云南省蚤虱昆虫宿主特异性和流行预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:(1)对比研究小型哺乳动物(小兽)体表寄生蚤虱昆虫(蚤类与吸虱)的宿主选择范围、营养生态位宽度、生态位重叠和生态位分离的异同,综合评判不同蚤种和不同虱种的宿主特异性高低和生态分化情况;(2)预测代表性小兽体表蚤虱昆虫感染率。
     材料与方法:(1)原始数据资料来源于1997~2009年13年间对云南省境内23个县(市)的现场抽样调查;(2)运用构成比(Cr)、物种丰富度(S)、Levins生态位宽度指数,结合对应分析,综合分析主要蚤虱昆虫的宿主特异性;运用Pianka生态位重叠指数,结合聚类分析,进行生态位重叠群划分;(3)选择褐家鼠体表蚤虱昆虫为研究对象,运用流行病模型,预测蚤虱昆虫的感染率。
     结果:(1)共捕获小兽15082头,分类鉴定为5目(啮齿目、食虫目、攀鼩目、兔形目、食肉目)10科35属65种。从捕获的小兽体表共采集到蚤12264只,经分类鉴定,隶属于6科26属51种(包括待定1种);共采集吸虱38885只,经分类鉴定隶属5科7属31种;(2)大部分蚤种比吸虱的宿主范围、生态位宽度和生态位重叠值较大。基于主要蚤虱昆虫生态位重叠指数的系统聚类表明,12种吸虱在λ=15.0的位置被分成8个生态位重叠群,但蚤只被分成4个生态位叠群;(3)吸虱和其宿主存在“一对一”的稳定寄生关系(种特异性、属特异性和科特异性均较高),但蚤类的宿主特异性明显低于吸虱;(4)褐家鼠体表蚤虱昆虫实测感染率和预测感染率之间存在较高的线性相关,拟合优度较高。
     结论:(1)吸虱昆虫是一类宿主特异性很高的体表寄生虫。在宿主选择上,吸虱昆虫存在明显的生态位分离。特定吸虱种类与特定小兽宿主之间往往存在“一对一”的稳定对应寄生关系,吸虱昆虫与小兽宿主之间的协同进化程度较高。(2)与吸虱昆虫相比较,蚤类昆虫的宿主特异性较低且因具体蚤种的不同而存在较大差异。在宿主选择上,不同蚤种之间大多存在程度不同的生态位重叠,生态位分离不明显。蚤类昆虫与小兽宿主之间虽然存在一定的协同进化关系,但整体协同进化程度明显低于吸虱昆虫。(3)宿主选择范围较窄、与小兽宿主间协同进化程度很高的吸虱昆虫高度特化,宿主特异性很高,其在不同宿主动物间传播疾病的媒介潜能明显下降。宿主选择范围较宽、与小兽宿主间协同进化程度较低的蚤类昆虫,宿主特异性较低,其在不同宿主动物间传播疾病的媒介潜能较高。这是蚤类能够在不同动物宿主之间(如:鼠-鼠之间)以及在动物宿主和人之间(鼠-人之间)传播诸如鼠疫和鼠源性斑疹伤寒(地方性斑疹伤寒)等人兽共患病的基本原因。(4)褐家鼠体表蚤虱昆虫的感染率可以通过平均多度M来对所研究的蚤虱昆虫感染率进行预测。
Objectives:(1) To comparatively study the ectoparasitic fleas and sucking lice on small mammals in Yunnan Province, which covered the host range, niche breadth and niche overlap; (2) To predict the prevalence of ectoparasitic fleas and sucking lice on some typical hosts by a certain epidemiological model.
     Materials and Methods:(1) The original data came from the field investigation in 23 locations of Yunnan Province from 1997 to 2009; (2) The constituent ratio (Cr), species richness (S), Levins'niche breadth and correspondence analysis were used to measure the host specificity. Based on Pianka's niche overlap of the dominant insect species, hierarchical cluster analysis was used to classify the niche overlapping groups, which reflect the host resource utilizations by corresponding ectoparasitic insects, fleas or sucking lice; (3) Taylor's power law indicating aggregation patterns, which based on mean abundance and variance of abundance, was used to predict the prevalence of both categories of insects, fleas and sucking lice, on a species of rat host, Rattus norvegicus.
