低氧胁迫下γ-氨基丁酸对甜瓜幼苗多胺代谢的影响及比较蛋白质组分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜(Cucumis melo L.)属典型的低氧敏感性植物,常常由于土壤紧实、灌水过多以及无土栽培中营养液溶氧浓度低、根垫形成等原因造成根际氧不足,造成产量和品质降低,现已成为制约设施甜瓜生产大规模发展的决定性障碍因素。本研究以‘西域一号’甜瓜为试验材料,采用营养液水培法,研究了低氧胁迫下外源添加γ-氨基丁酸(GABA)对甜瓜幼苗多胺代谢的影响,并通过比较蛋白质组学分析幼苗低氧胁迫下蛋白质组代谢的差异,筛选出低氧胁迫和外源GABA诱导产生的特异表达蛋白,为GABA提高甜瓜的耐低氧性提供了坚实的理论依据。主要研究结果如下:
     (1)低氧胁迫下甜瓜根系和叶片中多胺含量呈先上升后下降的趋势,并在处理第4天达最大值;其中以游离态多胺含量最高,其次是结合态多胺,束缚态多胺含量最低;不同形态多胺在叶片中含量均为Spd>Put>Spm,在根系含量中均为Put>Spd>Spm;叶片中不同形态Spd、Spm含量大于根系,而不同形态Put含量则小于根系。外源GABA可促进Put、Spd、Spm的合成。而添加抑制剂D-Arg处理多胺含量显著降低。
     (2)低氧胁迫诱导甜瓜幼苗根系和叶片中ADC、ODC、SAMDC活性显著提高;但根系中提高幅度较大,且在处理第4天达最大值,此后迅速下降,而叶片中ADC和SAMDC活性达到最大值后维持稳定。外源GABA提高了根系及叶片中ADC、ODC及SAMDC活性。
     (3)低氧胁迫导致根系和叶片游离态和细胞壁结合态DAO、PAO活性显著提高,其中根系细胞壁结合态PAO和DAO活性显著低于叶片,而游离态DAO、PAO活性显著低于叶片。外源添加GABA处理显著降低了低氧胁迫下甜瓜幼苗根系和叶片DAO和PAO的活性。
     (4)筛选并建立了甜瓜根系蛋白分离分析体系,通过对三种甜瓜根系蛋白提取方法的分析结果表明:TCA/丙酮沉淀法和SDS/酚提法得到的蛋白总含量较低;SDS/酚提取法和Tris/酚抽提-甲醇/乙酸铵沉淀法在SDS和2-DE胶中分离得到的蛋白条带和蛋白点数较多;TCA/丙酮法对分子量较高的偏碱性区域的蛋白提取效果不好,双向电泳胶图中丢失了较多蛋白点。
     (5)运用双向电泳技术对处理4天甜瓜幼苗根系总蛋白进行比较蛋白质组研究,结果表明,低氧胁迫处理以及外源GABA处理胶图中蛋白点都显著增加;其中正常通气条件下外源GABA处理与对照相比,双向电泳胶图之间存在54个差异蛋白点;低氧胁迫处理与对照相比双向电泳胶图之间存在62个差异蛋白点;低氧胁迫外源添加GABA处理与低氧胁迫处理相比双向电泳胶图之间存在45个差异蛋白点。从中选择13个差异极显著点进行二级质谱分析,鉴定得到一些与抗逆相关的蛋白,如谷胱甘肽转移酶、NADP氧化还原酶、磷酸甘油酸激酶等,但是有4个差异点却未能得到准确鉴定结果,有待甜瓜数据库完善后进一步鉴定。
Melon (Cucumis melo L.) is a typical hypoxic-sensitive plant. But the yield and quality of melon often reduced by lacking of oxygen in the rhizosphere according to soil compaction, irrigation excessive, low dissolved oxygen concentration of nutrient solution in soilless culture and the root mat formation, which has become the decisive obstacles to large-scale development of melon production. In this paper, hydroponic experiments were performed to investigate the effects of exogenousγ-aminobutyric acid (GABA) application on polyamine metabolism and comparative proteomics of root total proteins in seedlings of melon cultivar‘Xiyu No.1’under hypoxia stress, which clarified the possible mechanisms of GABA enhancing hypoxia-tolerance in melon through metabolomics and proteomics technology.
