饥饿对花羔红点鲑生长、耗氧率、身体组分及血液指标的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在室外自然条件下,进行了饥饿和再投喂对花羔红点鲑生理生态学影响的研究。研究了不同处理和再投喂后对花羔红点鲑生长、耗氧率、肌肉组分及血液生理生化指标的影响,并对花羔红点鲑饥饿后的补偿生长机制进行了分析。在2—8℃条件下,对初始平均体重275.5±33.9g的花羔红点鲑进行了不同饥饿时间处理后再投喂试验。分别将饥饿处理0(对照组)、5、10、15、20d的花羔红点鲑再投喂,在饱食摄食水平下生长15d,然后取样分析。
     研究结果表明:
     1)饥饿和再投喂对花羔红点鲑的生长有显著影响,研究发现了超补偿生长现象。
     随饥饿时间延长,花羔红点鲑的体重不断下降,体重损失率逐渐加大,各处理组(0d、5d、10d、15d、20d)体重损失率分别为0、3.59%、7.06%、7.61%、9.92%。与对照组相比,饥饿5d组体重损失率差异不显著(P=0.395>0.05),而饥饿10、15、20d组体重损失率差异显著(P<0.05)。花羔红点鲑在继饥饿后再投喂,其体重逐渐增加,体重增长率随饥饿时间延长不断增加。各处理组(0d、5d、10d、15d、20d)体重增长率分别为5.25%、11.10%、10.81%、17.93%、19.13%。花羔红点鲑在饥饿5d、10d后再投喂,其体重增加量接近持续喂食组,存在完全补偿生长现象;而饥饿15d、20d组再投喂后期体重增加量高于对照组,存在超补偿生长现象。
     花羔红点鲑继饥饿后再投喂,通过对各处理组特殊生长率(SGR)、摄食率(FR)和饲料转化率(CE)的研究表明:饥饿5d、10d组的特殊生长率要高于对照组(0d),但差异不显著(P=0.340,0.230>0.05),15d、20d组的特殊生长率显著高于对照组(P<0.05)。饥饿5d组摄食率升高,与对照组相比差异显著(P<0.05),10d、20d的摄食率与对照组差异不显著(P=0.984,0.985>0.05),而15d组的摄食率下降,与对照组相比差异显著(P<0.05),这可能是称重后鱼体发生应激造成的。随饥饿时间延长,各处理组饲料转化率不断升高。与对照组相比差异显著(P<0.05)。综上所述,饥饿5d组是通过提高摄食率和饲料转化率来实现补偿生长的。饥饿10d、15d、20d组主要是通过提高饲料转化率实现补偿生长的。
     2)饥饿和再投喂对花羔红点鲑耗氧率影响显著,研究发现再投喂10天之内的补偿生长具有实际利用意义。
     本研究发现,花羔红点鲑的代谢率(耗氧率)出现阶段性变化,在饥饿状态下,耗氧率前期(0d—10d)下降速度较快由217.7mg.kg~(-1).h~(-1)降至167.5 mg.kg~(-1).h~(-1),而后
    
    吉林农业大学硕士学位论文
    饥饿和再投喂对花羔红点蛙生长、耗权率、身体组分及血液指标的影响
    期(1任一20d)下降速度慢,稳定在一定水平上。对照组耗氧率明显要高于饥饿组,
    其数值在一定范围内波动。
     再投喂后,花羔红点鼓的代谢率上升,饥俄20d以内的鱼经过rod基本上就恢
    复到了正常水平。由此可见,为了提高花羔红,汽蛙继饥俄后再投喂过程中的补偿生长
    效应,应该抓住前rod,之后其补偿生长效应逐渐减弱。
     3)饥俄和再投喂使花羔红点鼓身体组分产生不同程度的变化,对肌肉脂肪和肌
    糖原影响显著,较长时间饥俄并再投喂后,鱼体脂肪含量显著增加。
     饥饿及再投喂过程中,花羔红点蛙肌肉中的蛋白质含量、水分含量有一定的波动,
    但与对照组相(0d)比差异不显著(P>0.05)。随饥饿时间的延长,作为能量物质的脂
    肪、肌糖元和肝糖元在饥饿的不同阶段都有不同程度的下降。恢复投喂后,各饥俄组
    肌糖元迅速恢复到正常水平(P=0.571,0.978,0.949,0.171>0 .05);肝糖元因饥俄时间
    不同,各组的恢复程度也不同,5d组可以恢复至正常水平(P=0 .402>0 .05),而10d、
    15d、20d组经15d恢复生长最终不能恢复至正常水平,与对照组相比差异显著
    (P<0.05);脂肪含量迅速升高,饥饿10d、15d、20d组脂肪水平大为提高,与对照组
    相比差异显著(P<0 .05)。
     4)饥俄和再投喂可明显改变花羔红点蛙血液生理生化指标,特别表现在红细胞
    数量减少、白细胞数量的增加和血脂含量的规律性变化上。
     生理指标:本研究发现,饥饿使花羔红点蛙红细胞数显著下降,血红蛋白含量没
    有减少,反而有上升的趋势。对于这种红细胞数量减少而血红蛋白含量增加现象的解
    释可能是,虽然红细胞数量减少,但是红细胞体积变大,因而血红蛋白的含量上升。
    此时,血红蛋白的含量虽然上升,但其携氧能力与一般血红蛋白相比可能降低,因而
    导致血液携氧能力的降低。恢复生长后红细胞数量和血红蛋白含量都恢复至正常水
    平。饥饿使血液中白细胞含量升高,各处理组(5d、10d、15d、20d)与对照组相比
    差异显著(P<0.05)。恢复投喂后,5d、10d、15d血液中白细胞数量恢复至正常水平,
    20d血液中白细胞数量还要显著高于对照组(P<0.05)。
     生化指标:研究发现,在温度2一8℃时,随饥俄时间延长,花羔红点蛙血液中
    总蛋白、白蛋白以及球蛋白含量均在一定范围内波动,无明显的变化规律(P>0.05)。
    因此可以认为饥俄20d对血清蛋白无明显的影响。这说明,饥饿20d以内,花羔红点
    鱿的健康状况良好,同时也说明了花羔红点蛙的杭饥俄能力很强。随饥俄时间延长,
    甘油三醋的含量不断下降,恢复投喂后,各饥饿组血浆中甘油三醋含量都有不