     Results:(1) A total of 15 082 individuals of small mammals were captured and identified as five orders (Rodentia, Insectivora, Scandentia, Lagomorpha and Carnivora),10 families,35 genera and 65 species. From the body surface of small mammalian hosts,12 264 individuals of fleas were collected, which represents 6 families,26 genera and 51 species, and 38 885 individuals of sucking lice representing 5 families,7 genera and 31 species; (2) Most species of fleas have the high values of host range, niche breadth and niche overlap in comparison with sucking lice. Based on niche overlap, sucking louse species'resource utilization were sorted into 8 niche overlapping groups atλ= 15, whereas fleas were sorted into 4 groups; (3) Most species of sucking lice usually showed a higher host specificity at different taxonomic levels (species level, genus level and family level), and a certain species of sucking louse usually choose one or few small mammalian species as their dominant hosts, whereas fleas have a lower host specificity; (4) A highly linear correlation existed between the observed prevalence and predicted prevalence, a modeling efficiency of predicted prevalence against observed prevalence was successfully obtained with a high fitting goodness.
     Conclusions:(1) Ectoparasitic sucking lice have a higher degree of host specificity, and a prominent niche separation exists in the host selection of sucking lice. Sucking lice have a higher level of coevolution with their small mammal hosts since a certain species of sucking louse usually choose one or few small mammalian species as their dominant hosts; (2) In comparison with sucking lice, fleas have a lower degree of host specificity that varies among parasite species. Although most species of fleas exist niche overlap in the host selection of fleas, fleas have a lower level of coevolution with their small mammal hosts than sucking lice; (3) Vector-borne Diseases transmission between different hosts could be reduced by narrow host range, high degree of coevolution between sucking lice and their small mammalian host, and high host specificity, whereas viceversa increased vector-borne diseases transmission. This is the basic factor of fleas as vectors of zoonoses diseases (plague and endemic typhus, etc.) transmission between different animal hosts, and animal host to human host; (4) The prevalence of both fleas and sucking lice on Rattus norvegicus can be expected by an epidemiological model based on their mean abundance.
引文
[1]吴厚永.中国动物志:昆虫纲.蚤目.第二版[M].北京:科学出版社;2007,1-2174.
    [2]解宝琦,曾静凡.云南蚤类志[M].昆明:云南科技出版社;2000,1-456
    [3]金大雄,李贵真.贵州吸虱类蚤类志[M].贵阳:贵州科技出版社;1992,1-152
    [4]金大雄.中国吸虱的分类和检索[M].北京:科学出版社;1999,1-132
    [5]Sasaki T, Kobayashi M, Agui N. Detection of Bartonella quintana from body lice (Anoplura: Pediculidae) infesting homeless people in Tokyo by molecular technique[J]. Journal of Medical Entomology.2002;39(3):427-429.
    [6]Nafstad O, Gronstol H. Eradication of lice in cattle[J]. Acta Veterinaria Scandinavica.2001; 42(1):81-90.
    [7]Durden L, Timm R. Hoplopleura janzeni n. sp.(Phthiraptera:Anoplura), a new sucking louse from a Central American swimming mouse[J]. Journal of Parasitology.2009; 87(6):1409-1413.
    [8]Guo XG, Qian TJ, Guo LJ, et al. Spatial distribution pattern of Hoplopleura pacifica (Anoplura:Hoplopleuridae) on its dominant rat host, Rattus flavipectus in Yunnan, China[J]. Entomologia Sinica.2003; 10(4):265-269.
    [9]Guo XG, Gong ZD, Qian TJ. The comparison between flea communities on ten species of small mammals in the foci of human plague in Yunnan[J]. Entomologia Sinica.2000; 7(2): 169-177.
    [10]Guo XG, Gong ZD, Qian TJ. Flea fauna investigation in some foci of human plague in Yunnan[J]. Acta Zootaxonomica Sinica.2000; 25(3):291-297.
    [11]Guo XG, Gong ZD, Qian TJ, et al. Spatial pattern analysis of Xenopsylla cheopis (Siphonaptera:Pulicidae) on its dominant rat host, Rattus flavipectus in the foci of human plague in Yunnan, China[J]. Entomologia Sinica.2000; 7(1):47-52.
    [12]Guo XG, Qian TJ, Guo LJ. Primary investigation on species of sucking lice in Yunnan of China[J]. Chinese Journal of Parasitic Disease Control.2004; 17(6):361-364.