     The main results were presented as follows:
     1. Hypoxia stress induced a significant increase in polyamines contents, polyamines of free form had higher content but lower content of bound form in leaves and roots of melon seedlings, the content sequence of PAs in roots was Put>Spd>Spm, and in leaves was Spd>Put>Spm. The three forms Spd and Spm contents in leaves were higher than that in roots, but Put contents were lower. Exogenous GABA significantly increased the contents of Put, Spd and Spm. However, simultaneously applying GABA and VGB could significantly decreased the content of PAs under hypoxia stress.
     2. Hypoxia stress induced a significant increase in activities of polyamine synthesis in melon seedlings, especially the change in roots, activities of polyamine synthesis in roots fallen sharply after reached maximum in 4 days, but maintained stable of ADC and SAMDC activities in leaves after reached maxmum. Compare with hypoxia treatment, exogenous GABA significantly increased the activities of ADC, ODC and SAMDC both in roots and in leaves.
     3. Compared with normoxic treatment, the activities of PBS-extractable form and cell-wall-bound form polyamine oxidase enzymes were higher in melon roots and in leaves under hypoxia stress; The activities of cell-wall-bound form DAO and PAO in roots were lower than in leaves, while the activities of PBS-extractable form DAO and PAO were higher than in leaves. Compared with hypoxia stress treatment, exogenous GABA significantly decreased the act ivies of DAO and PAO.
     4. We selected and established a system for separation and analysis the melon root protein. Three improved methods were adopted to extract total protein,and which were analyzed and compared with each other, the results showed that TCA/acetone precipitation and SDS/phenol extraction had lower protein contents, more bands and spots could be detected on SDS gels and 2-DE gels by SDS/phenol extraction and Tris/phenol extraction-methanol/ammonium acetate precipitation, while TCA/acetone precipitation got the minimum spots and lost much of basic proteins.
     5. Comparative proteomics analysis of melon root total proteins have been preformed after 4 days treatment, we found proteomics of the four treatments in melon root had some obvious changes. Employing computer analysis, and the result indicated that valid protein spots in gels of hypoxia and hypoxia+GABA treatments were significantly increased. Between normoxic treatment and normoxic+GABA treatment, there were 54 differential protein spots. Compared with normoxic and hypoxia treatments, 62 significant differential protein spots were detected in the images. And 45 differential protein spots were detected in images of hypoxia treatment and hypoxia+GABA treatment. In this paper, 13 extremely significant differential protein spots have been chosen to identify by MALDI-TOF/TOF Mass Spectrometry, and the identified proteins include some plant anti-versus relative proteins such as glutathione transferase, ferrodoxin NADP oxidoreductase, cytosolic phosphoglycerate kinase and so on. But there were 4 spots have not high identification rate by mass spectrometry, and these proteins need further study when a prefect database has established.
引文
[1] Bailey-Serres, J.R. Chang. Sensing and signalling in response to oxygen deprivation in plants and other organisms[J]. Annals of Botany, 2005, 96(4): 507-518.
    [2] Gibbs, JaneHank Greenway. Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism[J]. Functional Plant Biology, 2003, 30(3): 353-353.
    [3]高洪波,郭世荣,汪天.根际低氧胁迫对网纹甜瓜铵态氮、硝态氮和蛋白质含量的影响[J].园艺学报, 2004, 31(2): 236-238.
    [4]生利霞,束怀瑞.低氧胁迫对平邑甜茶根系活力及氮代谢相关酶活性的影响[J].园艺学报, 2008, 35(1): 7-12.
    [5] Huang, H. Greenway, T. D. Colmer, et al. Protein synthesis by rice coleoptiles during prolonged anoxia: Implications for glycolysis, growth and energy utilization[J]. Annals of Botany, 2005, 96(4): 703-715.
    [6] Chang, L. Huang, M. Shen, et al. Patterns of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxygen environment, and identification of proteins by mass spectrometry[J]. Plant Physiology, 2000, 122(2): 295-317.
    [7] Bouche N., Lacombe H. . GABA signaling: a conserved and ubiquitous mechanism[J]. Trends in Cell Biology, 2003, 13(12): 607-610.
