电子倍增CCD的倍增机制及其在光子计数成像的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子倍增CCD采用碰撞电离机制实现了光生电荷信号在固态器件内的放大倍增,实现了器件的全固态化,是微光成像技术重点发展的关键技术之一。本论文在归纳总结普通CCD工作原理及其在微弱光成像应用方面的不足,重点分析电子倍增CCD中电荷倍增寄存器实现电荷倍增的原理,提出了电荷倍增的数学模型,讨论了微弱光环境中电荷倍增对电子倍增CCD成像的影响,创新性的提出了基于单光子响应模型的双重阈值原理,克服了常态制冷状态下暗电流噪声对电子倍增CCD单光子探测性能的影响,使得采用低成本半导体制冷的电子倍增CCD可以实现光子计数成像。本文的研究内容主要包括普通CCD工作原理、电荷倍增机制及其模型、电子倍增CCD成像模型、基于电子倍增CCD的光子计数成像原理以及电子倍增CCD的测试分析实验装置的建立和试验。通过对电子倍增CCD工作机制及其在光子计数成像的应用研究,可以为我国实现电子倍增CCD核心技术自主化提供理论依据,为尽快突破英美发达国家的技术封锁贡献力量。
     在CCD工作原理研究方面,本文重点对埋层沟道CCD器件内的二维电势场分布进行了研究。通过求解一维泊松方程和传输线波动方程,得到了埋层沟道CCD的二维电势场分布的解析表达式,分析了电极间中心距、电极偏置电压和电极内存储电荷容量等关键因素对二维电势场分布的影响,明确了埋层沟道CCD器件内的二维电势场分布。
     电荷倍增寄存器实现电荷倍增的原理研究方面,本文重点分析了电荷倍增寄存器实现电荷倍增的四个要点:强电场、大电荷势阱容量、溢出控制器和直流偏置相。同时,依据电荷倍增过程是否具备Markov性,本文将电荷倍增过程分为两种模式:高增益模式和普通增益模式。在不同模式下,分别通过求解Markov-扩散方程和Malthusian方程得到倍增寄存器的增益统计特性、增益期望和方差和增益概率密度函数。利用搭建的电子倍增CCD测试系统发现,除了倍增电极的偏置电压外,倍增电极内信号电荷包的大小也影响到电子倍增CCD的电荷倍增过程。
     在电子倍增CCD成像模型研究方面,本文通过建立电子倍增CCD的电荷转移模型和器件模型,得到了电子倍增CCD的系统响应函数和幅频响应特性,并分析了电荷倍增过程对成像的影响。借助于实验测试可知:尽管电荷倍增过程并没有改变电子倍增CCD的幅频响应的分布特征,但是由于电荷倍增过程提高了响应幅度,电荷倍增过程可以有效提高电子倍增CCD在低照度条件下的细节分辨力。
     在基于电子倍增CCD的光子计数成像研究方面,本文通过离散单光子响应模型得到了判断电子倍增CCD是否满足单光子探测的依据。借助于电子倍增CCD的单光子响应模型,讨论并分析了利用双重阈值方法实现光子事件检测的原理,并给出了幅度闽值和频率闽值选择的依据。
     通过单光子探测效率与误差实验,本论文分析了电子倍增CCD在光子计数成像模式下的性能。通过光子计数成像实验测试证明:采用光子计数模式,电子倍增CCD的最小响应度可以达到0.1个电荷/像素/帧,明显优于相同情形下的其他成像方式的结果。
     本文研究工作受到部委科研项目"XXXXXX成像技术(4040508011)”、部委科研项目"XXXXXXXXXXX成像技术研究(A2620060242)”和江苏省自然科学基金项目“光子计数成像机理及其关键技术研究(BK2008049)”的支持。
Adopting the impact ionization mechanism, EMCCD (Electron Multiplication CCD) achieved the multiplication of photo-generated charge signals in solid-state devices, and achieved all solid-state technology of devices. It is one of the key technologies of low-light imaging technology. Based on the summary of traditional CCD working principle and its deficient in low-light imaging application, it analyzed charge multiplication working principle of charge multiplication register in EMCCD, put forward mathematical model of charge multiplication, discussed the effect of charge multiplication on EMCCD imaging in low-light environment, innovatively proposes the dual-threshold principle of single-photon response model, and overcame the effect of dark current noise on single-photon detection performance of EMCCD in normal cooling condition, so that we could adopt the EMCCD to achieve photon counting imaging using low-cost thermal electrical refrigerator. The main contents of this paper studied the traditional CCD working principle, charge multiplication mechanism and model, imaging model of EMCCD, photon counting imaging principle based on EMCCD, and the experimental equipments build and experiments of EMCCD tests. Through the research on EMCCD working and its application in photon counting imaging, we could offer the theoretical basis for achieving the independence of EMCCD core technologies, so as to make some contributions to break through the technology blockage of United Kingdom and American developed countries as soon as possible.
