家蚕BmPTERP和Bm3HCDH基因全长cDNA的克隆与表达特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
家蚕质型多角体病毒(Bombyx mori cytoplasmic polyhedrosis virus, BmCPV)是家蚕致病的重要病原之一,往往给蚕业生产造成极大危害和经济损失。以寻找家蚕感染质型多角体病毒相关应答基因为前提,正确理解病毒感染致病的分子机制对家蚕质型多角体病的防御及蚕药的研发具有重要的意义。
     我们运用基因芯片技术在感染质型多角体病毒的家蚕中肠中鉴定出大量的差异表达基因。根据基因芯片库中基因的表达序列标签(EST),结合利用生物信息学技术和cDNA末端快速扩增(RACE)技术,从家蚕P50品种的中肠组织克隆获得了家蚕2个基因的全长cDNA序列,对所获得的序列进行生物信息学分析。主要研究结论如下:
     一、家蚕磷酸三酯酶相关蛋白(BmPTERP)基因的克隆和表达特性分析
     家蚕磷酸三酯酶相关蛋白(BmPTERP)基因全长cDNA序列为1349bp,其中包括131 bp的5’非翻译区(5’UTR)和168bp的3’端非翻译区(3’UTR)。ORF从cDNA的132位起,在1181位终止,编码350个氨基酸,蛋白的分子量为39.03KDa,等电点为5.72。基因结构分析发现该基因由6个外显子和5个内含子组成,该基因属于金属相关的水解酶家族,包含磷酸三酯酶(PTE)特殊区域。利用RT-PCR对生殖体、中肠、血液、脂肪体及丝腺表达量分析,其结果显示该基因在家蚕各组织中均有表达;荧光定量PCR结果表明该基因在BmCPV感染蚕中肠后的表达水平明显降低,正常蚕中肠组织中该基因的表达水平是感染蚕中肠中表达水平的9.8倍。
     二、家蚕3 -羟酰辅酶A脱氢酶蛋白(Bm3HCDH)基因的克隆和表达特性分析
     家蚕3-羟酰辅酶A脱氢酶蛋白(Bm3HCDH)基因全长cDNA序列为1168bp,包含83 bp的5’端非编码区(5’UTR)和155 bp的3’端非编码区(3’UTR),开放阅读框(ORF)为930 bp,编码310个氨基酸,蛋白分子量为33.6 kD,等电点为9.0;基因结构分析发现该基因由5个外显子和4个内含子组成。利用RT-PCR对生殖体、中肠、血液、脂肪体及丝腺表达量分析,其结果显示该基因在家蚕各组织中均有表达;荧光定量PCR结果表明在BmCPV感染蚕中肠后的表达水平明显降低,在正常蚕中肠组织中的表达水平为感染BmCPV中肠组织的8.2倍。
     根据BmPTERP和Bm3HCDH的实验结果推测,BmPTERP和Bm3HCDH可能与BmCPV感染家蚕的病理过程有关。研究结果为从分子水平上阐明BmCPV对家蚕致病分子机制提供新的理论依据,为进一步研究BmCPV感染与其相关基因的的功能和关系奠定了基础。
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV), one of the important viral pathogens for the silkworm disease, causes harm to product of silkworm and enormous damages to the sericultural industry. Studies on genes related to silkworm infected with BmCPV and understanding of silkworm molecular mechanism of BmCPV infection is crucial to the prevention of BmCPV-caused silkworm disease and the development of new medicine of silkworm.
     In our previous work, large number of differentially expressed genes were identified in the midgut of infected BmCPV by using microarry analysis. Based on the EST information of this microarry analysis, the cDNA of two genes were cloned using the strategy of rapid amplification of cDNA ends. Concurrently bioinformatic methods were applied to analyze the obtained sequences of these genes. The conclusion are as follows:
     1. Molecular cloning and characterization analysis of phosphotriesterase-related protein gene of silkworm,Bombyx mori (BmPTERP).