    [8] Kakkar. R, Sawhney. Polyamine research in plants - a changing perspective[J]. Physiologia Plantarum, 2002, 116(3): 281-292.
    [9]汪耀富,张瑞霞.渗透胁迫下烤烟内源多胺含量及其代谢酶活性变化[J].干旱地区农业研究, 2005, 23(6): 88-92.
    [10]张志新,邹志荣,张春梅,等.水分胁迫对番茄幼苗叶片和根系中多胺代谢的影响[J].西北农林科技大学学报(自然科学版), 2009, 37(7): 97-102.
    [11] Groppa M. D., M. P. Ianuzzo, M. L. Tomaro, et al. Polyamine metabolism in sunflower plants under long-term cadmium or copper stress[J]. Amino Acids, 2007, 32(2): 265-275.
    [12] Duan J. J., J. Li, S. R. Guo, et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance[J]. Journal of Plant Physiology, 2008, 165(15): 1620-1635.
    [13]段九菊,郭世荣,康云艳,等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响[J].应用生态学报, 2008, 19(1): 57-64.
    [14] Shen W. Y., K. NadaS. Tachibana. Involvement of polyamines in the chilling tolerance of cucumber cultivars[J]. Plant Physiology, 2000, 124(1): 431-439.
    [15]高洪波,刘艳红,郭世荣,等.低氧胁迫下钙对网纹甜瓜幼苗多胺含量及多胺氧化酶活性的影响[J].植物生态学报, 2005, 29: 652-658.
    [16]刘怀攀,纪秀娥,刘天学,等.渗透胁迫对玉米幼苗叶片不同形态多胺含量的影响[J].作物学报, 2006, 32(10): 1430-1436.
    [17] Bhatnagar P., B. M. Glasheen, S. K. Bains, et al. Transgenic manipulation of the metabolism ofpolyamines in poplar cells [J]. Plant Physiology, 2001, 125(4): 2139-2153.
    [18]汪天,郭世荣,刘俊,等.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用[J].植物生理学通讯, 2004, 40(3): 358-360.
    [19]刘俊,刘友良.盐胁迫下大麦幼苗多胺的种类和状态与多胺氧化酶活性的关系[J].植物生理与分子生物学学报, 2004, 30: 141-146.
    [20]晏月明,葛培,郭广芳.小麦抗旱机理研究进展[J].生物技术通报, 2010, 4: 22-27.
    [21]何大澄,肖雪媛.差异蛋白质组学及其应用[J].北京师范大学学报(自然科学版), 2002, 38(4): 558-562.
    [22] Wasinger V. C., S. J. Cordwell, A. Cerpapoljak, et al. Progress with Gene-Product Mapping of the Mollicutes - Mycoplasma-Genitalium[J]. Electrophoresis, 1995, 16(7): 1090-1094.
    [23] Rose J. K., C. S. Bashir, J. J. Giovannoni, et al. Tackling the plant proteome: practical approaches, hurdles and experimental tools[J]. Plant Journal, 2004, 39(5): 715-733.
    [24]李跃建,彭云良,高荣,等.条锈菌侵染后小麦体内蛋白质的变化[J].西南农业学报, 2003, 16(4): 1-3.
    [25]刘卫群,李浩.差异蛋白质组学在植物研究中的应用[J].安徽农业科学, 2006, 34(17): 4201-4203.
    [26]司晓敏,李巧云,晏月明.蛋白质组技术及小麦蛋白质组研究进展[J].麦类作物学报, 2005, 25(3): 100-105.
    [27]刘珊珊,姜自芹,刁桂珠,等.蛋白质组学在大豆中的研究进展[J].东北农业大学学报, 2010, 41(12): 136-144.
    [28] MacCoss M. J., W. H. McDonald, A. Saraf, et al. Shotgun identification of protein modifications from protein complexes and lens tissue[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7900-7905.
    [29] Liu H. B., D. Y. L, J. R. Yates. Multidimensional separations for protein/peptide analysis in the post-genomic era[J]. Biotechniques, 2002, 32(4): 898-904.
    [30] Hancock W. S., S. L. Wu, P. Shieh. The challenges of developing a sound proteomics strategy[J]. Proteomics, 2002, 2(4): 352-359.
