草甘膦除草剂对高寒地区转基因大豆田间杂草群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以转EPSPS CP4基因抗草甘膦除草剂大豆品系NZL-06-698为材料,通过对转基因大豆田和常规大豆生产田进行杂草物种调查,分析喷施草甘膦年限和不同除草方式、不同中耕方式以及前茬对田间杂草群落的影响。试验采用裂区设计,以中耕方式为主区,除草剂为副区。中耕方式设4种水平,分别为不中耕、中耕1次、中耕2次和中耕3次;除草方式设5个水平,分别为苗前土壤封闭处理、苗后常规茎叶处理、苗后草甘膦处理、苗后人工除草处理及不除草。
     在不除草的前提下,随着中耕次数的增加,杂草密度递减,说明中耕方式对当年的杂草防除具有一定的效果。不同中耕方式对当年杂草的防除效果与杂草类型有关。就反枝苋而言,杂草密度依次为中耕1次>中耕2次>中耕3次>不中耕;对于稗草的防除,中耕方式与除草方式的互作关系复杂,对于苗前土壤封闭、苗后茎叶除草2种除草方式,除草效果基本符合中耕1次>中耕2次>中耕3次>不中耕的顺序;在苗后人工除草的情况下,杂草发生的顺序为不中耕>中耕1次>中耕3次、中耕2次;在苗后草甘膦处理的条件下,中耕次数与杂草防除无关。中耕的次数对藜的防除效果依除草方式不同而不同,规律性不明显。
     不同除草方式对下年大豆田间杂草具有一定影响。在4种中耕方式处理条件下,苗后草甘膦处理的除草效果优于其他4种除草方式,且差异达到极显著水平。不同除草方式的作用效果基本符合苗后草甘膦处理>苗后常规茎叶处理>苗后人工除草>苗前土壤封闭处理,且在4种中耕处理条件下,不中耕条件下苗后草甘膦处理反枝苋的密度最小,与其他处理反枝苋密度的差异达到极显著水平;中耕3次、配合苗后草甘膦处理对稗草的防除效果最佳。不同中耕方式对苗后草甘膦处理防治苣荬菜的效果无显著影响。
     研究了不中耕、中耕1次、中耕2次、中耕3次等4种中耕方式对下年豆田杂草群落的影响。结果表明,随着中耕次数的增加,下一年反枝苋、稗草和苣荬菜田间密度逐渐减小;中耕3次处理与不中耕、中耕1次、中耕2次田间反枝苋、稗草的密度的差异均达到极显著水平。另外,中耕次数的防除效果与杂草类型有关。对反枝苋而言,中耕次数增多可显著增强防除效果;对稗草而言,中耕1次和中耕2次的防除效果无显著差异;对苣荬菜而言,不同中耕次数下,苣荬菜的发生量间差异不显著。
     2年连续种植抗草甘膦转基因大豆,田间反枝苋、稗草、藜等主要杂草密度迅速减小;反枝苋、藜的田间密度差异年际间达到极显著水平;田间发生量相对较少的苍耳、问荆、鸭跖草、两栖蓼、刺儿菜、苣荬菜、山苦苣等杂草的密度年际间差异不大。连续2年种植抗草甘膦转基因大豆,未发现抗性杂草的出现。
     草甘膦除草剂对稗草、藜的防除效果在连作大豆田以及玉米-大豆轮作田均显著优于常规除草剂。草甘膦除草剂防除反枝苋的效果在大豆连作田显著优于常规除草剂,但在玉米-大豆轮作田,二者差异不显著。
Glyphosate-tolerant soybean line NZL-06-698containing CP4-EPSPS gene was grown in thefield to analyze the effects of glyphosate application years, weeding methods and inter-tillagepractices on weed communities. Split plot design was used, in which the inter-tillage with4levelswere designed as main plot, and weeding methods with5levels were designed as split plot. Themain results are summarized as follows:
     Inter-tillage was effective on weed control since weed occurrence was depressed with theincrease of tillage times under no weeding treatment. The weed control effect of inter-tillage wasdependent on weed species. For redroot amaranth, the occurrence rate was as the following order:inter-tillage once> inter-tillage twice> inter-tillage for3times>no inter-tillage; the effect oncontrol of the cockspur was different with weeding methods. The order of the cockspur occurrencerate was similar with that of redroot amaranth under the soil-surface dressing treatments andpost-emergence herbicide treatments. The order of the cockspur occurrence rate was as thefollowing order: no inter-pillage> inter-tillage once> inter-tillage for3times> inter-tillagetwice.There is no correlation between the effect of weed control and the numbers of inter-tillage underpost-emergence glyphosate application. No rule was found between the effect of weed control andthe numbers of inter-tillage for the control of chenopodium album.