     BmPTERP consists of 1349 bp and contains a 131 bp 5’UTR and a 168-bp 3’UTR. The open reading frame which locates in the region from 132 bp to 1181 bp of cDNA encodes a 350 amino acid protein. The molecular weight of the putative BmPTERP was 39.03-KDa and isoelectric point 5.72. The result by GSDS (Gene structure display server) showed that the gene sequence of BmPTERP contains six exons and five introns. BmPTERP belongs to the superfamily of metallo-dependent hydrolases and contains specific hits of PTE. RT-PCR analysis revealed that BmPTERP was expressed in all the tissues tested, including gonad, midgut, hemocyte, fat body and silk gland. Real-time quantitative polymerase chain reaction analysis indicated that the relative transcript of BmPTERP in the normal midgut was approximately as 9.8 fold of that in the BmCPV-infected midgut.
     2 Molecular cloning and characterization analysis of 3-hydroxyacyl-coa dehydrogenase protein gene of silkworm, Bombyx mori (Bm3HCDH).
     Bm3HCDH consists of 1168 bp and contains a 83 bp 5’UTR and a 155 bp 3’UTR. A 930 bp open reading frame (ORF) encodes a 310 amino acid protein. The molecular weight of the putative HCDHBm was 33.6-KDa and isoelectric point 9.0. The result by GSDS (Gene structure display server) showed that the gene sequence of HCDHBm contains five exons and four introns. RT-PCR analysis revealed that Bm3HCDH was expressed in all the tissues tested, including gonad, midgut, hemocyte, fat body and silk gland. Real-time quantitative polymerase chain reaction analysis indicated that the relative transcript of Bm3HCDH in the normal midgut was 8.2 fold of that in the infected midgut.
     According to our research results of BmPTERP and Bm3HCDH, it is presumed that BmPTERP and Bm3HCDH might be involved in infection of silkworm with Bombyx mori cytoplasmic polyhedrosis virus. It provided not only new clues for investigating the molecular mechanism of BmCPV infection but also the theoretical basis for further study on the function of BmPTERP and Bm3HCDH of silkworm.
引文
[1] I. H. Holmes, G. Boccardo, M. K. Estes. Family Reoviridae. In Virus Taxonomy [J]. Sixth Report of the International Committee on Taxonomy of Viruses, 1995, 208-237.
    [2] C. C. Payne, C. F. Rivers, A provisional classification of cytoplasmic polyhedrosis viruses based on the sizes of the RNA genome segments [J]. Journal of General Virology, 1976, 33: 71-85.
    [3] F. K. Ikoi, I. M. Kin, F. Motohiro. Segments of genome of viruses containing double-stranded ribonucleic acid [J]. Journal of Molecular Biology, 1970, 51: 247-253.
    [4] K. Hagiwara, M. Tomita, J. Kobayashi, et al. Nucleotide sequence of Bombyx mori cytoplasmic polyhedrosis virus segment 8 [J]. Biochemical and Biophysical Research Communications, 1998, 247: 549-553.
    [5] K. Hagiwara, M. Tomita, K. Nakai, et al. Determination of the nucleotide sequence of Bombyx mori cytoplasmic polyhedrosis virus segment 9 and its expression in BmN4 cells [J]. Journal of Virology, 1998, 72: 5762-5768.
    [6] H. Kyoji, M. Tsuguo. Nucleotide sequences of genome segments 6 and 7 of Bombyx mori cypovirus 1, encoding the viral structural proteins V4 and V5, respectively [J]. Journal of General Virology., 2000, 81: 1143-1147.
    [7] K. Hagiwara, J. Kobayashi, M. Tomita, et al. Nucleotide sequence of genome segment 5 from Bombyx mori cypovirus 1 [J]. Archives of Virology, 2001, 146: 81-187.
    [8] K. Hagiwara, S. Rao, S. W. Scott, et al. Nucleotide sequences of segments 1, 3 and 4 of the genome of Bombyx mori cypovirus 1 encoding putative capsid proteins VP1, VP3 and VP4, respectively [J]. Journal of General Virology, 2002, 83: 477–1482.
    [9] S. Miyajima, A. Mori, K. Hagiwara, et al. Microheterogeneity in the polyhedrin gene of Bombyx mori, a cytoplasmic polyhedrosis virus [J]. Journal of Sericultural Science of Japan, 1998, 67: 87-294.
