虚拟人微观仿真与宏观交互关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代计算机图形学的发展衍生出了虚拟现实技术及其“沉浸感、交互性、构想性”的特征。围绕这一特点,现实世界中的事物都可以在计算机虚拟环境中进行重现。对现实世界重现过程中,最具有挑战性的一项任务是在虚拟环境中完全模拟自然人。20世纪90年代“虚拟人”概念被首次提出以后,围绕着“智能化、行为能力和交互能力”三个核心需求,科学家们从建模到动作,从语言到情感,在虚拟人的各个领域都取得了显著的进步。同时在研究过程中也逐渐明确了虚拟人研究在技术上要达到的标准,即建立模型、对信息进行回应、具有真实大小、具有与人一样的外表以及在三维虚拟环境中进行活动。随着技术的进步和各相关学科研究的深入,虚拟人在外貌、动作等方面的已经相当成熟,而在语言、心理等感知层面和内部结构方面,则由不同学科进行着各自的专项研究。因为对虚拟人的理解和发展方向不同,形成了目前虚拟人研究的不同领域,同时也形成了许多学科间的交叉,最具代表性的就是医学与计算机科学在虚拟人研究方面的合作。
     本文选取医学和计算机科学的交叉领域作为研究切入点,针对虚拟人在现有科学发展水平下如何统一协调发展,完善虚拟人的理论和关键技术,提出了三个需要解决的问题:第一,如何建立高效的虚拟人构造技术和统一的虚拟环境与衡量尺度;第二,如何寻找学科间的研究交叉点以带动统一的虚拟人系统的建立;第三,如何设计一个架构使不同学科的研究方法和技术手段得到统一利用和高效开发。
     基于以上三个问题,本文从虚拟人的基本概念入手,将微观和宏观两个层面看做虚拟人研究的两个起点,把这两个层面的交叉部分作为实现统一的虚拟人系统实现的汇聚点,在此基础上可以建立统一的虚拟人。本文分别介绍了作为关键技术的微观层面仿真技术和宏观层面交互技术,对微观和宏观两个方向的发展现状和前景和技术特点进行分析,提出为虚拟人的建立设计可行的架构和严谨的规范。为验证分析观点的正确性并且探索建立统一的虚拟人的可行性,分别从微观仿真和宏观交互两个方向进行研究和实践,在微观仿真方面设计开发了VRKidney三维人体肾脏虚拟现实软件,利用VKH数据集重建了人体肾脏三维模型,并利用该模型实现了基本的肾脏药物排泄功能数值模拟,在生理功能仿真方面为未来的生理器官的建立探索了可行的方法。在宏观交互方面着重研究了虚拟人的建立对自然人的交互方式与感受有何影响,研究重点在交流方式和感知能力,通过建立三维虚拟病人并与自然人进行交流得出数据分析在交流过程中的感知情况。在此基础上,系统提出了虚拟人一体化集成的架构及规范,并将可感知性作为评价不同类型虚拟人系统的标准,采用实验方式初步验证不同虚拟人系统的可感知性情况。
     本文的创新性工作主要有以下几点:
     1)设计并实现了VRKidney软件。该软件是针对虚拟人体肾脏三维结构重建及生理功能仿真而开发的。基于VKH数据集,将传统医学图像研究领域中分散的技术进行了集成,使用户可以在VRKidney中完成以往需要借助多个软件完成的功能,同时软件在配准、分割算法上具有效率高的特点,在交互操作上采用了新技术和新方法,并且利用VRKidney对肾脏药物代谢过程进行了数值模拟。
     2)在虚拟人研究中引入UGC模式,强调去中心化的虚拟人知识获取与信息发布方式,并提出“人际交互”与“人机交互”的区别。利用互联网的分布式特点,将传统的以对话为中心的人机交互系统模式提升为以人为中心的人际交互模式,并在此基础上开发了可视化的虚拟现实系统,并通过该系统进行了虚拟问诊的统计调查,验证了人际交互在对同情度认知上的积极作用。
     3)提出了一种虚拟人一体化集成的架构设计,利用黑板模式的软件开发体系结构弥补了学科交叉研究过程中技术上难以实现自上而下系统结构设计的不足,充分保证虚拟人一体化集成后的完整性、通用性以及体验感受。对虚拟人系统的体系架构要素进行了系统阐述,并总结了虚拟人一体化集成的意义与需要注意的问题。
     4)提出了评价虚拟人系统个一体化集成后的一种评价标准——可感知度评价方法,该方法的提出使虚拟人无论从微观还是宏观角度,或者是从不同学科的角度都可以找到以虚拟现实基础理论为依据的评价方法,在统一的评价体系中进行体验评价可以让一体化集成过程中的各系统进行可感知度的提升,并充分利用其它系统中的通用组件技术完善补充子系统的开发。
The emergence of Virtual Reality Technology, an integrated trio ofimmersion-interaction-imagination, was accompanied by the development ofComputer Graphic in1980s. Based on those features, things in the real world could bereproduced in virtual environment by computer. In the process of reproducing realworld, the most challenging work is to simulate the real human in the virtualenvironment. In1990s, the concept of “Virtual Human” was first proposed with threecore disciplines, intelligence, behavior and interaction. There are notable progresses inthis research area. Simple modeling was developed to motion simulation while simplespeech reorganization was developed to perception of emotion. In this progress, thetechnical standards were gradually formed, which are modeling, response, life-sizecharacters, human-like appearance and activities in virtual environment. Withdeveloping of techniques, it is matured in appearance, motion and voice. But in someaspects, such as natural language and psychology, which are related to the perceptionand internal structure of human body, were researched in different scientific areas.Because of the difference in the understanding of virtual human concept and thedevelopment direction, there are various fields in the research of virtual human, whichformed many interdisciplinary branches. The most remarkable area is the cooperationbetween medical science and computer science.