    [31] Devreese B., F. Vanrobaeys. Van Beeumen. Automated nanoflow liquid chromatography/tandem mass spectrometric identification of proteins from Shewanella putrefaciens separated by two-dimensional polyacrylamide gel electrophoresis[J]. Rapid Communications in Mass Spectrometry, 2001, 15(1): 50-56.
    [32] Shen Y. F., R. Zhao, S. J. Berger, et al. High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry using nanoelectrospray ionization for proteomics[J]. Analytical Chemistry, 2002, 74(16): 4235-4249.
    [33] Spahr C. S., M. T. Davis, M. D. McGinley, et al. Towards defining the urinary proteome using liquid chromatography-tandem mass spectrometry I. Profiling an unfractionated tryptic digest[J]. Proteomics, 2001, 1(1): 93-107.
    [34] Cunsolo V., S. Foti, R. Saletti, et al. Detection and localisation of disulphide bonds in a syntheticpeptide reproducing the sequence 1-30 of Par by electrospray ionisation mass spectrometry[J]. Proteomics, 2001, 1(8): 1043-1048.
    [35] Shen M. L., K. L. Johnson, D. C. Mays, et al. Identification of the protein-drug adduct formed between aldehyde dehydrogenase and S-methyl-N,N-diethylthiocarbamoyl sulfoxide by on-line proteolytic digestion high performance liquid chromatography electrospray ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2000, 14(10): 918-923.
    [36] Zhang S., C. K. Van. Schultz. Electrospray ionization mass spectrometry-based genotyping: An approach for identification of single nucleotide polymorphisms[J]. Analytical Chemistry, 2001, 73(9): 2117-2125.
    [37]何君,周宏灏.代谢组学及其在药理学中的进展[J].中国药理学通报, 2006, 22 (11): 1304-1309.
    [38] Fenn J. B., M. Mann, C. K. Meng, et al. Electrospray ionization for mass spectrometry of large biomolecules [J]. Science (New York, N.Y.), 1989, 246(4926): 64-71.
    [39] Wyrzykiewicz E.A. Szponar-Krajewicz. Rapid communications in mass spectrometry [J]. Mass Spectrometry, 2003, 17(16): 1919-1923.
    [40] Yates J. R. Mass spectrometry - from genomics to proteomics[J]. Trends in Genetics, 2000, 16(1): 5-8.
    [41] Blackstock W. P., M. P. Weir. Proteomics: quantitative and physical mapping of cellular proteins[J]. Trends in Biotechnology, 1999, 17(3): 121-127.
    [42] Hager J. W. A new linear ion trap mass spectrometer[J]. Rapid Communications in Mass Spectrometry, 2002, 16(6): 512-526.
    [43] Marshall A. G., C. L. Hendrickson, G. S. Jackson. Fourier transform ion cyclotron resonance mass spectrometry: A primer[J]. Mass Spectrometry Reviews, 1998, 17(1): 1-35.
    [44] Eisen M. B., P. T. Spellman, P. O. Brown, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(25): 14863-14868.
    [45] Meunier B., E. Dumas, I. Piec, et al. Assessment of hierarchical clustering methodologies for proteomic data mining[J]. Journal of Proteome Research, 2007, 6(1): 358-366.
    [46] Wingren C.C., A. K. Borrebaeck. High-throughput proteomics using antibody microarrays[J]. Expert Review of Proteomics, 2004, 1(3): 355-364.
    [47] Suehara Y., T. Kondo, K. Fujii, et al. Proteomic signatures corresponding to histological classification and grading of soft-tissue sarcomas[J]. Proteomics, 2006, 6(15): 4402-4409.
    [48] Du C. X., H. F. Fan, S. R. Guo, et al. Proteomic analysis of cucumber seedling roots subjected to salt stress[J]. Phytochemistry, 2010, 71(13): 1450-1459.
    [49]陆晓民,孙锦,郭世荣等.黄瓜幼苗生长和可溶性蛋白表达的影响[J].南京农业大学学报, 2011, 34(6): 31 -35.
    [50] Hajheidari M., M. A. Noghabi, H. Askari, et al. Proteome analysis of sugar beet leaves under drought stress[J]. Proteomics, 2005, 5(4): 950-960.
    [51] Renaut J., S. Lutts, L. Hoffmann, et al. Responses of poplar to chilling temperatures: Proteomic and physiological aspects[J]. Plant Biology, 2004, 6(1): 81-90.