    [13]Guo XG, Qian TJ, Guo LJ. Spatial distribution pattern of Hoplopleura affinis (Anoplura: Hoplopleuridae) on its dominant rat hosts, Apodemus chevrieri in Yunnan[J]. Endemic Diseases Bulletin.2005; 20(2):22-26.
    [14]Guo XG, Qian TJ, Guo LJ, et al. Similarity comparison and classification of sucking louse communities on some small mammals in Yunnan, China[J]. Entomologia Sinica.2004; 11(3): 199-209.
    [15]Guo XG, Qian TJ, Guo LJ, et al. Species diversity and community structure of sucking lice in Yunnan, China[J]. Entomologia Sinica.2004; 11(1):61-70.
    [16]Meng YF, Guo XG, Men XY. Investigation and analysis of sucking lice on the body surface of Rattus norvegicus in 17 counties (towns) of Yunnan, China[J]. China Tropical Medicine.2007; 7(11):1987-1990.
    [17]Zhang SY, Wu D, Guo XG, et al. Preliminary research on community and evolution ecology of fleas on small mammals of 19 counties in Yunnan, China[J]. Inter-national Journal of Medical Parasitic Diseases.2007; 34(5):231-234.
    [18]孟艳芬,郭宪国,门兴元,等.吸虱昆虫群落数量分类及其与小兽宿主的协同进化关系[J].昆虫学报.2007,50(11);1140-1145.
    [19]孟艳芬,郭宪国,吴滇.云南省吸虱昆虫名录初报[J].昆虫分类学报.2007;29(004):259-264.
    [20]张胜勇,郭宪国,龚正达,等.云南省21县市小兽体表蚤类群落生态及种多度分布[J].中国人兽共患病学报.2008;24(6):518-521.
    [21]张胜勇,郭宪国,龚正达,等.云南蚤类区系及分布特征[J].昆虫学报.2008;51(9):967-973.
    [22]张胜勇,吴滇,郭宪国,等.云南省大绒鼠体表寄生蚤类群落生态学研究[J].中国媒介生物学及控制杂志.2007;18(6):440-442.
    [23]Taylor L. Aggregation, variance and the mean[J]. Nature.1961; 189(4766):732-735.
    [24]Keeling M, Grenfell B. Stochastic dynamics and a power law for measles variability[J]. Philosophical Transactions of the Royal Society B:Biological Sciences.1999; 354(1384): 769-776.
    [25]Woolhouse MEJ, Taylor LH, Haydon DT. Population biology of multihost pathogens[J]. Science.2001; 292(5519):1109-1112.
    [26]Morand S, Krasnov BR. Why apply ecological laws to epidemiology?[J]. Trends Parasitol. 2008; 24(7):304-309.
    [27]Matthee S, Krasnov BR. Searching for generality in the patterns of parasite abundance and distribution:Ectoparasites of a South African rodent, Rhabdomys pumilio[J]. International Journal for Par asitology.2009; 39(7):781-788.
    [28]Krasnov BR, Stanko M, Miklisova D, et al. Distribution of fleas (Siphonaptera) among small mammals:mean abundance predicts prevalence via simple epidemiological model[J]. international Journal for Par asitology.2005; 35(10):1097-1101.
    [29]Stanko M, Krasnov BR, Miklisova D, et al. Simple epidemiological model predicts the relationships between prevalence and abundance in ixodid ticks[J]. Parasitology.2007; 134(Pt 1):59-68.
    [30]Valtonen ET, Marcogliese DJ, Julkunen M. Vertebrate diets derived from trophically transmitted fish parasites in the Bothnian Bay[J], Oecologia.2010; 162(1):139-152.
    [31]Krasnov BR. Functional and evolutionary ecology of fleas:a model for ecological parasitology[M]. Cambridge:Cambridge University Press; 2008; 1-593
    [32]Morand S, Guegan J. Distribution and abundance of parasite nematodes:ecological specialisation, phylogenetic constraint or simply epidemiology?[J]. Oikos.2000;88(3):563-573.
    [33]Andrea S, Dusan K, Milan G, et al. Abundance-prevalence relationship of gill congeneric ectoparasites:testing the core satellite hypothesis and ecological specialisation[J], Parasitology Research.2002; 88(7):682-686.