     In this article, the starting point of the study was the interdisciplinary fieldbetween medical science and computer science. To improve the theory and keytechniques of virtual human in current progress of science and technology, threequestions were proposed: first, how to develop effective techniques for virtual humanconstruction and uniform metrics for virtual environment; second, how to seek thecommon concerns among different research areas to establish a shared and commonvirtual human system; third, how to design an architecture to integrate and takeadvantage of various research methods and techniques effectively in different disciplines.
     Regarding the microscopic and macroscopic research of virtual human as thestarting points, this study is based on three questions mentioned above and the basicconcept of virtual human, motivated by how to find the method for the construction ofvirtual human system. In this article, the current progress and the technical featureswere introduced; the key techniques of microscopic simulation and macroscopicinteraction were presented; a feasible architecture was proposed for virtual humansystem development with the key points of regulation. To verify the theory proposedabove and explore a new method for virtual human establishment, two aspects studywork were introduced. In microscopic simulation, VRKidney, a kind of VR softwareof3D human kidney was designed, programmed and implemented. Using VRKidney,a human kidney model was reconstructed by VKH serial sectioned image data set. Itcan simulate the basic process of renal excretion of drug. This is a probable methodfor the future research of physiological virtual human kidney. In macroscopicinteraction, the key point of the study is to analyze the impacts of virtual to the feelingand behavior of human beings, especially the communication and perception. Theresults were concluded by the analysis of survey data. Furthermore, the architectureand regulation for integrated virtual human was presented. Perceptibility was takenthe criteria for evaluating the various virtual human systems. Two virtual humansystems in this study were evaluated by their perceptibility.
     The innovative works of this study are as follow:
     1) Designed, developed and implemented VRKidney. The purpose of VRKidenyis to reconstruct virtual human kidney and simulate its physiological functions. Basedon VKH data set, VRKidney has integrated registration, segmentation, reconstructionand other image processing methods. It has advantages in registration, segmentationand interaction. Using VRKidney, the simple simulation of drug excretion in kidneycan be carried out.
     2) Introduced the new concept, UGC, into virtual human research.De-centralization is considered the new pattern of the knowledge acquisition andinformation distribution.Aclear distinction has been made between HCI and interpersonal interaction. The Internet has a merit of distribution. Using this merit, thetraditional conversational-centered mode of HCI has been improved tohuman-centered mode of interpersonal interaction.AVR system is developed basedon the human-centered mode and a survey has been finished. Through the survey, thepositive effect of interpersonal interaction on empathy cognition has been verified.
