基于多传感器的吸尘机器人避障技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非结构环境下,移动机器人如何实现无碰撞的导航是当前研究的一大热点,也是一大难点。本文以吸尘机器人为研究对象,设计了基于该平台的多传感器硬件系统,形成了新的吸尘机器人,然后本文研究了基于该机器人的模糊神经网络避障算法,最后对基于该平台的定位算法做了一定的理论探索:
     首先,论文从实际角度出发,设计了一个新的多传感器硬件系统,并将新系统连接到吸尘机器人上取代以前的前视板,新系统包括15个超声波探头,可以测量14个方向5-50cm障碍的距离,然后在超声波探头中间插入了8对红外传感器,可以测量8个方向5cm以内的障碍物,这样,新的系统能保证机器人得到前半圈内大部分障碍物的距离和方位信息。同时,论文研究了各种超声波测距算法,以及超声波传感器和红外传感器测距的一些特性,使所设计得多传感器系统能得到最好的测量效果。
     其次,由于机器人在未知环境下避障,必然会需要一个合理的定位方法,故本文接下来在多传感器硬件系统的基础上对定位算法做了许多理论的探索,基于光电编码器的航位推测算法存在极大的累积误差,由此我们引入了扩展卡尔曼滤波算法融合光电编码器反馈数据和测距传感器的观测数据来校正,得到了非常满意的定位效果。但是扩展卡尔曼滤波的定位效果在系统非线性增强的情况下会变差,所以本文又采用了无迹卡尔曼滤波算法来定位,发现无迹卡尔曼滤波能很好的应用在非线性比较强的状态。
     最后,论文基于新平台做了许多相关避障算法的研究,提出了能应用于吸尘机器人的模糊神经网络模型,该模型以当前机器人障碍物距离信息、自身速度和自身相对目标角度为输入,以轮子的加减速度为输出,能比较好的控制机器人避开完全未知环境中的障碍,本文从理论出发,通过仿真确定模型的基本参数,然后根据需要采用神经网络方法训练调整参数,最后将训练好参数的模型移植到了吸尘机器人上面进行避障实验,实验中机器人能较好避开障碍物。
Realizing non-collision navigation for mobile robot under the non-structured environment is currently a big hot spot, and is also a big difficulty. The dissertation take cleaning robot as the object of study, it designed a multi-sensor hardware system based on the cleaning robot platform and formed a new robot. Then a neurofuzzy-Based method was transplanted into the robot. Some theory explorations about localization were made upon our robot at last:
     Firstly, the dessertation designed a new multi-sensor from reality, and connected the new system to cleaning robot substitute the beforhand foresight board, the new system including 15 ultrasonic sensors, may survey the barrier distance of 5-50cm in 14 direction, then 8 pair of infrared sensors have been inserted in the middle of ultrasonic sensors, the infrared sensor can survey the obstacle of 5cm in 8 direction. Therefor, the new system can guarantee the robot to obtain the majority of obstacle distance and the azimuth information in the half-turn. At the same time, the dissertation has studied each kind of ultrasonic ranging algorithm, as well as the ultrasonic sensor and infrared sensor range finder's some characteristics, making the multi-sensor systems be able to obtain the best survey effect.
     Secondly, the robot need a proper obstacle avoidance method since it work under a very complex environment, so the dissertation studied many localization algorithm based on multi-sensor hardware. Enormous accumulated error was existed in dead reckoning algorithm based on the electro-optical encoder, so we introduced EKF (Expanded Kalman Filtering) algorithm to fusion electro-optical encoder's feedback data and the range finder sensor's observation data to adjust the error, which can obtain very satisfactory localization effect. However, EKF method would get a worse effect in an environment with very strong nonlinear, which can be well substitued by UKF (Unscented Kalman Filtering) method.