    [52] Rep M., H. L. Dekker, J. H. Vossen, et al. Mass spectrometric identification of Isoforms of PR proteins in xylem sap of fungus-infected tomato[J]. Plant Physiology, 2002, 130(2): 904-917.
    [53] Antoniw L. D., J. I. Sprent. Primary metabolites of Phaseolus vulgaris nodules[J]. Phytochemistry, 1978, 17(4): 675-678.
    [54] Guinn G. L., A. Brinkerhoff. Effect of Root Aeration on Amino Acid Levels in Cotton Plants[J]. Crop Sci., 10(2): 175-178.
    [55] Turano F. J., G. F. Kramer, C. Y. Wang. The effect of methionine, ethylene and polyamine catabolic intermediates on polyamine accumulation in detached soybean leaves[J]. Physiologia Plantarum, 1997, 101(3): 510-518.
    [56] Beuve N., N. Rispail, P. Laine, et al. Putative role of gamma-aminobutyric acid (GABA) as a longdistance signal in up-regulation of nitrate uptake in Brassica napus L.[J]. Plant Cell and Environment, 2004, 27(8): 1035-1046.
    [57] Schwacke R., S. Grallath, K. E. Breitkreuz, et al. LeProT1, a transporter for proline, glycine betaine, and gamma-amino butyric acid in tomato pollen[J]. Plant Cell, 1999, 11(3): 377-391.
    [58] Kinnersley A. M., F. J. Turano. Gamma aminobutyric acid (GABA) and plant responses to stress[J]. Critical Reviews in Plant Sciences, 2000, 19(6): 479-509.
    [59] Breitkreuz K. E., W. L. Allan, O. R. Van, et al. A novel gamma-hydroxybutyrate dehydrogenase - Identification and expression of an Arabidopsis cDNA and potential role under oxygen deficiency[J]. Journal of Biological Chemistry, 2003, 278(42): 41552-41556.
    [60] Bown A. W., K. B. MacGregor, B. J. Shelp. Gamma-aminobutyrate: defense against invertebrate pests?[J]. Trends in Plant Science, 2006, 11(9): 424-427.
    [61]陈颖,沈艳,姚慧源.利用米糠内源性蛋白酶和谷氨酸脱羧酶制备γ-氨基丁酸[J].粮食与饲料工业, 2006, 2: 23-24.
    [62]高洪波,郭世荣.外源γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗活性氧代谢的影响[J].植物生理与分子生物学学报, 2004, 30(6): 651-659.
    [63] Bragina T. V., I. S. Drozdova, V. I. Alekhin, et al. The rates of photosynthesis, respiration, and transpiration in young maize plants under hypoxia[J]. Doklady Biological Sciences, 2001, 380(1): 482-485.
    [64] Shi K., W. H. Hu, D. K. Dong, et al. Low O-2 supply is involved in the poor growth in root-restricted plants of tomato (Lycopersicon esculentum Mill.)[J]. Environmental and Experimental Botany, 2007, 61(2): 181-189.
    [65] Allan W. L., C. Peiris, A. W. Bown, et al. Gamma-hydroxybutyrate accumulates in green tea and soybean sprouts in response to oxygen deficiency[J]. Canadian Journal of Plant Science, 2003, 83(4): 951-953.
    [66] Dennis D.T., D.B.Layzell. Metabolism of defense and comunication [M]. Plant Metabolism, 1997, Publishing.Harlow, England.
    [67] Hussain S. S., M. Ali, M. Ahmad, et al. Polyamines: Natural and engineered abiotic and biotic stress tolerance in plants[J]. Biotechnology Advances, 2011, 29(3): 300-311.
    [68] Liu H. P., B. J. Yu, W. H. Zhang, et al. Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noncovalently conjugated polyamines in plasma membrane preparation from wheat seedling roots[J]. Plant Science, 2005, 168(6): 1599-1607.
    [69] Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches)[J]. Plant Growth Regulation, 2001, 34(1): 135-148.
    [70] Lee T. M., Y. J. Shieh, C. H. Chou. Role of putrescine in enhancing shoot elongation in Scirpus mucronatus under submergence[J]. Physiologia Plantarum, 1996, 96(3): 419-424.