A typical feature of fish and poikilotherms is that they are capable of starving for long periods. Starvation affects metabolic activity and during this period essential processes are maintained at the expense of accumulated endogenous energy reserves, which results in a loss of body weight, and reduce of growth rate. Growth rates of fish may be highly variable and, in many cases, appear to be limited by food availability. When food supplies are increased following a period of starvation or restricted feeding, fish and other animals may display a growth spurt, often referred to as catch-up, or compensatory growth. The physiological basis of compensatory growth is incompletely understood, but starved and starved-refed animals may be not only considerably impacted on growth performances, but also on the other biochemical and physiological aspects. The conducted experiments were to investigate effects of starvation and refeeding on the compensatory growth performances, oxygen consumption, muscle composition and
     blood constituents in Salevlinus malma.
    The experimental fish, initial body weight was 275.5 + 33.9g, were reared in outdoor cages (1.5 x 2.0 x 0.7m) with flowing water supply (1.5-2.0m/s, 2-8 V). Five treatments were designed as 0,5,10,15,20 days of starvation period, the starved fish refed for 15 days by fresh rainbow trout after certain period of food deprivation treating. Two duplicates were designed and the initial density was 6 fish/cage for each treatment. The growth rate, weight gain, feeding rate, food conversion ratio, muscle composition (fat, protein, moisture, glycogen) and blood constituents (plasma total protein, albumin, globulin, triglycerides, total cholesterol, high density lipoprotein cholesterin and blood glucose) were measured after treating by starvation and refeeding respectively. The oxygen consumption was tested every 2 days during the starvation period and every 5 days during refeeding period.
    
    
    
    
    refeeding period. The results:
    (1) The starvation and refeeding significantly influenced Salevlinus malma on growth performances and food intake. The complete compensatory growth performances were observed in 5d and 10d group, furthermore, the over-compensatory growth responses were found in 15d and 20d group compared with the control. The weight losses were significant higher in 10d, 15d, and 20d group after starving-treatment (p<0.05), and no significant difference detected in the 5d group compared with the control (p=0.395). The weight gain and specific growth rate (SGR) were considerable higher in 15d and 20d group after refeeding-treatment (p<0.05), but there were no differences between the control and the 5d group (p=0.340). Compared with the control, significant higher and lower feeding ratio (FR) was detected in 5d and 15d group respectively during the refeeding period (p<0.05), whereas no significant differences were found in lOd and 20d group (p=0.984,0.985). Compared with untreated fish in the control, treated fish in other four groups showed remarkably higher food conversion efficiency (FCE) during refeeding period (p<0.05).