     Finally, the dissertation did some research about obstacle avoidance algorithm based on the new platform, figured a neurofuzzy-based method which can be applicated on cleaning robot. The method takes the distance imformation of obstacle、 speed of itself and the angle between itself and goal as input, and wheel's addition and subtraction speed as the output. It could make robot avoid abstacle quite well in unknown environment. The dissertation determined the basic parameter of the method through thoery simulation, and adjusted the parameter through neural network training. The module with certain parameter was finally transplanted to cleaning robot which can easily avoid obastacle in experiment.
引文
[1]朱世强,王宣银.机器人技术及其应用.浙江大学出版社.2001
    [2]李磊,叶涛,谭民等.移动机器人技术研究现状与未来.机器人.2002,24(5):475-480
    [3]陈宗海,詹昌辉.基于“感知-行为”的智能模拟技术的现状及展望.机器人.2001,23(2):187-192
    [4]刘瑜.自主吸尘机器人的研究[博士学位论文].浙江大学.2006.
    [5]朱世强,刘瑜,庞作伟,金波.自主吸尘机器人的研究现状.机器人.2004,26(6):569-574
    [6]F. Yasutomi, D. Takaoka, M. Yamada. Cleaning Robot Control. Proceedings of IEEE International Conference On Robotics and Automation, Philadelphia, PA, USA: IEEE,1988,1839-1841
    [7]徐勇.基于神经网络的自主吸尘机器人混合感知系统设计及避障规划[硕士学位论文].浙江大学,2007年
    [8]www.electrolux.com
    [9]www.iRobot.com
    [10]http://tio.cc/news.asp?id=58887
    [11]http://www.vacbots.com/
    [12]http://www.neatorobotics.com/
    [13]Xiang Ma,ShiQiang Zhu. Study on Intelligent Dust-collecting Robot. Proceedings of the Fifth International Conference on Fluid Power Transmission and Control, Hangzhou, China PR:International Academic Publishers,2001,392-396
    [14]Liu Yu, Shiqiang Zhu, Bo Jin, Shenshen Feng, Huafeng Gong. Sensory Navigation of Autonomous Cleaning Robots. Proceedings of the fifth world congress on intelligent control and automation.2004,5:4793-4796
    [15]田春颖,刘瑜,冯申珅,朱世强.基于栅格地图的移动机器人完全遍历算法:矩形分解法.机械工程学报.2004,40(10):56-61
    [16]Songguo Liu, Shiqiang Zhu, Yu Liu, Zuowei Pang, Fengshen Zhao. Autonomous Cleaning Robot Working in Unstructured Environment. Proceedings of the Sixth International Conference on Fluid Power Transmission and Control(ICFP'2005).2005: 831-835(ISTP)
    [17]孙莹莹,张磊.基于超声波网络定位系统的机器人全局路径规划.计算机应用.2010,30(1):86-88
    [18]何俊学,李战明.基于视觉的同时定位于地图构建方法综述.计算机应用研究.2010,27(8):2840-2844
    [19]Tardos J, Neira J, Newman P. Robust mapping and localization in indoor environments using sonar data. Internation Journal Of Robotics Research.2002, 21(4):311-330
    [20]Hee Rak Beom, Hyung Suck Cho. A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning. IEEE Transactions on systems, Man, and cybernetics.1995,25(3):464-477
    [21]Petru Rusu, Emil M etc. Behavior-Based neuro-fuzzy controller for mobile robot navigation. IEEE transactions on instrumentation and measurement.2003,52(4): 1335-1338.