    [34]Krasnov BR, Korallo-Vinarskaya N, Vinarski M, et al. Prediction of prevalence from mean abundance via a simple epidemiological model in mesostigmate mites from two geographical regions[J]. Parasitology.2010; 137(8):1227-1237.
    [35]Amatre G, Babi N, Enscore RE, et al. Flea diversity and infestation prevalence on rodents in a plague-endemic region of Uganda[J]. American Journal of Tropical Medicine and Hygiene. 2009; 81(4):718-724.
    [36]Kim HC, Yang YC, Chong ST, et al. Detection of rickettsia typhi and seasonal prevalence of fleas collected from small mammals in the republic of Korea[J]. Journal of wildlife diseases. 2010; 46(1):165.
    [37]龚正达,吴厚永.云南横断山区小型兽类物种多样性与地理分布趋势[J].生物多样性.2001;9(1):73-79.
    [38]黄文几,陈延熹,温业新.中国啮齿类[M].上海:复旦大学出版社;1995,1-308.
    [39]Levins R. Evolution in changing environments:some theoretical explorations. New Jersey: Princeton University Press; 1968,1-132.
    [40]Pianka ER. The structure of lizard communities[J]. Annual Review of Ecology and Systematics.1973; 4:53-74.
    [41]Anderson RM, May RM. Helminth infections of humans:mathematical models, population dynamics, and control[J]. Advances in Parasitology.1985; 24:1-101.
    [42]Perry J, Taylor L. Stability of real interacting populations in space and time:implications, alternatives and the negative binomial kc[J]. Journal of Animal Ecology.1986; 55(3): 1053-1068.
    [43]Waller LA, Smith D, Childs JE, et al. Monte Carlo assessments of goodness-of-fit for ecological simulation models[J]. Ecological Modelling.2003;164(1):49-63.
    [44]Malenke JR, Johnson KP, Clayton DH. Host specialization differentiates cryptic species of feather-feeding lice[J]. Evolution.2009; 63(6):1427-1438.
    [45]Oguge NO, Durden LA, Keirans JE, et al. Ectoparasites (sucking lice, fleas and ticks) of small mammals in southeastern Kenya[J]. Medical and Veterinary Entomology.2009; 23(4): 387-392.
    [46]Huang LQ, Guo XG, Wu D, et al. Distribution and Ecological Niches of Gamasid Mites (Acari:Mesostigmata) on Small Mammals in Southwest China[J]. Psyche:A Journal of Entomology.2010,2010.1-12. doi:10.1155/2010/934508 (网络版)
    [47]侯舒心,郭宪国,门兴元,等.云南省恙螨名录初报[J].蛛形学报.2006:15(2):114-122.
    [48]McKane RB, Johnson LC, Shaver GR, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra[J]. Nature.2002; 415(6867):68-71.
    [49]Schneider K, Migge S, Norton R, et al. Trophic niche differentiation in soil microarthropods (Oribatida, Acari):evidence from stable isotope ratios (15N/14N)[J]. Soil Biology and Biochemistry.2004; 36(11):1769-1774.
    [50]Krasnov BR, Matthee S, Lareschi M, et al. Co-occurrence of ectoparasites on rodent hosts: null model analyses of data from three continents[J]. Oikos.2010; 119(1):120-128.
    [51]Krasnov BR, Stanko M, Morand S. Competition, facilitation or mediation via host? Patterns of infestation of small European mammals by two taxa of haematophagous arthropods. Ecological Entomology.2010; 35(1):37-44.
    [52]Diaz J. The epidemiology, diagnosis, management, and prevention of ectoparasitic diseases intravelers[J]. Journal of Travel Medicine.2006; 13(2):100-111.
    [53]Yassina B, Christian C, Jean-Louis M et al. Epidemic typhus[J]. The Lancet Infectious Diseases.2008; 8(7):417-426.
    [54]Mey E. The Pedicinus species (Insecta, Phthiraptera, Anoplura, Pedicinidae) on douc langurs (Pygathrix spp.)[J].Vietnamese Journal of Primatology.2010; 4:57-68.
    [55]Larsen KS, Eydal M, Mencke N, et al. Infestation of Werneckiella equi on Icelandic horses, characteristics of predilection sites and lice dermatitis[J]. Parasitology Research.2005; 96(6): 398-401.