    (2) Starvation and refeeding affected oxygen consumption (OC) of Salevlinus malma significantly. During the first 10 days starvation, the OC decreased rapidly from 217.7 mg.kg-1.h-1 to 167.5mg.kg-1.h-1, and then maintained stable levels during the last 10 days. During refeeding period, the OC of all treated groups increased rapidly and reconverted to the level of the control within 10 days.
    (3) The starvation and refeeding significantly impacted on the muscle composition of Salevlinus malma. The moisture and protein content in muscle of treated fish did not show significant differences (p=1.000,0.996,0.998,0.767-1.000,0.978,0.884,0.998) compared with untreated ones though fluctuating values were observed. The muscle lipids, muscle glycogen and hepatic glycogen content decreased respectively in all treated groups during the period of starving-treatment. During the refeeding period, the content of muscle glycogen reconverted to the normal level in
引文
[1] Dobson SH, Homles RM. Compensatory growth in the rainbow trout, Salmo gairdneri Richardson. J Fish Biol, 25: 649-656
    [2] Quinton JC, Blake RW. 1990. the effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. J fish Biol, 37: 33-41
    [3] Weatherley AH, Gill HS. 1981. Recovery growth following periods of restricted rations and starvation in rainbow trout, Salmo gairdneri Richardson. J Fish Biol, 18: 195-208
    [4] Jobling M, Jorgensen EH, Siikavuopio SI. 1993. the influence of previous feeding regime on the compensatory growth response of maturing and immature Arctic charr, Salvelinus alpinus. J Fish Biol, 43: 409-419
    [5] Skilbrei OT. 1990 Compensatory sea growth of male Atlantic salmo, Salmo salar, which previously matureas parr. J fish Biol, 37: 425-438
    [6] Miglvas I, Jobling M. 1989. The effects feeding regime on proximare body composition and patterns of energy deposition in juwenile Arctic charr, Salvelinus alpinus. J Fish Biol, 35: 1-11
    [7] Miglvas I, Jobling M. 1989b. Effects of feeding regime on food consumption, growth rates and tissue nucleic acids in juvenile Arctic charr, Salvelinus alpinus, with particular respect to compensatory growth. J Fish Biol, 34: 947-957
    [8] Schwarz FJ, Plank J, Kirchgessner M. 1985. effects of protein or energy restriction with subsequent realimentation on performance parameters of carp, Cyprinus carpio L. Aquactulture, 48: 23-33
    [9] 王燕妮,张志蓉,郑署明.2001.鲤鱼的补偿生长及饥饿对淀粉酶的影响.J.水利渔业,21(5):6-7
    [10] 华益民,林浩然.2001.营养状况对幼年鲤鱼肝脏IGF-Ⅰ Mrna表达的影响.J.动物学报,47(1):94-100
    [11] 张桂蓉,严安生,高玉芹.2003.饥饿对异育银鲫几项血液指标的影响.J.水利渔业,23(1):9-10
    
    
    [12] Paul AJ, Paul JM, Smith RL. 1995. compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. J Fish Biol, 46: 442-448
    [13] Jobling M, Meloy OH, santos JD et al. 1994. The compensatory growthresponse of the Anlantic cod: effects of nutritional history. Aquaculture International, 2: 75-90
    [14] 张波 谢小军.2000.南方鲇的饥饿代谢研究.J.海洋与湖沼,31(5):480-486
    [15] 宋绍彬,何学福.2000.饥饿对南方鲇仔稚鱼消化系统的形态和组织学影响.J.水生生物学报,24(2):155-161
    [16] 邓利,张波,谢小军.1999.南方鲇继饥饿后的恢复生长.J.水生生物学报,23(2):167-173
    [17] Auster PJ, Stewart LL. 1984. Compensatory growth in the bay scallop, Argopecten irradians. J Northw Atl Fish Sci, 5: 130-104