     On the aspect of research on CCD working principle, it mainly studied the two-dimensional electric potential field distribution in buried-channel CCD device. Through the solutions of one-dimensional Poisson's equation and wave equation of transmission line, after obtaining the analytical expression of two-dimensional electric potential field distribution in buried-channel CCD devices, it analyzed the effects of key factors of center distance between electrodes, electrode bias voltage, charge storage capacity inside electrode on two-dimensional electric potential field distribution, and defined the two-dimensional electric potential field distribution in buried-channel CCD devices.
     On the aspect of principle research on achieving charge multiplication in charge multiplication register, it analyzed four points:strong electric field, large charge potential well capacity, overflow controller and DC bias phase. At the same time, according to having Markov nature during charge multiplication or not, the charge multiplication could be sorted as two modes of high-gain mode and ordinary gain mode. Under the different modes, through solutions of Markov-diffusion equation and Malthusian equation, the gain statistical characteristics and gain probability density function were obtained. After building testing system of EMCCD, we found that the size of signal charge packet inside multiplied electrode also could affect the charge multiplication process, besides the bias voltage of multiplied electrode.
     On the aspect of research on EMCCD imaging model, after the establishment of charge-transfer model and device model of EMCCD, we obtained the system response function and amplitude-frequency response characteristics of EMCCD, and analyzed the effects of charge multiplication process on imaging. According to the experimental testing results, it was obvious that:although the charge multiplication process did not change the distribution of amplitude-frequency response of EMCCD, it increased the detail resolution of EMCCD in low-light condition because the charge multiplication process increased the response amplitude.
     On the aspect of research on photon counting imaging based on EMCCD, after the establishment of discrete single-photon response model, it obtained the evidences of single-photon detection to estimate the EMCCD. Using the single-photon response model of EMCCD, it discussed the principle of achieving photon incident detection by dual-threshold principle, and gave out the selective evidences of amplitude threshold and frequency threshold. Through the efficiency and error experiments of single-photon detection, it analyzed the property of EMCCD in the mode of photon technology imaging. Through the experiment of photon counting imaging, it proved that:in the mode of photon counting, the minimum responsibility of EMCCD could achieve 0.1 charge/pixel/frame, it obviously preceded the results of the other imaging mode at the same conditions.
     These works of this paper are a part of research work of Natural Science Foundation project of Jiangsu Province (project NO.BK2008059)-"Research on photon counting imaging mechanism and its key technologies".These works were also supported by grants from Ministry of National Defence of China (project NO.4040508011 and NO. A2620060242).
引文
[1]金伟其,刘广荣,王霞等.微光像增强器的进展及分代方法.光学技术.2004(4):460-466
    [2]曾桂林,周立伟,张彦云.微光ICCD电视摄像技术的发展与性能评价.光学技术.2006(8):337-343
    [3]艾克聪.微光夜视技术的进展与展望.应用光学.2006(7):303-307
    [4]周立伟.光电子成像:走向新的世纪.北京理工大学学报.2002(1):1-12
    [5]左肪,刘广荣,高雅允等.用于微光成像的BCCD, ICCD, EBCCD'性能分析.北京理工大学学报.2002(1):109-112
    [6]M. Suyama, T. Sato, S. Ema etc.. Single-photon-sensitive EBCCD with additional multiplication. Proc. of SPIE.2006:629407
    [7]John Vallerga, Jason McPhate, Bettina Mikulec etc.. Noiseless imaging detector for adaptive optics with kHz frame rates. Proc. of the SPIE.2004):1256-1267.
    [8]张兴华,赵宝升,缪震华等.紫外单光子成像系统的研究.物理学报.2008(7):4238-4243
    [9]张兴华,赵宝升,刘永安等.紫外单光子成像系统增益特性研究.物理学报.2009(3):1779-1784
    [10]Sudhir K.Madan,Basabi Bhaumik,Juzer M. Vasi.Experimental Observatiolrl of Avalanche Multiplication in Charge-Coupled Devices. IEEE TRANSACTIONS ON ELECTRON DEVICES.