     3)An integrated architecture for virtual human has been presented. Atop-downdevelopment architecture is not suitable for an interdisciplinary study. The blackboardarchitecture can avoid its disadvantage. Using this architecture, the integrated virtualhuman system can be implemented as a complete, common and user-friendly system.The concept and the basic elements of this architecture have been defined clearly. Theregulation has been summarized.
     4) Propose the perceptibility as the criteria of evaluation a virtual human system.Whatever the starting points of the research or the various evaluating method indifferent subjects, it will improve the perceptibility to evaluate a virtual humanapplication by a common criteria.
引文
[1] Thalmann D. Animating Autonomous Virtual Humans in Virtual-Reality.Elsevier Science PUBL B V: Amsterdam,1994:177-184.
    [2] Kotranza A, Johnsen K, Cendan J, Miller B, Lind DS, Lok B. Virtual multi-toolsfor hand and tool-based interaction with life-size virtual human agents: IEEE,2009:23-30.
    [3] Archip N, Rohling R, Dessenne V, Erard P-J, Nolte LP. Anatomical structuremodeling from medical images. Computer Methods and Programs in Biomedicine,2006,82(3):203-215.
    [4] Victor M. Spitzer ALS. Virtual anatomy: An anatomist's playground. ClinicalAnatomy,2006,19(3):192-203.
    [5] Noakes KF, Bissett IP, Pullan AJ, Cheng LK. Anatomically realisticthree-dimensional meshes of the pelvic floor&anal canal for finite element analysis.Ann Biomed Eng,2008,36(6):1060-1071.
    [6] Gu J-X, Ding X-Q, Wang S-J. Human3D Model-based2D Action Recognition:Human3D Model-based2D Action Recognition. Acta Automatica Sinica,2010,36(1):46-53.
    [7] Mori G, Malik J. Recovering3D human body configurations using shapecontexts. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINEINTELLIGENCE,2006,28(7):1052-1062.
    [8] Jorge R-R, Eduardo B-C. Medical image segmentation, volume representationand registration using spheres in the geometric algebra framework. PatternRecognition,2007,40(1):171-188.
    [9] Schiemann T, Tiede U, H hne KH. Segmentation of the Visible Human forhigh-quality volume-based visualization. Medical Image Analysis,1997,1(4):263-270.
    [10] Mabotuwana TD, Cheng LK, Smith NP, Pullan AJ. Modeling blood flow in thegastrointestinal system. Conf Proc IEEE Eng Med Biol Soc,2006,1:1810-1813.
    [11] Chen G, Li XC, Wu GQ, Zhang SX, Xiong XF, Tan LW, Yang RG, Li K, YangSZ, Dong JH. Three-dimensional reconstruction of digitized human liver: based onChinese Visible Human. Chin Med J (Engl),2010,123(2):146-150.
    [12] Harms J, Bartels M, Bourquain H, Peitgen HO, Schulz T, Kahn T, Hauss J,Fangmann J. Computerized CT-based3D visualization technique in living relatedliver transplantation. Transplant Proc,2005,37(2):1059-1062.
    [13] Robb RA, Hanson DP. Biomedical image visualization research using theVisible Human Datasets. Clin Anat,2006,19(3):240-253.
    [14] Trunk P, Mocnik J, Trobec R, Gersak B.3D heart model for computersimulations in cardiac surgery. Comput Biol Med,2007,37(10):1398-1403.
    [15] Badler NI, Phillips CB, Webber BL. Simulating humans: computer graphicsanimation and control: Oxford University Press, USA,1993.
    [16] Ieronutti L, Chittaro L. A virtual human architecture that integrates kinematic,physical and behavioral aspects to control H-Anim characters. Proceedings of thetenth international conference on3D Web technology. ACM: Bangor, UnitedKingdom,2005:75-83.
    [17] Funge J, Tu X, Terzopoulos D. Cognitive modeling: knowledge, reasoning andplanning for intelligent characters: ACM Press/Addison-Wesley Publishing Co.,1999:29-38.
    [18] Badler NI, Erignac CA, Liu Y. Virtual humans for validating maintenanceprocedures. Communications of the ACM,2002,45(7):56-63.