    [10]余学奎,卢英,张红等.家蚕质型多角体病毒(BmCPV)结构研究[J].生物化学与生物物理学报. 1999, 31: 563-566.
    [11]钟伯雄等.家蚕细胞质型多角体病毒的核酸结合蛋白[J].蚕业科学. 2001, 27: 193-195.
    [12]孙京臣等.家蚕质多角体病毒RDRP的基因克隆、表达及定位研究[D].博士学位论文.中山大学. 2005.
    [13] H. Mori, Y. Minobe, T. Sasaki, et al. (1989). Nucleotide sequence of the polyhedrin gene of Bombyx mori cytoplasmic polyhedrosis virus A strain with nuclear localization of polyhedra [J]. Journal of General Virology, 1989, 70: 1885-1888.
    [14]张志芳等.家蚕对质型多角体病毒病抵抗性的遗传和育种方法研究——Ⅰ.家蚕对质型多角体病毒病抵抗性的遗传规律初探[J].蚕业科学. 1986, 12: 211-214.
    [15]徐安英,李木旺,林昌麒等.家蚕品种资源对质型多角体病毒抵抗性的初步比较试验[J].蚕业科学. 2002, 28: 157-159.
    [16] H. Tanaka, J. Ishibashi, K. Fujita.et al. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori [J]. Insect Biochemistry and Molecular Biology, 2008, 38: 1087-1110.
    [17] L. Huang, T. Cheng, P. Xu, et al. A Genome-Wide Survey for Host Response of Silkworm, Bombyx mori during Pathogen Bacillus bombyseptieus Infection [J]. PLoS, 2009, 4, e8098.
    [18] E. D. Gregorio, P. T. Spellman, P. Tzou, et al. The Toll and Imd pathways are the major regulators of the immune response in Drosophila [J]. EMBO J., 2002, 21: 2568-2579.
    [19] H. G. Boman, D. Hultmark. Cell-free immunity in insects [J]. Annu Rev Microbiol., 1987, 41: 103-126.
    [20] J. A. Hoffmann, F. C. Kafatos, C. A. Janeway, et al. Phylogenetic perspectives in innate immunity [J]. Science, 1999, 284: 1313-1318.
    [21] R. S. Khush, B. Lemaitre. Genes that fight infection: what the Drosophila genome says about animal immunity [J]. Trends Genet, 2000, 16: 442-449.
    [22] S. St?ven, I. Ando, L. Kadalayil, et al. Activation of the Drosophila NF-factor relish by rapid endoproteolytic cleavage [J]. EMBO Rep., 2000, 1: 347-352.
    [23] H. Jiang, M. R. Kanost. The clip-domain family of serine proteinase in arthropods [J]. Insect Biochem. Molec. Biol., 2000, 30: 95-105.
    [24] X. Q. Yu, Y. F. Zhu, C. Ma, et al. Pattern recognition proteins in Manduca sexta plasma [J]. Insect Biochem. Mol. Biol., 2002, 32: 1287-1293.
    [25] K. Narayan. Insect resistance, its impact on microbial control of insect pests [J]. Current Science, 2004, 86:800-814.
    [26] T. E. Clarke, R. J. Clem. Insect defenses against virus infection, the role of apoptosis [J]. International Reviews of Immunology, 2003, 22: 401-424.
    [27]王丰平等. RNA干扰及抗病毒研究进展[J].微生物学免疫学进展. 2006, 34: 54-57.
    [28] S. W. Ding, O.Voinnet, et al. Antiviral immunity directed by small RNAs [J]. Cell, 2007, 130:413–426.
    [29] R. Lu, M. Maduro, F. Li, et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans [J]. Nature, 2005, 436: 1040-1043.
    [30] I. J. Macrae, K. Zhou, F. Li, et al. Structural basis for double-stranded RNA processing by Dicer [J]. Science, 2006, 311: 195-198.
    [31] S. L. Chen, W. H. Fang, H. Fahmi. Theoretical study of the phosphotriesterase reaction mechanism [J]. The Journal of Physical Chemistry, 2007, 111: 1253-1255.
    [32] E. Porzio, L. Merone, L. Mandrich, et al. A new phosphotriesterase from Sulfolobus acidocaldarius and its comparison with the homologue from Sulfolobus solfata [J]. Biochimie, 2007, 89:625-636.