    [11]1983(6):694-699
    [12]Jaroslav Hynecek. CCM-A New Low-Noise Charge Carrier Multiplier Suitable for Detection of Charge in Small Pixel CCD Image Sensors. IEEE TRANSACTIONS ON ELECTRON DEVICES.1992(8):1972-1975
    [13]Jaroslav Hynecek. Impactron-A New Solid State Image Intensifier. IEEE TRANSACTIONS ON ELECTRON DEVICES.2001(10):2238-2241
    [14]Z.Ya. Sadygov, V.N. Jejera, Yu.V. Musienko etc.. Super-sensitive avalanche silicon photodiode with surface transfer of charge carriers. Nuclear Instruments and Methods in Physics Research A.2003(504):301-303
    [15]Z. Sadygov, A. Olshevski, I. Chirikov etc.. Three advanced designs of micro-pixel avalanche photodiodes:Their present status, maximum possibilities and limitations. Nuclear Instruments and Methods in Physics Research A.2003(567):301-303
    [16]Peter Holl, Robert Andritschke, Rouven Eckhardt etc.. A New high-Speed, Single Photon Imaging CCD for the Optical. Nuclear Science Symposium Conference Record,IEEE.2006
    [17]Hiroyoshi Komobuchi, Takao Ando. A Novel High-Gain Image Sensor Cell Based on Si p-n APD in Charge Storage Mode Operation. IEEE TRANSACTIONS ON ELECTRON DEVICES.1990(8):1861-1868
    [18]Richard M. Marino,Timothy Stephens,Robert E.Hatch etc.. A compact 3D imaging laser radar system using Geiger-mode APD arrays:system and measurements. Proc. of the SPIE.2003
    [19]John Vallerga, Jason McPhate, Larry Dawson etc.. Mid-IR photon counting array using HgCdTe APDs and the Medipix2 ROIC. Proc. of the SPIE.2007
    [20]J. Kataoka, M. Koizumi, S. Tanaka, H. Ishibashi etc.. Development of large-area, reverse-type APD arrays for high-resolution medical imaging. Nuclear Instruments and Methods in Physics Research A.2009(604):323-326
    [21]Franco Zappa, Angelo Gulinatti, Piera Maccagnani etc.. SPADA:Single-Photon Avalanche Diode Arrays. IEEE PHOTONICS TECHNOLOGY LETTERS.2005(3):657-659
    [22]Ivan Rech, Antonino Ingargiola, Roberto Spinelli etc.. Optical crosstalk in single photon avalanche diode arrays:a new complete model. OPTICS EXPRESS.2008(12):8381-8394
    [23]Hsing-San Lee, Lawrence G.Heller.Charge-Control Method of Charge-Coupled Device Transfer Analysis. IEEE TRANSACTIONS ON ELECTRON DEVICES.1972(12):1270-1279
    [24]Amr M. Moshen,Michael F.Tompsett. The effects of bulk traps on the performance of bulk chanel Charge-Coupled Device. IEEE TRANSACTIONS ON ELECTRON DEVICES.1974(11):701-712
    [25]James E.Carnes,Walter F.Kosonocky,Edward G.Ramberg. Free Charge Transfer in Charge-Coupled Devices. IEEE TRANSACTIONS ON ELECTRON DEVICES.1972(6):798-808
    [26]G.W.Taylor, Pallab K.Chatterjee, Hu H.Chao. A device model for buried-channel CCD's and MOSFET's with Gaussian impurity profiles. IEEE TRANSACTIONS ON ELECTRON DEVICES.1980(1):199-208
    [27]I. R. Edwards, G. Marr. Depletion-mode IGFET made by deep ion implantation. IEEE TRANSACTIONS ON ELECTRON DEVICES.1973(3):283-289
    [28]J. S. Huang. Characteristics of a depletion-type IGFET. IEEE TRANSACTIONS ON ELECTRON DEVICES.1973(5):513-514