    [19] Vinayagamoorthy V, Gillies M, Steed A, Tanguy E, Pan X, Loscos C, Slater M.Building expression into virtual characters.2006.
    [20] Ackerman MJ. The Visible Human Project. J Biocommun,1991,18(2):14.
    [21] Chang L-W, Chen H-W, Ho J-R. Reconstruction of3D medical images: Anonlinear interpolation technique for reconstruction of3D medical images. CVGIP:Graphical Models and Image Processing,1991,53(4):382-391.
    [22] Hunter PJ, Nielsen PM, Bullivant D. The IUPS Physiome Project. InternationalUnion of Physiological Sciences. Novartis Found Symp,2002,247:207-217;discussion217-221,244-252.
    [23] Nobel D. Biological computation. Encyclopedia of life sciences. London: NaturePublishing Group,2002.
    [24] Van Essen NL, Anderson IA, Hunter PJ, Carman J, Clarke RD, Pullan AJ.Anatomically based modelling of the human skull and jaw. Cells Tissues Organs,2005,180(1):44-53.
    [25] Fernandez JW, Hunter PJ. An anatomically based patient-specific finite elementmodel of patella articulation: towards a diagnostic tool. Biomech Model Mechanobiol,2005,4(1):20-38.
    [26] Spitzer V, Ackerman MJ, Scherzinger AL, Whitlock D. The visible human male:a technical report. J Am Med Inform Assoc,1996,3(2):118-130.
    [27] Jin Seo Park MSC, Sung Bae Hwang, Byeong-Seok Shin, Hyung Seon Park,.Visible Korean Human: Its techniques and applications. Clinical Anatomy,2006,19(3):216-224.
    [28] Zhang S-X, Heng P-A, Liu Z-J, Tan L-W, Qiu M-G, Li Q-Y, Liao R-X, Li K,Cui G-Y, Guo Y-L, Yang X-P, Liu G-J, Shan J-L, Liu J-J, Zhang W-G, Chen X-H,Chen J-H, Wang J, Chen W, Lu M, You J, Pang X-L, Xiao H, Xie Y-M. Creation ofthe Chinese visible human data set. The Anatomical Record Part B: The NewAnatomist,2003,275B (1):190-195.
    [29]钟世镇.“虚拟中国人”(VCH)切片建模研究进展.中国临床解剖学杂志,2002,20(5):1.
    [30] Liu B, Gao XL, Yin HX, Luo SQ, Lu J. A detailed3D model of the guinea pigcochlea. Brain Struct Funct,2007,212(2):223-230.
    [31] Freudenberg J, Schiemann T, Tiede U, Hohne KH. Simulation of cardiacexcitation patterns in a three-dimensional anatomical heart atlas. Comput Biol Med,2000,30(4):191-205.
    [32] Trunk P, Mocnik J, Pipan G, Trobec R, Gersak B. Visualization of computersimulated heart temperature during topical cooling. Pflugers Arch,2001,442(6Suppl1): R139-141.
    [33] Fasel JH, Gingins P, Kalra P, Magnenat-Thalmann N, Baur C, Cuttat JF, MusterM, Gailloud P. Liver of the "visible man". Clin Anat,1997,10(6):389-393.
    [34] Frericks BB, Caldarone FC, Nashan B, Savellano DH, Stamm G, Kirchhoff TD,Shin HO, Schenk A, Selle D, Spindler W, Klempnauer J, Peitgen HO, Galanski M.3D CT modeling of hepatic vessel architecture and volume calculation in livingdonated liver transplantation. Eur Radiol,2004,14(2):326-333.
    [35] Harms J, Bourquain H, Bartels M, Peitgen HO, Schulz T, Kahn T, Hauss J,Fangmann J. Surgical impact of computerized3D CT-based visualizations in livingdonor liver transplantation. Surg Technol Int,2004,13:191-195.
    [36] Teran J, Sifakis E, Blemker SS, Ng-Thow-Hing V, Lau C, Fedkiw R. Creatingand simulating skeletal muscle from the visible human data set. IEEE Trans VisComput Graph,2005,11(3):317-328.