    [71] Hummel I., I. Couee, A. E. Amrani, et al. Involvement of polyamines in root development at low temperature in the subantarctic cruciferous species Pringlea antiscorbutica[J]. Journal of Experimental Botany, 2002, 53(373): 1463-1473.
    [72]赵福庚,刘友良.精氨酸脱羧酶和谷酰胺转移酶活性的测定方法[J].植物生理学通讯, 2000, 36(5): 442-445.
    [73]赵旌胜,王隆华.植物细胞壁蛋白的提取和测定[M].上海市植物生理学会编,现代植物生理学实验指南, 1999: 258-259.
    [74] Bagni N., A. Tassoni. Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants[J]. Amino Acids, 2001, 20(3): 301-317.
    [75] Tiburcio A. F., M. A. Masdu, F. M. Dumortier, et al. Polyamine Metabolism and Osmotic Stress[J]. Plant Physiology, 1986, 82(2): 369-374.
    [76] Lee T. M., H. S. Lur, C. Chu. Role of abscisic acid in chilling tolerance of rice (Oryza sativa L) seedlings [J]. Plant Science, 1997, 126(1): 1-10.
    [77] Liu J. H., K. Nada, C. Honda, et al. Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response[J]. Journal of Experimental Botany, 2006, 57(11): 2589-2599.
    [78] Kumria R.M., V. Rajam. Ornithine decarboxylase transgene in tobacco affects polyamines, in vitro-morphogenesis and response to salt stress[J]. Journal of Plant Physiology, 2002, 159(9): 983-990.
    [79] Flores H. E., A. W. Galston. Osmotic stress-induced polyamine accumulation in cereal leaves : I. Physiological parameters of the response[J]. Plant Physiology, 1984, 75(1): 102-109.
    [80] Rabilloud T.. Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains[J]. Proteomics, 2002, 2(1): 3-10.
    [81] Natarajan S., C. P. Xu, T. J. Caperna, et al. Comparison of protein solubilization methods suitable for proteomic analysis of soybean seed proteins[J]. Analytical Biochemistry, 2005, 342(2): 214-220.
    [82] Saravanan R. S., J. K. Rose. A critical evaluation of sample extraction techniques for enhanced proteomic analysis of recalcitrant plant tissues[J]. Proteomics, 2004, 4(9): 2522-2532.
    [83] Isaacson T., C. M. Damasceno, R. S. Saravanan, et al. Sample extraction techniques for enhancedproteomic analysis of plant tissues[J]. Nature Protocols, 2006, 1(2): 769-774.
    [84] Sarma A. D., N. W. Oehrle, D. W. Emerich. Plant protein isolation and stabilization for enhanced resolution of two-dimensional polyacrylamide gel electrophoresis[J]. Analytical Biochemistry, 2008, 379(2): 192-195.
    [85] Wang Y Q, Peng X X. A two dimensional electrophoresis protocol suitable for proteomic study of rice leaves[J]. Journal of Plant Physiology and Molecular Biology, 2006, 32(2): 252-256.
    [86] Gorg A., W. WeissM., J. Dunn. Current two dimensional electrophoresis technology for proteomics [J]. Proteomics, 2005, 5(3): 826-827.
    [87] Gorg A., W. WeissM., J. Dunn. Current two-dimensional electrophoresis technology for proteomics[J]. Proteomics, 2004, 4(12): 3665-3685.
    [88] Wang W., R. Vignani, M. Scali, et al. A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis[J]. Electrophoresis, 2006, 27(13): 2782-2786.
    [89]陈晶瑜,郭宝峰,何付丽,等.适合双向电泳的植物全蛋白提取方法比较[J].中国农学通报, 2010, 26(23): 97-100.
    [90] Donnini S., B. Prinsi, A. S. Negri, et al. Proteomic characterization of iron deficiency responses in Cucumis sativus L. roots[J]. Bmc Plant Biology, 2010, 10:268
    [91] Caraux G., S. Pinloche. PermutMatrix: a graphical environment to arrange gene expression profiles in optimal linear order[J]. Bioinformatics, 2005, 21(7): 1280-1281.