     Four weeding methods were designed to explore the effect of weed control under differentinter-tillage conditions. The results showed that post-emergence glyphosate application was themost effective method, and was significantly different from other methods. The post-emergenceherbicide application is better than artificial weeding and the soil-surface dressing treatment. Atthe same time, post-emergence glyphosate application combined with no inter-tillage andinter-tillage for3times were suitable to control redroot amaranth and cockspur, respectively. Theeffect of sowthistle herb control had no significant difference between post-emergence glyphosateapplications under different inter-tillage treaments.
     Redroot amaranth, cockspur and sowthistle herb were the major weeds in the soybean field innext year under different inter-tillage conditions. The density of the weed occurrence decreasedwith the increase of inter-tillage times, of which the trend was particularly significant for redrootamaranth. While no obvious differnce between inter-tillage for once and twice treatments forcockspur, and for sowthistle herb, the occurrence showed no differnce under all of the treatments.So there was correlation between the effect of weed control and weed species although the densityof redroot amaranth and cockspur under “inter-tillage once” conditions were significantly differentfrom that under the other three inter-tillage treatments.
     Redroot amaranth, cockspur and chenopodium album decreased rapidly in the field whichplanted glyphosate-resistant soybean for2years continuously. Significant difference of theoccurrence rate of redroot amaranth and chenopodium album were found between different years. The density of low-density weeds such as cocklebur, horsetail, common dayflower etc., changedlittle year-to-year. Resistant weeds were not found in soybean field.
     The effect of post-emergence glyphosate herbicide was better than convention herbicidewhether in continuous cropping soybean field or maize-soybean rotation field especially forredroot amaranth in continuous cropping soybean field. However, there was no significantdifference in maize-soybean rotation field.
引文
[1]柏亚罗.耐草甘膦作物的发展历程和展望.现代农药,2005,(4):26~30.
    [2]陈申宽,阎任沛,武迎红.大豆连作年限与杂草发生关系的研究.植物保护,2000,26:44~45.
    [3]陈新,朱成松,顾和平, Francisco F, Carlos S.除草剂(草甘膦)抗性基因的遗传研究.江苏农业科学,2002,(6):21~23.
    [4]陈新,王长永,朱成松,严继勇,高兵,周军英.转基因抗草甘膦大豆安全性评价及对环境影响的检测.江苏农业科学,2003,(6):36~40.
    [5]董建棠,李以三,杨洪春.草甘膦可有效防止多种危害性杂草、胺草磷防治大豆菟丝子的研究.山东农业科学,1987,(3):22~25.
    [6]韩天富.转基因和非转基因大豆生产体系除草成本和生产效益的估算.作物杂志,2008,(2):1~3.
    [7]韩天富,侯文胜,王济民.发展转基因大豆,振兴中国大豆产业.中国农业科技导报,2008,10(3):1~5
    [8]郝中娜,陶荣祥,胡张华,朗春秀,张红志,王连平,陈锦清.转基因油菜超油2号外源基因流散的生态风险.农业生物技术学报,2008,16(3):541~542.
    [9]何付丽,高同彬,闫春秀,赵长山.窄行平作密植大豆田杂草群落组成与发生特点.植物保护,2008,34,(3):92~95.
    [10]何玉涛,张凡江,许洪伟,于军华.大豆田难治杂草应用草甘膦防除技术.现代化农业,2005,(7):8.
    [11]洪加康,劳美珍.草甘膦防治大豆菟丝子初探.农药,1987,(6):56~57.
    [12]黄春艳,陈铁保,王宇,孙宝宏.东部地区大豆田杂草种群演变趋势及其化学防除.大豆科学,1999,16:255~259.
    [13]李永生,曲福君,成亚杰.草甘膦防治大豆田刺菜技术.大豆通报,2008,(2):32.