    [37] Daggfeldt K, Huang QM, Thorstensson A. The visible human anatomy of thelumbar erector spinae. Spine,2000,25(21):2719-2725.
    [38] Garner BA, Pandy MG. Musculoskeletal model of the upper limb based on thevisible human male dataset. Comput Methods Biomech Biomed Engin,2001,4(2):93-126.
    [39] Alessi NE, Huang MP. Evolution of the virtual human: from term to potentialapplication in psychiatry. CyberPsychology&Behavior,2000,3(3):321-326.
    [40] Thórisson K, Cassell J. Why put an agent in a human body: The importance ofcommunicative feedback in human-humanoid dialogue. Proceedings of LifelikeComputer Characters’96,1996:44-45.
    [41]:Cassell J, NetLibrary I. Embodied conversational agents. MIT Press:Cambridge, Mass,2000.
    [42] Blascovich J. A theoretical model of social influence for increasing the utility ofcollaborative virtual environments: ACM,2002:25-30.
    [43] Vinayagamoorthy V, Steed A, Slater M. Building characters: Lessons drawnfrom virtual environments,2005:119-126.
    [44] Garau M, Slater M, Vinayagamoorthy V, Brogni A, Steed A, Sasse MA. Theimpact of avatar realism and eye gaze control on perceived quality of communicationin a shared immersive virtual environment: ACM,2003:529-536.
    [45] Bailenson JN, Swinth K, Hoyt C, Persky S, Dimov A, Blascovich J. Theindependent and interactive effects of embodied-agent appearance and behavior onself-report, cognitive, and behavioral markers of copresence in immersive virtualenvironments. Presence: Teleoperators&Virtual Environments,2005,14(4):379-393.
    [46] Rickel J, Johnson WL. Virtual humans for team training in virtual reality:Citeseer,1999:585.
    [47] Rickel J, Marsella S, Gratch J, Hill R, Traum D, Swartout W. Toward a newgeneration of virtual humans for interactive experiences. Intelligent Systems, IEEE,2002,17(4):32-38.
    [48] Rizzo A, Buckwalter J, John B, Newman B, Parsons T, Kenny P, Williams J.STRIVE: Stress resilience in virtual environments: a pre-deployment VR system fortraining emotional coping skills and assessing chronic and acute stress responses. StudHealth Technol Inform,2012,173:379-385.
    [49] Tsai J, Bowring E, Marsella S, Wood W, Tambe M. A Study of EmotionalContagion with Virtual Characters: Springer,2012:81-88.
    [50] McLay RN, Graap K, Spira J, Perlman K, Johnston S, Rothbaum BO, Difede J,Deal W, Oliver D, Baird A. Development and Testing of Virtual Reality ExposureTherapy for Post-Traumatic Stress Disorder in Active Duty Service Members WhoServed in Iraq and Afghanistan. Military Medicine,2012,177(6):635-642.
    [51] Rizzo A, John B, Newman B, Williams J, Hartholt A, Lethin C, Buckwalter JG.Virtual Reality as a Tool for Delivering PTSD Exposure Therapy and StressResilience Training. Military Behavioral Health,2013,(ahead-of-print).
    [52] Hill R, Gratch J, Marsella S, Rickel J, Swartout W, Traum D. Virtual humans inthe mission rehearsal exercise system. Künstliche Intelligenz,2003,4(03):5-10.
    [53] Deaton JE, Barba C, Santarelli T, Rosenzweig L, Souders V, McCollum C, SeipJ, Knerr BW, Singer MJ. Virtual environment cultural training for operationalreadiness (VECTOR). Virtual Reality,2005,8(3):156-167.
    [54] Johnsen K, Dickerson R, Raij A, Harrison C, Lok B, Stevens A, Lind DS.Evolving an immersive medical communication skills trainer. Presence: Teleoperators&Virtual Environments,2006,15(1):33-46.
    [55] Johnsen K, Raij A, Stevens A, Lind DS, Lok B. The validity of a virtual humanexperience for interpersonal skills education: ACM,2007:1049-1058.
    [56] Tartaro A, Cassell J. Authorable virtual peers for autism spectrum disorders,2006:74.