    [29]Yiwen Yin, James A. Cooper. Simple Equations for the Electrostatic Potential in Buried-Channel MOS Devices. IEEE TRANSACTIONS ON ELECTRON DEVICES.1992(7):1770-1772
    [30]刘继琨.固体摄象器件的物理基础.第1版.成都:电子科技大学出版社,1989
    [31]K.Hess,C.T.Sah. Hot Electrons in Short-Gate Charge-Coupled Devices. IEEE TRANSACTIONS ON ELECTRON DEVICES.1978(12):1399-1405
    [32]K.Hess,C.T.Sah. The ultimate limits of CCD performance imposed by hot electron effects.Solid-State Electronics.1979(12):1025-1033
    [33]James E.Carnes,Walter F.Kosonocky,Edward G.Ramberg. Drift-Aiding Fringing Fields in Charge-Coupled Devices. IEEE TRANSACTIONS ON ELECTRON DEVICES.1971(5):322-326
    [34]Jacques G. C. Bakker. Simple Analytical Expressions for the Fringing Field and Fringing-Field-Induced Transfer Time in Charge-Coupled Devices. IEEE TRANSACTIONS ON ELECTRON DEVICES.1991(5):1152-1161
    [35]Daniel Schechter, Richard D.Nelson. The Calculation of Potential Profiles in CCD's Using Green's Function Techniques. IEEE TRANSACTIONS ON ELECTRON DEVICES.1976(2):293-296
    [36]封吉平,曾瑞,梁玉英.微波工程基础.第1版.北京:电子工业出版社,2002
    [37]David Dussaulta, Paul Hoess. Noise performance comparison of ICCD with CCD and EMCCD cameras. Proc. of the SPIE.2003:195-204
    [38]顾祖毅,田立林,富力文.半导体物理学.第1版.北京:电子工业出版社,1995
    [39]Edmund K. Banghart,James P. Lavine, Eugene A. Trabka etc.. A Model for Charge Transfer in Buried-Channel Charge-Coupled Devices at Low Temperature. IEEE TRANSACTIONS ON ELECTRON DEVICES.1991(5):1162-1174
    [40]Peter Centen. CCD On-Chip Amplifiers:Noise Performance versus MOS Transistor Dimensions. IEEE TRANSACTIONS ON ELECTRON DEVICES.1991(5):1206-1216
    [41]Paul Jerram,Peter Pool,Ray Bell etc..The LLLCCD:low light imaging without the need for an intensifier.Proc. of SPIE.2001:178-185
    [42]Donal J. Denvir, Emer Conroy. Electron Multiplying CCD Technology:The new ICCD. Proc. of the SPIE.2003:164-174
    [43]R.J.McIntyr. Multiplication Noise in Uniform Avalanche Diodes. IEEE TRANSACTIONS ON ELECTRON DEVICES.1966(1):164-168
    [44]P.A.Wolff. Thoery of Electron Multiplication in Sillicon and Germanium.Physical Review.1954(6):1415-1420
    [45]A.G.Chynoweth. Uniform Sillicon p-n Junctions Ⅱ Ionization Rates for Electrons.Journal of Applied Physics.1960(7):1161-1165
    [46]G.A.Baraff. Distribution Functions and Ionization Rates for Hot Electrons in Semiconductors. Physical Review.1962(6):2507-2517
    [47]W.Shockley. Problems related to p-n junctions in silicon. Solid State Electronics.1961(1):61-67
    [48]S.D.Personick. New results on avalanche multiplication statistics with application to optical detection. Bell System Technical Journal.1971:167-193
    [49]S.D.Personick.Statistics of a general class of avalanche detectors with application to optical communication. Bell System Technical Journal.1971:3075-3094
    [50]L.M.Naqvi.Effects of time dependence of multiplication process on avalanche noise.Solid-State Electronics.1973(1):19-28
    [51]Y. Okut,C. R. Crowell. Energy-conservation considerations in the characterization of impact ionization in semiconductor.Physical Review B.1972(8):3076-3081