    [14]刘谦,朱鑫泉.生物安全.北京:科学出版社,2002, pp.67~73.
    [15]刘延,崔海兰,黄红娟,魏守辉,张朝贤.抗草甘膦杂草及其抗性机制研究进展.农药学学报,2008,(10):10~14.
    [16]刘支前.除草剂在植物体内的传导机理.植物生理学通讯,1992,(2):226~229.
    [17]武丽辉.美国大豆种植面积97%使用草甘膦.农药科学与管理,2007,28:57.
    [18]潘良文,陈家华,沈禹飞,胡永强,陶军,韩伟.进口转基因抗草甘膦油菜籽和大豆中CP4~EPSPS基因的检测比较研究.生物技术通迅,2001,21:175~177.
    [19]钱迎倩,马克平.经遗传修饰生物体的研究进展及其释放后对环境的影响.生态学报,1998,18(1):1~9.
    [20]强胜,马波.综观以化学除草剂为主体的稻田杂草防治技术体系.杂草科学,2004,(2):1~5.
    [21]苏少泉.转基因抗除草剂大豆的种植与问题.世界农业,2006,2:41~42
    [22]王宏伟,梁业红,史振声,张世煌.作物抗草甘膦转基因研究概况.作物杂志,2007,14:9~12.
    [23]王险峰,关成宏.大豆除草剂的选用.现代化农业,1996,12:4~5.
    [24]王现全,马亮,祝青波.东北大豆田除草剂的使用现状和前景.中国农药,2006,(6):12~15.
    [25]向文胜,赵长山,陶波,王相晶,苏少泉,张文吉.耐草甘膦菜豆耐性机理的初步研究.农药学学报,1999,(1):33~38.
    [26]向文胜,李孱,陶波,王相晶,李景鹏,苏少泉,张文吉.耐草甘膦菜豆耐性分子学机理研究.农药学学报,2003,(1):23~29.
    [27]向文胜.抗除草剂草甘膦转基因作物.东北农业大学学报,1998,29:92~98.
    [28]张广成,胡凡,朴英,付迎春.宝清示范区大豆田杂草群落变化及综合防除.黑龙江农业科学,2003,(4):6~8.
    [29]张志财,吕跃星,廖宇飞,张琳,邱彦伟,徐香瑞.吉林省农田杂草调查结果与分析.吉林农业大学学报,2004,26:462~465.
    [30]张志铭,黄绍敏,叶永忠,杨先明.长期不同施肥方式对麦田杂草群落结构及生物多样性的影响.河南农业科学,2010,(6):67~69.
    [31]朱立民,陈志斌.今年上半年农药行业产销两旺.农药市场信息,2008,16:25.
    [32]祖广平.中国草甘膦优势企业面临巨大发展机遇.新财富,2008,(1):27~28.
    [33]曹洪玉,李香菊,刘士阳,崔海兰,牛宏波.草甘膦水剂在抗草甘膦转基因大豆田除草效果及安全性研究.杂草科学,2011,29,22~25
    [34] ACNEP(Advisory Committee on Novel Foods and Processes).Department of health report onhealth and social subjects, No.38: Guidelines on the assessment of novel foods and processes.1991.
    [35] ADA. Position of the American Dietetic Association Biotechnology and the future offoods.Journal of the American Dietetic Association,1993,93(2):189.
    [36] ASEAN. Primary Production Company (ed). Regulations for agricultural products derivedfrom biotechnology.Singapore.1998.
    [37] Ball DA. Weed seedbank response to tillage, herbicides and crop rotation sequence. Weed Sci.1992,40:654–659.
    [38] Beckie H.J,Hall L.M. and Warwick S.I,Impact of herbicide-resistant crops as weeds inCanada, Proceedings Brighton Crop Protection Conference-Weeds, Brighton, British CropProtection Council.,2001,135~142.
    [39] Berberich S R, et al. Safety assessment of insect–protected cotton: The Composition of thecottonseed is equivalent to conventional cottonseed. J Agric Food Chem,1996,41:365~371.
    [40] Blackshaw RE. Tillage intensity affects weed communities in agroecosystem, In: Inderjit S.,Invasive Plants: Ecological and Agricult ural Aspects, Birkhauser, Basel,Switzerland,2005,pp.209~221.