    [57] Bailenson JN, Aharoni E, Beall AC, Guadagno RE, Dimov A, Blascovich J.Comparing behavioral and self-report measures of embodied agents’ social presencein immersive virtual environments,2004.
    [58] Bailenson JN, Blascovich J, Beall AC, Loomis JM. Equilibrium theory revisited:Mutual gaze and personal space in virtual environments. Presence: Teleoperators&Virtual Environments,2001,10(6):583-598.
    [59] Zanbaka C, Goolkasian P, Hodges L. Can a virtual cat persuade you?: the role ofgender and realism in speaker persuasiveness: ACM,2006:1153-1162.
    [60] Hunter PJ, Borg TK. Integration from proteins to organs: the Physiome Project.Nat Rev Mol Cell Biol,2003,4(3):237-243.
    [61] Hunter PJ. The IUPS Physiome Project: a framework for computationalphysiology. Prog Biophys Mol Biol,2004,85(2-3):551-569.
    [62] Tonar Z, Zat'ura F, Grill R. Surface morphology of kidney, ureters and urinarybladder models based on data from the visible human male. Biomed Pap Med FacUniv Palacky Olomouc Czech Repub,2004,148(2):249-251.
    [63] Li X, Shi J, Cao Y, Li J, Chen A, Chen G. VRKidney for Serially SectionedImage Processing and3D Reconstruction by Using Visible Korean Human Data Set.Procedia Environmental Sciences,2011,8:240-247.
    [64]张兴亮.基于反射的Command模式实现Undo/Redo.计算机应用,2010,(A01):233-234.
    [65] Andres P, Isoardi R. Using ITK platform for medical image registration: IOPPublishing,2007:012056.
    [66]李卫华,周军,周连文,程英蕾.一种基于互信息和小波分解的图像配准算法.计算机工程与应用,2006,41(33):31-33.
    [67] Viola P, Wells III WM. Alignment by maximization of mutual information.International journal of computer vision,1997,24(2):137-154.
    [68] Otsu N. A threshold selection method from gray-level histograms. Automatica,1975,11(285-296):23-27.
    [69] Weeks AR, Hague GE. Color segmentation in the HSI color space using theK-means algorithm: International Society for Optics and Photonics,1997:143-154.
    [70] Clark MC, Hall LO, Goldgof DB, Clarke LP, Velthuizen RP, Silbiger MS. MRIsegmentation using fuzzy clustering techniques. Engineering in Medicine and BiologyMagazine, IEEE,1994,13(5):730-742.
    [71] Carson C, Belongie S, Greenspan H, Malik J. Blobworld: Image segmentationusing expectation-maximization and its application to image querying. PatternAnalysis and Machine Intelligence, IEEE Transactions on,2002,24(8):1026-1038.
    [72] De Ridder D, Kittler J, Duin RP. Probabilistic PCA and ICA subspace mixturemodels for image segmentation: Citeseer,2000:112-121.
    [73] Montanari U. On the optimal detection of curves in noisy pictures.Communications of the ACM,1971,14(5):335-345.
    [74] Parent P, Zucker SW. Trace inference, curvature consistency, and curvedetection. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1989,11(8):823-839.
    [75] Ullman S, Sha'ashua A. Structural saliency: The detection of globally salientstructures using a locally connected network.1988.
    [76] Horowitz SL, Pavlidis T. Picture segmentation by a tree traversal algorithm.Journal of the ACM (JACM),1976,23(2):368-388.
    [77] Horowitz SL, Pavlidis T. A graph-theoretic approach to picture processing.Computer Graphics and Image Processing,1978,7(2):282-291.
    [78] Brice CR, Fennema CL. Scene analysis using regions. Artificial intelligence,1970,1(3):205-226.
    [79] MONGA O. An optimal region growing algorithm for image segmentation.International Journal of Pattern Recognition and Artificial Intelligence,1987,1(03n04):351-375.
    [80] Adams R, Bischof L. Seeded region growing. Pattern Analysis and MachineIntelligence, IEEE Transactions on,1994,16(6):641-647.
    [81] Borenstein E, Ullman S. Class-specific, top-down segmentation. ComputerVision—ECCV2002,2002:639-641.
    [82] Freedman D, Zhang T. Interactive graph cut based segmentation with shapepriors: IEEE,2005:755-762.