    [52]C. Hu, K. A. Anselm, B. G. Streetman, J. C. Campbell. Excess Noise in GaAs Avalanche Photodiodes with Thin Multiplication Regions. IEEE JOURNAL OF QUANTUM ELECTRONICS.1997(7):1089-1094
    [53]Chee Hing Tan, J.P.R.David, Stepen A. Plimmer, Graham J. Rees etc.. Low Multiplication Noise Thin A10.6Ga0.4As Avalanche Photodiodes. IEEE TRANSACTIONS ON ELECTRON DEVICES.2001(7):1310-1317
    [54]Majeed M. Hayat, Winslow L. Sargeant, Bahaa E. A. Saleh. Effect of Dead Space on Gain and Noise in Si and GaAs Avalanche Photodiodes. IEEE JOURNAL OF QUANTUM ELECTRONICS.1992(5):1360-1365
    [55]Majeed M. Hayat, Bahaa E. A. Saleh, Malvin C. Teich. Effect of Dead Space on Gain and Noise of Double-Carrier-Multiplication Avalanche PhotodiodesIEEE TRANSACTIONS ON ELECTRON DEVICES.1992(3):546-552
    [56]Bahaa E. A. Saleh, Majeed M. Hayat, Malvin C. Teich. Effect of Dead Space on the Excess Noise Factor and Time Response of Avalanche Photodiodes. IEEE TRANSACTIONS ON ELECTRON DEVICES.1990(9):1976-1984
    [57]Shuling Wang; Feng Ma; Xiaowei Li etc.. Ultra-low noise avalanche photodiodes with a "centered-well" multiplication region. IEEE J. Quantum Electron.2003(2):375-378
    [58]Feng Ma, Shuling Wang, and Joe C. Campbell. Shot Noise Suppression in Avalanche Photodiodes.Physical Review Letter.2005(17):176604-1-176604-4
    [59]Omer Gokalp Memis, Alex Katsnelson, Soon-Cheol Kong etc.. Sub-Poissonian shot noise of a high internal gain injection photon detector. OPTICS EXPRESS.2008(17):12701-12707
    [60]Jaroslav Hynecek, Takahiro Nishiwaki. Excess Noise and Other Important Characteristics of Low Light Level Imaging Using Charge Multiplying CCDs. IEEE TRANSACTIONS ON ELECTRON DEVICES.2003(1):239-245
    [61]胡迪鹤.随机过程论:基础、理论和应用.第1版.武汉:武汉大学出版社,2000
    [62]Malvin Carl Teich,Bahaa E. A. Saleh. Branching Processes in Quantum Electronics. IEEE JOURNAL ON SELECTED TOPICS IN QUANTUM ELECTRONICS 2000(6):1450-1457
    [63]Kuniaki Matsuo,Malvin Carl Teich. Possion Branching Point Process. J.Math.Phys. 1984(7):2174-2185
    [64]林元烈.应用随机过程.第1版.北京:清华大学出版社,2002
    [65]蔡尚峰.随机控制理论.第1版.上海:上海交通大学出版社,1987
    [66]梁学忠,王宪杰,王雁霞.求解Ito随机微分方程解过程密度函数的两种方法.哈尔滨理工大学学报.2003(2):113-115
    [67]Mark Stanford Robbins,Benjamin James Hadwen. The Noise Performance of Electron Multiplying Charge-Coupled Devices. IEEE TRANSACTIONS ON ELECTRON DEVICES.2003(5):1227-1233
    [68]Robert Nigel Tubbs. Lucky Exposures:Diffraction Limited Astronomical Imaging Through the Atmosphere. Cambridge University.2003
    [69]沈锋,张学军,饶长辉等.像增强型CCD探测器的光学特性.光学学报.2002(5):601-606
    [70]沈峰.电子倍增级联系统中的噪声因子和增益起伏因子.量子电子学报.2002(5):471-476
    [71]耿富录.现代模拟信号处理技术及其应用.第1版.北京:国防工业出版社,1990
    [72]Hans Wallinga. A general model for Frequncey response of multiphase charge transfer delay lines. IEEE JOURNAL OF SOLID-STATE CIRCUITS.1979(3):653-655
    [73]S.Dontai,V.Svelto. Theory of CCD transfer noise from a circuit model. IEEE TRANSACTIONS ON ELECTRON DEVICES.1977(9):1184-1186.