    [41] Buhler DD. Influence of tillage systems on weed population dynamics and management incorn and soybean in the central USA. Crop Sci.1995,35:1247~1258.
    [42] Carpenter J, Felsot A, Goode T, Hammig M, Onstad D, Sankula S. Comparative impacts ofbiotechnology-derived and traditional soybean, corn, and cotton crops, www.castscience.org,Published by the Council forAgricultural Science and Technology for theUnitedSoybeanBoard,2002.
    [43] Fennimore SA, Jackson LE. Organic amendment and tillage effects on vegetable field weedemergence and seedbanks, Weed Technology.2003,17:42~50.
    [44] Fletcher WW, Kirkwood, RC. Herbicides and plant growth regulutors, Granada Publishing1982,134~135.
    [45] Hall L,Topinka K,Huffman J,Davis L and Good A,Pollen flow between erbicide-resistantBrassica napus is the cause of multiple-resistant B. napus volunteers, Weed Science,2000,48:688~694.
    [46] Harker KN, Clayton G W, Blackshaw R E, O'-Donovan J T, Lupwayi N Z, Johnson E N, GanY T, Zentner R P, Lafond G P, Irvine R B. Glyphosate-resistant spring wheat productionsystem effects on weed communities. Weed Science,2005,53:451~464.
    [47] Hart S E, Wax LM. Review and future prospectus on the impacts of herbicide resistant maizeon weed management. Maydica,1999,44:25~36.
    [48] Holl nder H, Amrhein N. The site of the inhibition of the shikimate by glyphosate Ⅰ.Inhibition by glyphosate of the phenylpropanoid synthesis in backwheat. Plant Physiol.1980,66:823~829.
    [49] James C. Global status of commercialized biotech/GM crops:2008, ISAAA Brief, No.39.
    [50] James C.2006年转基因作物商业化的全球态势.生物技术通报,2007,2:159~162.
    [51] Jenczewski E, Ronfort J, and Chèvre A M., Crop-to-wild gene flow, introgression andpossible fitness effects of transgenes, Environmental Biosafety Research,2003,2:9~24.
    [52] Johnson P G, Riordan T P. A review of issues pertaining to transgenic turgrasses. Hortscience,1999,34:594~598.
    [53] Kishore R. FAO/WHO Strategies for assessing the safety of foods produced bybiotechnology. Report of a Joint FAO/WHO Consultation World Health OrganizationGeneva,1991.
    [54] Kuk Y I, Burgos N R, Shivrain V K. Natural tolerance to imazethapyr in red rice (Oryzasativa). Weed Science,2008,56:1~11.
    [55] Madsen K H, Blacklow W M, Jensen J E, Streibig J C. Simulation of herbicide use in a croprotation with transgenic herbicide-tolerant oilseed rape. Weed Research,1999,39:95~106.
    [56] Mercer K L., Andow D A., Wyse D L., and Shaw R G., Stress and domestication traitsincrease the relative fitness of crop-wild hybrids in sunflower, Ecology Letters,2007,10:383~393.
    [57] Neve P. Challenges for herbicide resistance evolution and management:50years after Harper.Weed Research,2007,47:365~369.
    [58] Orson J. Gene stack, king in herbicide tolerant oilseed rape: lessons from the North Americanexperience, English Nature Research Reports,2002,(443):17.
    [59] Phillip AC. RAPD analysis of seed purity in a commercial hybrid cabbage cultivar. Genome,2000,43:317.
    [60] Rong J, Lu B R, Song Z P, Su J, Snow A A, Zhang X S, Sun S G, Chen R, Wang F,Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic ricefields, New Phytologist,2007,173:346~353.
    [61] Rong J, Song Z P, Su J, Su J, Xia H, Lu B R, and Wang F, Low frequency oftransgeneflow from bt/CpTIrice toits nontransgenic counterparts plan-ted at closespacing,New Phytologist,2005,168:566~599.
    [62] Scursoni J A, Forcella F, Gunsolus J. Weed escapes and delayed weed emergence inglyphosate-resistant soybean. Crop Protection,2007,26:212~218.
    [63] Stokatad EA. New tack on herbicide resistance. Scince,2004,5:21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700