337:358-62.
    Kimmel CB, W. R. (1987a). "Cell lineages generating axial muscle in the zebrafish embryo." Nature 327:234-37.
    Kimmel CB, W. R. b. (1987b)." Indeterminate cell lineage of the zebrafish embryo." Dev. Biol. 124:269-80.
    KishimotoY, L., Zon L, Hammerschmidt M, Schulte-Merker S. 1997. (1997). "The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning." Development 124:4457-66.
    Lewis, F. o. G. a. J. (2004). "The vertebrate segmentation clock." Current Opinion in Genetics & Development 14:407-414.
    Li, Y, Fenger, U., Niehrs, G. and Pollet, N (2003). "Cyclic expression of esr9 gene in Xenopus presomitic mesoderm." Differentiation 71, 83-89.
    Lingfei luo , M. K. (2004). "Coordination between patterning and cell cycle control by Geminin.." MPIbpc News.
    Lingfei luo , M. K. (2004). "Geminin Coordinates Cell Cycle and Developmental Control." Cell Cycle. 3:6,711-714.
    M., L. (2001). "Initiating DNA synthesis: from recruiting to activating the MCM complex "JcellSci 114:1447.
    Mara E. Robu, J. D. L., Aidas Nasevicius, Soraya Beiraghi, Charles Brenner, Steven A. Farber,Stephen C. Ekker (2007). "p53 Activation by Knockdown Technologies." PLoS Genetics 3(5): 0787-0801.
    McAdams, H. H. A., A. (1997). "Stochastic mechanisms in gene expression " Proc.Natl Acad. Sci. USA 94,814-819.
    McGarry, T. J., and Kirschner, M.W. ( (1998).). " Geminin, an inhibitor of DNA replication, is degraded during mitosis.." Cell 93,1043-1053.
    Minguillon, C. a. G-F., J. (2002). "The single amphioxus Mox gene: insights into the functional evolution of Mox genes, somites, and the asymmetry of amphioxus somitogenesis." Dev. Biol. 246,455-465.
    Mitsuru Morimoto, M. K., Nobuo Sasaki, Yumiko Saga (2006). "Cooperative Mesp activity is required for normal somitogenesis along the anterior-posterior axis." development biology.
    Moreno TA, K. C. (2004). "Regulation of Segmental Patterning by Retinoic Acid Signaling during Xenopus Somitogenesis.". Dev Cell 6:205-218.
    Motoyuki Itoh, C.-H. K., Gregory Palardy, Takaya Oda, Yun-Jin Jiang ,Sang-Yeob Yeo, Kevin Lorick (2003). "Mind Bomb Is a Ubiquitin Ligase that Is Essential for Efficient Activation of Notch Signaling by Delta." Developmental Cell 4: 67-82.
    Nicolas JF, M. L., Bonnerot C, Saurin W. (1996). "Evidence in the mouse for selfrenewing stem cells in the formation of a segmented longitudinal structure, the myotome." Development 122:2933-46.
    NurseP., L. ( 2000). "Cellcycle:License with held-Geminin Blocks DNA Replication." Science 290(5500): 2271-2273.
    
    Oates AC, H. R. (2002). "Hairy/E(spl)-related (Her) genes are central components of . the segmentation oscillator and display redundancy with the Delta/Notch signaling pathway in the formation of anterior segmental boundaries in the zebrafish." development 129:2929-2946.
    P., S. (1997). "The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites." Development 124:2691-700.
    Palmeirim I, H. D., Ish-Horowicz D, Pourquie 0. (1997). "Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis." Cell 91 (5): 639-648.
    
    Pourqui'e., 0. (2001). "vertebrate somitogenesis." Rev. Cell Dev. Biol 17:311-50.
    Pourquie, J. D. a. O. (2004.). "Coupling segmentation to axis formation." Development 131,5783-5793.
    Prince VE, J. L, Ekker M, Ho RK (1998.). "Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk." Development 125:407-2063.
    R, K. (2000). "The origin and morphogenesis of amphibian somites." Curr. Top. Dev. Biol. 47:183-246.
    R., K. (2000). "The origin and morphogenesis of amphibian somites." Curr. Top. Dev. Biol. 47:183-246.
    Ruel, L., Bourouis, M., Heitzler, P., Pantesco, V, and Simpson, P. 1 (1993). " Drosophila shaggy kinase and rat glycogen synthase kinase-3 have conserved activities and act downstream of Notch." nature 362: 557-560.
    Saxena S, D. A. (2005). "Geminin-Cdt1 balance is critical for geneticst ability." MutatRes569(1-2):111-121.
    Schnell S, M. P. K. (2000). "Clock and induction model for somitogenesis." Dev Dyn 217(4): 415-420.