    [74]徐天成,钱冬宁,张胜付.信号与系统.第1版.哈尔滨:哈尔滨工程大学出版社,2000
    [75]盛骤,谢式千,潘承毅.概率论与数理统计.第三版.北京:高等教育出版社,2001
    [76]John C. Feltz,Mohammad A.Karim. Modulation transfer function of charge-coupled devices.Applied Optics.1990(5):717-722
    [77]冯志伟,程灏波,宋谦.电子倍增电荷耦合器件的调制传递函数测量.光学学报.2008(9):1710-1716
    [78]Glenn E. Healey,Raghava Kondepudy.Radiometric CCD Camera Calibration and Noise Estimation. IEEE TRANSACTIONS ON PA1TERN ANALYSIS AND MACHINE INTELLIGENCE.1994(3):267-276
    [79]Robert A. Boie and Ingemar J. Cox. An Analysis of Camera Noise. IEEE TRANSACTIONS ON PA1TERN ANALYSIS AND MACHINE INTELLIGENCE.1992(6): 671-674
    [80]Muralidhara Subbarao Arman Nikzad. A Model for Image Sensing and Digitization in Machine Vision.Proc. of SPIE.1990:70-84
    [81]Stephane Perrin, Tannerguy Redarce. CCD Camera modeling and simulation. Journal of Intelligent and Robotic Systems.1996:309-325
    [82]Murali Subbarao, Ming-Chin Lu. Image-sensing model and computer simulation for CCD camera system. Machine Vision and Applications.1994(7):277-289
    [83]Lingfeng Chen,Xusheng Zhang,Jiaming Lin etc.. Signal-to-noise ratio evaluation of a CCD camera. Optics & Laser Technology.2009:574-579
    [84]K Irie, A E McKinnon, K Unsworth. A Technique for Evaluation of CCD Video-Camera Noise. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY.2008(2):280-284
    [85]李云飞,司国良,郭永飞.科学级CCD相机的噪声分析及处理技术.光学精密工程.2005(11):159-164
    [86]许秀贞,李自田,薛利军.CCD噪声分析及处理技术.红外与激光工程.2004(4):343-347
    [87]张闻文,陈钱.电子倍增CCD噪音特性研究.光子学报.2009(4):756-760
    [88]张闻文,陈钱.基于电子倍增CCD噪声特性的最佳工作模式.光学精密工程.2008(10):1977-1981
    [89]陈晨,许武军,翁东山.电子倍增CCD噪声来源和信噪比分析.红外技术.2007(11):634-638
    [90]E2V 公司. The Use of Multiplication Gain in L3Vision Electron Multiplying CCD Sensors.2003
    [91]E2V 公司. Dark Signal and Clock-Induced Charge in L3VisionTM CCD Sensors.2003
    [92]Olivier Daigle, Jean-Luc Gach, Christian Guillaume etc.. L3CCD results in pure photon counting mode. Proc. of SPIE.2004
    [93]Olivier Daigle, Claude Carignan, Sebastien Blais-Ouellette etc.. Faint flux performance of an EMCCD. Proc. of SPIE.2006
    [94]陈天明,俞信,王苏生.超微弱发光图像的统计处理方法.光学学报.1996(8):1152-1157
    [95]曹根瑞,俞信,胡新奇.光子计数成像技术及其应用.光学学报.1996(2):167-172
    [96]马瑜,俞信.光子图像统计处理.光学学报.2002(4):421-425
    [97]王晓辉,胡新奇,王苏生等.生物超微弱发光的光子计数成象方法.光电工程.1997(6):50-53
    [98]王苏生.生物光子图像的探测概率和极限.光学学报.1999(7):920-923
    [99]马瑜,俞信,王苏生.小样本光子图像的统计处理.光学学报.2000(12):1641-1646
    [100]张兴华,赵宝升,缪震华等.紫外单光子计数图像畸变校正.中国光学快报.2008(9):661~664
    [101]张蜡宝,钟扬音,康琳等.超导红外单光子探测器.科学通报.2008(21):2668-2670
    [102]尤立星,申小芳,杨晓燕.超导纳米线单光子探测器件的单光子响应.科学通报.2009(16):2416~2420
    [103]Simon Tulloch. Photon Counting and Fast Photometry with L3 CCDs. Proc. of SPIE.2003
    [104]Eric Lantz,Jean-Luc Blanchet,Luca Furfaro etc.. Multi-imaging and Bayesian estimation for photon counting with EMCCDs. Monthly Notices of the Royal Astronomical Society.2008(4):2262-2270
    [105]A. G. Basden,C. A. Haniff,C. D. Mackay. Photon counting strategies with low light level CCDs. Mon. Not. R. Astron. Soc.2003
    [106]向敬成,王意清,毛自灿.信号检测与估计.第1版.北京:电子工业出版社,1994
    [107]曾庆勇.微弱信号检测.第1版.浙江:浙江大学出版社,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700