    [33] L. Merone, L. Mandrich, M. Rossi, et al. A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties [J]. Extremophile, 2005, 9: 297-305.
    [34] A. D. Griffiths, D. S. Tawfik. Directed evolution of an extremely fast phosphotriesterase by in vitrocompartmentalization [J]. The EMBO Journal, 2003, 22: 24-35.
    [35] C. Roodveldt, D. S. Tawfik. Directed evolution of phosphotriesterase from Pseudomonas diminuta for heterologous expression in Escherichia coli results in stabilization of the metal-free state [J]. Protein Engineering, Design & Selection., 2005, 18: 51-58.
    [36] L. Ijlst, W. Oostheim, J. P. Ruiter, et al. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: Identification of two new mutations [J]. SSIEM and Kluwer Academic Publishers, 1997, 20: 420-422.
    [37] S. Eaton, I. Chatziandreou, S, Krywawych, et al. Short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency associated with hyperinsulinism: a novel glucose–fatty acid cycle? [J]. Biochemical Society, 2003, 31:1137-1139.
    [38] M. E. Den Boer, R. J. Wanders, A. A. Morris, et al. Long-Chain 3-Hydroxyacyl-CoA Dehydrogenase Deficiency: Clinical Presentation and Follow-Up of 50 Patients [J]. Pediatrics, 2002, 109:99-104.
    [39]贺超英,张志永,陈受宜.大豆中NBS类抗病基因同源序列的分离与鉴定[J].科学通报. 2001, 46(12):1017-1021.
    [40] E. D. Carstea, J. A. Morris, K. G. Coleman, et al. Nieman-pick CI disease gene: homology to mediators of cholesterol homeostasis [J]. Science, 1997, 277: 228-231.
    [41]何俊平,阮松林,祝水金等.图位克隆技术在农作物基因分离中的应用与评价[J].遗传. 2010,32(9): 903―913。
    [42]邢继红,瓮巧云,赵艳敏.拟南芥抗病基因克隆研究现状[J].保定师范专科学校学报. 2006, 19(4):12-14.
    [43]于凤池等. EST技术及其应用综述[J].农业生物技术科学. 2005, 21(2):54-58.
    [44] F. Hatey,G. Tosser-klopp,C. Clouscard-martinato.Expressed sequenced tags for genes:review [J]. Genet Sel Evol., 1998, 30: 521—541.
    [45] M. D. Adams,S. E. Celniker, R. A. Holt, et a1.The Genome sequence of Drosophila melancyaster [J].Science, 2000, 287:2185—2195.
    [46] J. Y. Liu, C. Hara, M, Umeda, et a1. Analysis of randomly isolated cDNAs from developing edosperm of rice(Oryza sativeo):evalution of expressed sequence tags and expression levels of mRNAs [J].Plant Molecular Biology, 1995, 29: 685—689.
    [47] P. Epple, K. Apel, H. Gohlmann. ESTs reveal multigene family for plant defensins in Arabidophsis thahana [J].FEBS Letters, 1997, 400: 168—192.
    [48] F. Sterky, S. Regan, J. Karlsson, et a1. Gene discovery in the woodforming tissue of poplar:Analysis of 5692 expressed sequence tags [J]. Proc Natl Acad Sci USA., 1998, 95:1 3330-13335.
    [49] I. Allona,M. Quinn,E. Shoop, et a1. Analysis of xylem formation in pine by cDNA sequencing [J]. Proc Natl Acad Sc/USA., l998, 95: 9693—9698.
    [50] P. Liang, A. B. Pardee. Differential display of eukaryotic messenager RNA by means of the polymerase chain reaction [J]. Science, 1992, 257: 967~971.
    [51]徐德全,熊远.差异表达基因克隆技术的研究进展[J].中国畜牧兽医. 2004, 31(3): 31-34.
    [52] L. Diatchenko, Y. F. Lau, A. P. Campbell, et al. (1996). Suppression subtractive hybridization, a method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. The Proceedings of the National Academy of Science. U S A., 1996, 93: 6025-6030.