    [83] Cheng HD, Jiang XH, Sun Y, Wang J. Color image segmentation: advances andprospects. Pattern Recognition,2001,34(12):2259-2281.
    [84] Lukac R, Plataniotis KN. Color image processing: methods and applications:CRC,2006.
    [85]杨加,田捷.几种图像分割算法在CT图像分割上的实现和比较.北京理工大学学报,2000,20(6):720-724.
    [86] Xu C, Pham DL, Prince JL. Image segmentation using deformable models.Handbook of medical imaging,2000,2:129-174.
    [87]李嘉刚,李小宁,石杰,庄敏,陈戈. GrabCut在人体序列切片图像分割中的应用.计算机技术与发展,2012,21(12):246-249.
    [88]曹艳娟,陈戈,李小宁,石杰,张亮.基于序列切片图像体绘制结果的实现与保存.微计算机信息,2011,27(6):164-165.
    [89] Levoy M. Display of surfaces from volume data. Computer Graphics andApplications, IEEE,1988,8(3):29-37.
    [90]:Rossen B, Johnsen K, Deladisma A, Lind S, Lok B. Virtual Humans ElicitSkin-Tone Bias Consistent with Real-World Skin-Tone Biases. Proceedings of the8thinternational conference on Intelligent Virtual Agents. Springer-Verlag: Tokyo,Japan,2008:237-244.
    [91] Lidwell W, Holden K, Butler J. Universal Principles of Design: Rockportpublishers,2010.
    [92] Deladisma AM, Cohen M, Stevens A, Wagner P, Lok B, Bernard T, OxendineC, Schumacher L, Johnsen K, Dickerson R. Do medical students respondempathetically to a virtual patient? American journal of surgery,2007,193(6):756-760.
    [93] Hodges SD, Klein KJ. Regulating the costs of empathy: the price of beinghuman. The Journal of socio-economics,2001,30(5):437-452.
    [94]蔡忠建.对描述性统计量的偏度和峰度应用的研究.北京体育大学学报,2009,32(3):75-76.
    [95]黎光明.概化理论偏态分布数据方差分量置信区间估计.心理学探新,2012,32(5):397-403.
    [96] Shin DS, Chung MS, Lee JW, Park JS, Chung J, Lee SB, Lee SH. Advancedsurface reconstruction technique to build detailed surface models of the liver andneighboring structures from the Visible Korean Human. J Korean Med Sci,2009,24(3):375-383.
    [97] Sachse FB, Werner CD, Meyer-Waarden K, Dossel O. Development of a humanbody model for numerical calculation of electrical fields. Comput Med ImagingGraph,2000,24(3):165-171.
    [98] Bernard T, Stevens A, Wagner P, Bernard N, Oxendine C, Johnsen K, DickersonR, Raji A, Lok B, Duerson M. A Multi-Institutional Pilot Study to Evaluate the Use ofVirtual Patients to Teach Health Professions Students History-Taking andCommunication Skills. Simulation in Healthcare,2006,1(2):92-93.
    [99] Cassell J, Sullivan J, Prevost S, Churchill EF. Embodied conversational agents:MIT press,2000.
    [100]Johnson WL, Narayanan S, Whitney R, Das R, Bulut M, LaBore C. Limiteddomain synthesis of expressive military speech for animated characters: IEEE,2002:163-166.
    [101]Newell A. Unified theories of cognition: Harvard University Press,1994.
    [102]Rossen B, Johnsen K, Deladisma A, Lind S, Lok B. Virtual humans elicitskin-tone bias consistent with real-world skin-tone biases: Springer,2008:237-244.
    [103]Dow S, Mehta M, Harmon E, MacIntyre B, Mateas M. Presence and engagementin an interactive drama,2007:1475-1484.
    [104]Slater M. Place illusion and plausibility can lead to realistic behaviour inimmersive virtual environments. Philosophical Transactions of the Royal Society B:Biological Sciences,2009,364(1535):3549-3557.
    [105]Bailenson JN, Blascovich J, Beall AC, Loomis JM. Interpersonal distance inimmersive virtual environments. Personality and Social Psychology Bulletin,2003,29(7):819-833.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700