    [92] Negri A. S., B. Prinsi, M. Rossoni, et al. Proteome changes in the skin of the grape cultivar Barbera among different stages of ripening[J]. Bmc Genomics, 2008, 9:378
    [93]喻娟娟,戴绍军.植物蛋白质组学研究若干重要进展[J].植物学报2009, 44(4): 410-425.
    [94] Hebeler R., S. Oeljeklaus, K. E. Reidegeld, et al. Study of early leaf senescence in Arabidopsis thaliana by quantitative proteomics using reciprocal N-14/N-15 Labeling and difference gel electrophoresis[J]. Molecular & Cellular Proteomics, 2008, 7(1): 108-120.
    [95] Repetto O., H. Rogniaux, C. Firnhaber, et al. Exploring the nuclear proteome of Medicago truncatula at the switch towards seed filling[J]. The Plant Journal, 2008, 56(3): 398-410.
    [96] Bak-Jense, K. S., S. Laugesen, O. Ostergaard, et al. Spatio-temporal profiling and degradation of alpha-amylase isozymes during barley seed germination[J]. Febs Journal, 2007, 274(10): 2552-2565.
    [97] Natarajan S., C. P. Xu, H. H. Bae, et al. Proteomic and genetic analysis of glycinin subunits of sixteen soybean genotypes[J]. Plant Physiology and Biochemistry, 2007, 45(6-7): 436-444.
    [98] Zang X., S. Komatsu. A proteomics approach for identifying osmotic-stress-related proteins in rice[J]. Phytochemistry, 2007, 68(4): 426-437.
    [99] Katz A., P. Waridel, A. Shevchenko, et al. Salt-induced changes in the plasma membrane proteome of the halotolerant alga Dunaliella salina as revealed by blue native gel electrophoresis and nano-LC-MS/MS analysis[J]. Molecular & Cellular Proteomics, 2007, 6(9): 1459-1472.
    [100] Nohzadeh M. S., M. H. Rezaei, M. Heidari, et al. Proteomics reveals new salt responsive proteins associated with rice plasma membrane[J]. Bioscience, biotechnology, and biochemistry,2007, 71(9): 2144-54.
    [101] Yang P. F., H. Chen, Y. Liang, et al. Proteomic analysis of de-etiolated rice seedlings upon exposure to light[J]. Proteomics, 2007, 7(14): 2459-2468.
    [102] Komatsu S., G. X. Yang, M. Khan, et al. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants[J]. Molecular Genetics and Genomics, 2007, 277(6): 713-723.
    [103] Cho K., G. K. Agrawal, J. Shibato, et al. Survey of differentially expressed proteins and genes in jasmonic acid treated rice seedling shoot and root at the proteomics and transcriptomics levels[J]. Journal of Proteome Research, 2007, 6(9): 3581-3603.
    [104] Van N., T. Kerim, N. Goffard, et al. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti[J]. Plant Physiology, 2007, 144(2): 1115-1131.
    [105] Paper J. M., S. Scott-Craig, N. D. Adhikari, et al. Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum[J]. Proteomics, 2007, 7(17): 3171-3183.
    [106] Benschop J. J., S. Mohammed, M. O'Flaherty, et al. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis[J]. Molecular & cellular proteomics, 2007, 6(7): 1198-214.
    [107] Kilian B., H. Ozkan, O. Deusch, et al. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes[J]. Molecular Biology and Evolution, 2007, 24(1): 217-227.
    [108] The Electronic Plant Gene Register[M]. Plant Physiology, 1996, 112(2): 861-864.
    [109] Maeder D. L., I. Anderson, T. S. Brettin, et al. The Methanosarcina barkeri genome: comparative analysis withMethanosarcina acetivorans and Methanosarcina mazei reveals extensiverearrangement within methanosarcinal genomes[J]. Journal of Bacteriology, 2006, 188(22), 7922-7931
    [110] Zakir H. M., F. Masayuki. Purification of a Phi-type Glutathione S-Transferase from pumpkin flowers, and molecular cloning of its cDNA (Biochemistry & Molecular Biology)[J]. Bioscience, biotechnology, and biochemistry, 2002, 66(10): 2068-2076.
    [111] Chen G. X., K. Asada. Ascorbate Peroxidase in tea leaves: occurrence of two isozymes and the differences in their enzymatic and molecular properties[J]. Plant and Cell Physiology, 1989, 30(7): 987-998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700