    [22]王琨,骆敏舟,赵江海.室内移动机器人导航中信息获取方法研究综述.机器人技术与应用.2010,2:38-42
    [23]S. Vallerand, M. Kanbara, N. Yokoya. Binocular vision-based augmented reality system with an increased registration depth using dynamic correction of feature positions. IEEE virtual reality 2003 Proceedings 2003, Las Vegas:271-272
    [24]K. Okada, M. Inaba, H.Inoue. Integration of real-time binocular stereo vision and whole body information for dynamic walking navigation of humanoid robot. Proceedings of The IEEE International Conference on Multisensor Fusion and Intelligent Systems.2003:131-136
    [25]边琰,郭彤,张国雄.基于线结构光的工件台阶特征尺寸测量方法研究.机床与液压.2009,37(6):129-134
    [26]赵珂,向瑛,王忠,施琴红.高准确度超声波测距仪的研制.传感器技术.2003,22(2):55-57
    [27]G. Benet, F. Blanes, J.E. Simo, P. Perez. Using infrared sensors for distance measurement in mobile robots. Robotics and Autonomous Systems.2002,40:255-266
    [28]成先敏,李世中,乔晶晶.微波测距方案的设计与实现.四川兵工学报.2010,31(7):96-98
    [29]杨洋,王力,郝海燕,杨瑞臣,高永慧.多普勒测风激光雷达速度校准仪的关键技术研究.仪表技术与传感器.2010,8:93-95
    [30]郝凯,孟正大.基于卡尔曼滤波的室内服务机器人定位.华中科技大学学报(自然科学版).2008,36(SI):193-195
    [31]徐田来,游文虎,崔平远.基于模糊自适应卡尔曼滤波的INS/GPS组合导航系统算法研究.宇航学报.2005,26(5):571-575
    [32]Qing-hao Meng, Yi-cai Sun and Zuo-liang Cao. Adaptive extended Kalman filter (AEKF)-based mobile robot localization using sonar. Robotica.2000,18:459-473
    [33]刘瑜,朱世强,金波.移动机器人Markov定位算法的研究——方向传感器建模新方法.浙江大学学报(工学版).2005,39(3):339-342
    [34]郁斌,徐涛.隐马尔可夫模型在对象定位中的应用于实现.南京航空航天大学学报.2006,38(6):791-795
    [35]刘松国,朱世强,刘瑜,庞作伟,赵凤坤.移动机器人的蒙特卡罗自主定位算法研究.机电工程.2005,22(4):38-43
    [36]Thrun S, Fox D, Burgard W. Robust monte carlo localization for mobile robots. Artificial Intelligence.2001,128:99-141
    [37]纪迪.人工势场法在机器人避碰路径规划中的应用.软件导刊.2010,9(7):83-85
    [38]Khatib. Real time collision avoidance for manipulators and mobile robots. The Internet journal of Robotics Research.1986.
    [39]DW. Cho. Certainty grid representation for robot navigation by Bayesian method. Robotica.1990,8:159-165
    [40]M. Weigl, B. Siemiatkowska, KA. Sikorski. A Borkowski Grid based mapping for autonomous mobile robot. Robotics and Autonomous Systems.1993,11:13-21
    [41]姜志兵,赵英凯.基于虚力栅格法的移动机器人实时避障和导航.机床与液压.2007,35(5):91-93
    [42]马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障.机器人.1996,18(6):344-348
    [43]袁曾任,高明.在动态环境中移动机器人导航和避障的一种新方法.机器人,26(3):42-46
    [44]Eugenio Aguirre, Antonio Gonzalez. A fuzzy perceptual model for ultrasound sensors applied to intelligent navigation of mobile robots. Applied Intelligence.2003, 19:171-187
    [45]Do-Hyeon Kim, Kwang-Baek kim, Eui-Young Cha. Fuzzy truck control scheme for obstacle avoidance. Neuro Comput & Applic.2009,18:801-811
    [46]Meng Wang, James N.K.Liu. Fuzzy logic-based real-time robot navigation in unknown environment with dead ends. Robotics and Autonomous Systems.2008, 56:625-643
    [47]宋轶群,杜华生,董二宝.基于PIC16F877的红外测距系统.仪表技术,2004(5):48-49
    [48]王唤良.频率式红外测距原理.中南林学院学报.1997,17(3):90-94
    [49]冯华君,徐之海,李奇.红外主动式PSD测距系统.光电工程.1999,26(3):42-46
    [50]T.M.Frederiksen and W.H.Howard. A single-chip monolithic sonar system. IEEE J. Solid-state Circuits.1974,9:394-403
    [51]D.Webster. A pulsed ultrasonic distance measurement system based upon phase digitizing. IEEE Trans. Instrum. Meas.1994,43:578-582.