    [53] L. Diatchenko, S. Lukyanov, Y. F. Lau. Suppression subtractive hybridization, A versatile method for identifying differentially expressed genes [J]. Methods in Enzymology, 1999, 303: 349-380.
    [54] G. P. Yang, W. W. Kuang, R. J. Weigel. Combining SSH and cDNA microarrays for rapid identification of differentially expressed genes [J]. Nuncleic Acids Research, 1999, 27: 1517-1523.
    [55] O. D. Von Stein, W. G. Thies, M. Hofmann. A high throughput screening for rarely transcribed differentially expressed genes [J]. Nucleic Acids Research, 1997, 25: 2598-2602.
    [56] E. Breeze, C. Wagstaff, E, Harrison, et al. Gene expression patterns to define stages of post-harvest senescence in Alstroemeria petals [J]. Plant Biotechnology Journal, 2004, 2: 155-168.
    [57] J. Qiu, Y. H. Ni, H. X. Gong, et al. Identification of differentially expressed genes in omental adipose tissues of obese patients by suppression subtractive hybridization [J]. Biochemical and Biophysical Research Communications, 2007, 352: 469-478.
    [58] S.Bulman, J. Siemens, H. J. Ridgway, et al. Identification of genes from the obligate intracellular plant pathogen, Plasmodiophora brassicae [J]. FEMS Microbiology Letters, 2006, 264: 198-204.
    [59] J. Zheng, X. H. Zhou, W. M. Zhang, et al. Ribosomal protein S24 gene differential depression in gastric cancer and its premalignant lesions [J]. Carcinogenesis, Teratogenesis and Mutagenesis (Chinese), 2006, 18: 306-310.
    [60]张志明,赵茂俊,马永毅等.抑制性消减杂交技术及其在玉米抗病基因研究中的应用[J].玉米科学. 2006, 14(3): 42-48.
    [61] S. Munir, S. Singh, K. Kaur, et al. Suppression subtractive hybridization coupled with microarray analysis to examine differential expression of genes in virus infected cells [J]. Biological Procedures Online, 2004, 6: 94-104.
    [62] Z .Z. Zhang, Z. Q. Ma, D. J. Liu. Suppression subtractive hybridization analysis of Ms2 Near isogenic lines of wheat reveals genes differentially expressed in Spikelets and Anthers [J]. Journal of Plant Physiology and Molecular Biology, 2005, 31: 175-182.
    [63] D. V. Rebrikov, S. M. Desai, P. D. Siebert. Suppression subtractive hybridization [J]. Methods in Molecular Biology, 2004, 258: 107-134.
    [64] Q.Zhang, Z. W. Zhang, D. Q. Xin. Suppression subtractive hybridization for identifying differentially expressed genes in renal cell carcinoma [J]. Chinese Medical Journal, 2001, 114: 807-812.
    [65] E. A. Winzeler, D. R. Richards, A. R. Conway, et al. Direct allelic variation scanning of yeast genome [J]. Science, 1998, 281: 1194-1197.
    [66] H.Yue, P. S. Eastman, B. B. Wang, et al. An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression [J]. Nucleic Acid Research, 2001, 29: 41-44.
    [67] S. Junnila, A. Kokkola, M. L. Karjalainen-Lindsberg, et al. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines [J]. BMC Cancer., 2010, 10, 73.
    [68] Y. L. Zhou, M. R. Xu, M. F. Zhao, et al. Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, Xanthomonas oryzae pv. Oryzicola [J]. BMC Genomics, 2010, 11, 78.
    [69] Y. Liang, G. Li, J. D. Van Nostrand, et al. Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field [J]. FEMS Microbiology Ecology, 2009, 70:168-177.
    [70]李维忠,王任小,林大威等.国内外生物信息学数据库服务新进展[J].生物化学与生物物理进展. 1999, 1(1): 1-6.
    [71] E. Y. Loh, J. F. Ellitl, S. Cwila, et al. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain [J]. Science, 1989, 243: 217-220.
    [72] O. Ohara, R. L. Dorit, W. Gilbert. One-side Polymerase chain reaction: The Amplification of cDNA [J]. Proc Natl Acad Sci USA., 1989, 86: 5673-5677.