    Schnell S, M. P. K., McInerney D, Gavaghan D J, Houston P (2002). " Models for pattern formation in somitogenesis: a marriage of cellular and molecular biology." C RBiol, 3259(3): 179-189.
    Schulte-Merker S, L. K., McMahon AP,Hammerschmidt M. ( 1997.). "The zebrafish organizer requires chordino.." Nature 387:862-63.
    Schulte-Merker S, S. J. (1995. ). "Mesoderm formation in response to Brachyury requires FGF signalling." Curr. Biol. 5:62-67.
    Selleck MA, S. C. (1991). "Fate mapping and cell lineage analysis of Hensen's node in the chick embryo." Development 112:615-26.
    Shav-Tal, Y. e. a. (2004). "Dynamics of single mRNPs in nuclei of living cells." Science 304, 1797-1800
    Stern C D, F. S. E., Keynes R J, Primmett D R (1988). " A cell lineage analysis of segmentation in the chick embryo." development 104(suppl): 231-244.
    Stern C D, K. R. J. (1987). " Interactions between somite cells: the formation and maintenance of segment boundaries in the chick embryos." Development 99(2): 261-272.
    Stern CD, H. Y, Selleck MA, Storey KG (1992). "Relationships between mesoderm induction and the embryonic axes in chick and frog embryos." Dev. Suppl pp. 151-56.
    Streit A, S. C. (1999). "Mesoderm patterning and somite formation during node regression:differential effects of chordin and noggin." Mech. Dev. 85:85-96.
    Sun X, M. E., Lewandoski M, Martin GR. (1999). "Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo." Genes Dev. 13:1834-46.
    Tada M, S. J. ( 2000. ). "Xwntll is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway.." Development 127:2227-38.
    Takada S, S. K., Shea MJ, Vassileva G,McMahon JA, McMahon AP. (1994.). " Wnt-3a regulates somite and tailbud formation in the mouse embryo.." Genes Dev. 8:174-89.
    Takke C, D. P., v Weizsacker E, Campos-Ortega JA (1999). "her4, a zebrafish homologue of the Drosophila neurogenic gene E(spl), is a target of NOTCH signalling.." Development 126: 1811-1821.
    Tarn P P (1981,). "The control of somitogenesis in mouse embryos." J Embryol Exp Morphol 65(suppl):: 103-128.
    Tonegawa A, F. N., Ueno N, TakahashiY (1997). "Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4.." Development 124:1975-84.
    Tonegawa A, T. Y. (1998). "Somitogenesis controlled by Noggin." Dev. Biol. 202:172-82.
    V, R. (2007). "The oxidizing enzyme CYP26al tightly regulates the availability of retinoic acid in the gastrulating mouse embryo to ensure proper head development and vasculogenesis." Dev Dyn 236(3):644-53.
    Vermot, J. e. a. (2005). "Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo." science 308, 563-566.
    Vermot, J. P., O. (2005). "Retinoic acid coordinates somitogenesis and left.right patterning in vertebrate embryos." Nature 435, 215-220.
    Yamaguchi TP, H. K., Henkemeyer M, (1994). "fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. ." Genes Dev. 8:3032-44.
    Yamaguchi TP, T. S., Yoshikawa Y, Wu N, McMahon AP. 1999. (1999). "T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification." Genes Dev. 13:3185-90.
    Yamamoto A, K. C, Bachiller D, Geissert D, De Robertis EM. (2000. ). "Mouse paraxial protocadherin is expressed in trunk mesoderm and is not essential for mouse development.." Genesis 27:49-57.
    Yeo SY, K. M., Kim HS, Huh TL, Chitnis AB (2007). "Fluorescent protein expression driven by her4 regulatory elements reveals the spatiotemporal pattern of Notch signaling in the nervous system of zebrafish embryos." Dev. Biol (301): 555-567.
    Yoshito Masamizu, T. O., Yoshiki Takashima, Hiroki Nagahara, Yoshiko Takenaka, Kenichi Yoshikawa, Hitoshi Okamura, and Ryoichiro Kageyama ( 2006). "Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells." PNAS 103(5 1313-1318).
    Yoshito Masamizu T. O., Yoshiki Takashima, Hiroki Nagahara, Yoshiko Takenakaf, Kenichi Yoshikawa, Hitoshi Okamura and Ryoichiro Kageyama (2006). "Real-time imaging of the somite segmentation clock: Revelation of unstable oscillators in the individual presomitic mesoderm cells." PNAS 103( 5 1313-1318).
    Zernicka-GoetzM,'P. J., Ryan K, Siemering KR, Haseloff J, et al. (1996). "An indelible lineage marker for Xenopus using a mutated green fluorescent protein. ." Development 122:3719-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700