    [18] Bostworth BG, Wolters WR. 1995. Compensatory growth in juvenile red swamp crawfish, Procambarus clarkii. Eighth International Symposium on Astacology. Romaire Rped. Baton rouge, La-USA, Louisiana State Univ, Printing Office. 648-656
    [19] 吴立新,董双林,田相利.2001.中国对虾继饥饿后的补偿生长研究.J.生态学报,21(3):452-457
    [20] 温小波,陈立侨,爱春香等.2002.中华绒螯蟹亲蟹的饥饿代谢研究.J.应用生态学报,13(11):1441-1444
    [21] 张波,孙耀,唐启升.2000.饥饿对真鲷生长及生化组成的影响.J.水产学报,24(3):206-209
    [22] 姜志强,贾泽梅,韩延波.2002.美国红鱼继饥饿后的补偿生长机制.水产学报,26(1):67-72
    [23] 吴立新,董双林.2000.水产动物继饥饿或营养不足后的补偿生长研究进展.J.应用生态学报,11(6):943-946
    [24] Mether T, Wieser W. 1994. Energetics and metabolic correlayes of starvation juvenile perch. J Fish Biol, 45: 325-333
    [25] Du Preeze HH, Mclachlan A, Marais J. 1986a. Oxygen consumption of a shallow water teleost the spotted gunter, Pomadasys commersonni. Comp Biochem Physiol, 84: 61-70
    [26] 崔奕波,王少梅,陈少莲.1993.饥饿状态下草鱼的代谢率和氮排泄量及其体重的关系.水生生物学报,17:375-376
    [27] Murata H, Higashi T. 1980. Selective utilization of fatty acid sas energy in carp. Bull Jpn Sci Fish, 46: 1333-1338
    [28] 沈文英,林浩然,张为民.1999.饥饿和再投喂对草鱼鱼种生物化学组成的影响.J.动物学
    
    报,45(4):404-412
    [29] Zamal H, Ollevier F. 1995. Effect of feeding and lack of food on growth, gross biochemical and fat acid composition of juvenile catfish. J Fish Bio, 46: 404-414
    [30] Fosler AR, Houlihan DF Hall. 1993. Effect of nutritional regime on correlates of growth rate in juvenile Atlantic cod, Godus morhua: Comparition of morphological and biochemical measurements. Nutr Abst Rev(series B), 63(10): 50-57
    [31] 陈晓耘.2000.饥饿对南方鲇幼鱼血液的影响.J.西南农业大学学报,22(2):167-176
    [32] 陈惠群,杨文鸽.2001.饥饿对鳗鲡某些血液指标的影响.J.水产科学,20(2):10-12
    [33] 钱云霞,陈惠群,孙江飞.2002.饥饿对养殖鲈鱼血液生理生化指标的影响.J.中国水产科学,9(2):133-137
    [34] 万松良,黄二春,魏于生等.1997.不同状态下大口鲇血液学研究.J.水产科学,16(6):3-7
    [35] 周顺伍主编.动物生物化学[M].中国农业出版社,1999.
    [36] Reimers, Kjiorreejord A G, Stavostrand S M. 1993. Compensatory growth and reduced maturation in second sea winter formed Atlantic salmon following starvation in February and March. J Fish Biol, 43: 805-810
    [37] 钱雪桥.1998.饥饿对鱼类生理生态学影响的研究进展.水生生物学报,22(2):181-188
    [37] 朱鑫华,缪锋,钱薇薇.2001.鱼类补偿生长及其对资源生态学特征的影响.水产学报,25(3):265-269
    [38] Mommsen T P, French C J, Hochachka P W. 1980. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon. Can. J. Zool, 58: 1785-1799
    [39] Larsson A and K Lewander. 1973. Metabolic effects of starvation in the eel, Anguilla anguilla. Comp Bilchem Physiol, 44: 367-374
    [40] Bernard W I, Alan T. 1976. The effect of starvation and forcefeeding on the metabolism of the Northern pike, Esox lucius L. J. Fish Biol, 8: 79-88
    [41] Kim MK, Lovell RT. 1995. Effect of restricted feeding regimens on compensatory weight gain and body tissue changes in channel catfish, Ictaurus punctatus in ponds. aquaculture, 135: 285-293
    [42] 宋绍彬,何学福.1998.鱼类饥饿研究现状.动物学杂志,33(1):48-52
    [43] Hayward Robert. 1997. Use of compensatory growth to double hybrid sunfish growth rates. Transactions of the American Fisheries society, 126(2: 316-322)
    [44] 李爱杰主编.水产动物营养与饲料.M.中国农业出版社,1998
    
    
    [45] 董元凯,吕维贤,吴熙载.1963.龙洲鲋鱼血液的初步研究.[J].武汉大学学报自然科学板.生物专版,2:13-25
    [46] 夏重志,董崇智,姜作发.1997.花羔红点鲑种群生态学特征及资源保护.[J].水产学杂志,10(1):48-54
    [47] 黄权,孙兆和.1998.鸭绿江上游花羔红点鲑的年龄、生长、食性和繁殖的研究.[J].水产学报,22(1):1-8
    [48] 黄权,张东鸣,刘春力等.1999.鸭绿江花羔红点鲑的生长模型和生活史类型研究.[J].吉林农业大学学报,21(2):60-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700