    [56]Kakar M, Kakarsulemankhel J. Prevalence of lice species on cows and buffaloes of Quetta, Pakistan[J]. Pakistan Veterinary Journal.2009; 29 (1):49-50.
    [57]Poulin R, Krasnov BR, Shenbrot GI, et al. Evolution of host specificity in fleas:is it directional and irreversible?[J]. International Journal for Parasitology.2006; 36(2):185-191.
    [58]Stefka J, Hypsa V. Host specificity and genealogy of the louse Polyplax serrata on field mice, Apodemus species:a case of parasite duplication or colonisation?[J]. International Journal for Parasitology.2008; 38(6):731-741.
    [59]Light JE, Hafner MS. Phylogenetics and host associations of Fahrenholzia sucking lice (Phthiraptera:Anoplura)[J]. Systematic Entomology.2007; 32(2):359-370.
    [60]Light JE, Reed DL. Multigene analysis of phylogenetic relationships and divergence times of primate sucking lice (Phthiraptera:Anoplura)[J]. Molecular Phylogenetics Evolution.2009; 50(2):376-390.
    [61]Rand DM.'Why genomes in pieces?'revisited:Sucking lice do their own thing in mtDNA circle game[J]. Genome Research.2009; 19(5):700-702.
    [62]Shao RF, Kirkness EF, Barker SC. The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus[J]. Genome Research.2009; 19(5):904-912.
    [63]Krasnov BR, Poulin R, Shenbrot GI, et al. Ectoparasitic "jacks-of-all-trades":relationship between abundance and host specificity in fleas (Siphonaptera) parasitic on small mammals[J]. The American Naturalist.2004; 164(4):506-516.
    [64]Poulin R. Are there general laws in parasite ecology?[J]. Parasitology.2007; 134(6): 763-776.
    [65]孟艳芬,郭宪国,门兴元,等.吸虱昆虫群落数量分类及其与小兽宿主的协同进化关系[J].昆虫学报.2007;50(11):1140-1145.
    [66]孟艳芬,郭宪国,门兴元,等. 吸虱的生态位及其与小兽宿主的协同进化关系[J].中国寄生虫学与寄生虫病杂志.2008;26(1):25-29.
    [67]Zuo XH, Guo XG, Zhan YZ, et al. Host selection and niche differentiation in sucking lice (Insecta:Anoplura) among small mammals in southwestern China[J]. Parasitology Research. 2011; 108(5):1243-1251.
    [68]Khokhlova IS, Spinu M, Krasnov BR, et al. Immune response to fleas in a wild desert rodent:effect of parasite species, parasite burden, sex of host and host parasitological experience [J]. Journal of Experimental Biology.2004; 207(16):2725-2733.
    [69]Khokhlova IS, Ghazaryan L, Krasnov BR, et al. Effects of parasite specificity and previous infestation of hosts on the feeding and reproductive success of rodent-infesting fleas[J]. Functional Ecology.2008; 22(3):530-536.
    [70]Krasnov BR, Poulin R, Shenbrot GI, et al. Host specificity and geographic range in haematophagous ectoparasites[J]. Oikos.2005; 108(3):449-456.
    [71]Krasnov BR, Stanko M, Miklisova D, et al. Host specificity, parasite community size and the relation between abundance and its variance[J]. Evolutionary Ecology.2006; 20(1):75-91.
    [72]Krasnov BR, Khokhlova IS, Shenbrot GI. The effect of host density on ectoparasite distribution:an example of a rodent parasitized by fleas [J]. Ecology.2002; 83(1):164-175.
    [73]Gaston K. Implications of interspecific and intraspecific abundance-occupancy relationships[J]. Oikos.1999; 86(2):195-207.
    [74]Gaston K. The structure and dynamics of geographic ranges [M]. Oxford:Oxford University Press; 2003,1-267.
    [75]Hanski Ⅰ, Kouki J, Halkka A. Three explanations of the positive relationship between distribution and abundance of species[M]. Chicago:University of Chicago Press; 1993, 108-116.
    [76]Khokhlova IS, Spinu M, Krasnov BR, et al. Immune responses to fleas in two rodent species differing in natural prevalence of infestation and diversity of flea assemblages[J]. Parasitology Research.2004; 94(4):304-311.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700