    [52]J.D.Fox, B.T.Khuri-Yakub, and G.S.Kino. High frequency acoustic wave mesaurement in air. Proc. IEEE 1983 Ultrasonic Symp., Atlanta, GA, Oct.31-Nov.2, 1983.
    [53]J.M.Martin Abreu, R.Ceres, and T.Freire. Ultrasonic ranging:Envelope analysis gives improved accuracy. Sensor Review.1992,12:17-21.
    [54]C.Cai and P.P.L.Regtien. Accurate digital time-of-flight measurement using self-interference. IEEE Trans. Instrum. Meas.1993,42:990-994.
    [55]Ke-Nung Huang, Yu-pei Huang. Multiple-frequency ultrasonic distance measurement using direct digital frequency synthesizers. Sensors and Acuators A: Physical.2009,149:42-50
    [56]鲍菁丹.室内未知环境下几何地图构建及机器人定位方法研究[硕士生学位论文].天津大学,2007.
    [57]王晓娟.基于多传感器信息的移动机器人定位研究[硕士学位论文].浙江大学,2010
    [58]刘星.UKF和EKF在卫星姿态确定中的应用研究[硕士学位论文].中国科学院研究生院,2007.
    [59]李静.UKF滤波方法在组合导航系统中的应用研究[硕士学位论文].哈尔滨工程大学,2006.
    [60]姜伟南.基于UKF的低轨卫星实时定轨方法研究[硕士学位论文].国防科学技术大学,2007
    [61]马媛,杨树心,张成.基于UKF的组合导航误差状态估计.华中科技大学学报(自然科学版).2009,37(I):280-283
    [62]Y.Koren and J.Borenstein. Potential field methods and their inherent limitation for mobile robot navigation. Proceeding of IEEE Int.Conf. on Robotics and Automation, Sacramento, California, USA(1991)1398-1404
    [63]J.Borenstein and Y.Koren. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. On Robotics and Automation,7(3)(1991)278-288
    [64]I.Ulrich and J.Borenstein. VFH+:Realiable obstacle avoidance for fast mobile robot. Proceeding of IEEE Int.Conf. on Robotics and Automation, Leuven, Belgium (1998):1572-1577
    [65]刘满禄,张华,王姮,胡天链.基于模糊控制器的移动机器人导航.兵工自动化.2009,28(6):73-75.
    [66]黄炳强,曹广益,费燕琼.基于模糊控制器的机器人路径规划研究.测控技术.2007,26(1):30-32.
    [67]W.L. Xu and S.K. Tso. Real-time self-reaction of a mobile robot in unstructured environments using fuzzy reasoning. Eng. Appl.Artif.Intell.1996,9(5):475-485.
    [68]W.L. Xu and S.K. Tso. Sensor-based fuzzy reactive navigation of a mobile robot through local target switching. IEEE Trans. Syst., Man Cybern.1999,29(3):451-459
    [69]C.Bruckhoff and P.Dahm. Neural fields for local path planning. Proceeding IEEE Int. Conf. Intell. Robots Syst. Innovations Theory Pract.1998,3:1431-1437.
    [70]段勇,徐心和.基于模糊神经网络的强化学习及其在机器人导航中的应用.Control and Decision.2007,22(5):525-530
    [71]李贻斌,李彩虹,宋勇.基于模糊神经网络的移动机器人自适应行为设计.山东大学学报(工学版).2010,40(2):28-33
    [72]付宜利,宋铁兵,马玉林.模糊神经网络数据融合在移动机器人导航中的应用.智能工程.2005,42-45.
    [73]Anmin Zhu, Simon X. Yang. Neurofuzzy-Based Approach to Mobile Robot Navigation in Unknown Environment. IEEE TRANSACTIONS ON SYSTEMS.2007, 37(4):610-621

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700