    [73]韩海勃,曹建平. RACE技术及其在寄生虫全长cDNA克隆中的应用[J].国外医学寄生虫病分册. 2005, 32 (4): 74-78.
    [74]陈启龙. RACE技术的研究进展及其应用[J].黄山学院学报. 2006, 8(3): 95-98.
    [75] H. Watanabe. Genetic resistance of the silkworm, Bombyx mori to viral diseases [J]. Current Science, 2002, 83: 439-446.
    [76] S. Yukun., W. Aizhen., D. Renming, et al. Synthesis of structural proteins in a cell free system directed by silkworm cytoplasmic polyhedrosis virus mRNA synthesized in vitro [J]. Scientia Sinica., 1982, XXIV: 685-690.
    [77] E. S. Balakirev, V. R. Chechetkin, V. V. Lobzini, et al. DNA polymorphism in theβ-esterase gene cluster of Drosophila melanogaster [J]. Genetics., 2003, 164: 533-544.
    [78] C. M.Yoo, C. B. Bak, H. C. Lee. Substrate and inhibitor specificities of esterase in Lucilia illustris [J], Korean J Zool, 1996, 39: 190-197.
    [79] N. Yoshitake, M. Eguchi. Distribution of blood esterase types in various strains of the silkworm B. mori L (in Japanse) [J], Jpn. Seric. Sci., 1965, 34: 95-101.
    [80] H. Arai, T. Okido, H. Fujii, et al. Purification and characterization of a major esterase BesB from haemolymph of the silkworm, Bombyx mori [J]. J. Seric. Sci. Jpn., 2000, 69: 121-130.
    [81] K. M. Ponnuvel, K. K. Ashok, D. Velu, et al. Characterization and genomic organization of esterase gene in silkworm, Bombyx mori L [J]. Indian Journal of Biotechnology, 2008, 7: 183-187.
    [82] K. Tuovinen, E. Kaliste-Korhonen, F. M. Raushel, et al. Protection of organophosphate-inactivated esterases with phosphotriesterase [J]. Fundam. Appl. Toxicol., 1996, 31: 210-217.
    [83] J. A. Daviesa, V. L. Buchmanb, O. Krylovac, et al. Molecular cloning and expression pattern of rpr-1, a resiniferatoxin-binding, phosphotriesterase-related protein, expressed in rat kidney tubules [J]. FEBS Letter, 1997, 410: 378-382.
    [84] A.Vaughan, M. Rodriguez, J. Hemingway. The independent gene amplification of electrophoretically indistinguishable B esterases from the insecticide-resistant mosquito Culex quinquefasciatus [J]. Biochem J.,1995, 305: 651-658.
    [85] C. Roodveldt, D. S. Tawfik. Shared promiscuous activities and evolutionary features in variousmembers of the amidohydrolase superfamily [J]. Biochemistry, 2005, 44: 12728–12736.
    [86] M. Yildirim, A. Colak, M. Col, et al. A new recombinant phosphotriesterase homology protein from Geobacillus caldoxylosilyticus TK4: an extremely thermo- and pH-stable esterase [J]. Process Biochemistry, 2009, 44: 1366–1373.
    [87] Roe CR, Coates PM. Mitochondrial fatty acid oxidation disorders. In: The Metabolic and Molecular Basis of Inherited Disease. New York, NY: McGraw-Hill; 1995, 1513–1517.
    [88] K. Carpenter, R. J. Pollitt, B. Middleton. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is amultifunctional membrane-bound beta-oxidation enzyme of mitochondria [J]. Biochem Biophys Res Commun., 1992, 183: 443–448.
    [89] L. IJlst,R. J. Wanders, S. Ushikubo, et al. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the a-subunit of the mitochondrial trifunctional protein [J]. Biochim Biophys Acta., 1994, 1215: 347–350.
    [90] A. Molven, G. E. Matre, M.Duran, et al. Familial Hyperinsulinemic Hypoglycemia Caused by a Defect in the SCHAD Enzyme of Mitochondrial Fatty Acid Oxidation [J]. DLABETES., 2004, 53: 221-227.
    [91] R. J. Wanders, L. IJlst, A. H. van Gennip, et al. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid oxidation [J]. J Inherit Metab Dis., 1990, 13: 311–314.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700