油菜隐性细胞核雄性不育基因区段的比较分析与特异标记的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜是由甘蓝和白菜杂交天然加倍后形成,基因组中包含A、C两个基因组的信息。由于A、C基因组是在大约400万年前由共同的芸薹属祖先分化而来,二者具有高度保守的基因组结构和微观共线性(Rana et al.,2004)。因此,甘蓝型油菜的遗传作图研究很可能会受到同源基因组的影响。从DNA序列水平上研究A、C基因组之间的变异,并在微观共线性良好的同源基因组之间区别二者,将为甘蓝型油菜的相关研究提供帮助。
     9012AB是一种新的甘蓝型油菜隐性细胞核雄性不育材料,具有败育彻底,不育性稳定,恢复源广泛的特点,因此在三系配套育种中具有重要的利用价值。陈凤祥等对该材料的研究表明:其育性受到两对重叠隐性不育基因(ms3ms3、ms4ms4)和一对隐性上位抑制基因(rfrf)互作控制。何俊平等已将其中一个不育基因ms3精细定位在0.034cM的遗传区间。物理作图表明该区间最少由6个BAC克隆构成的一个完整的重叠群所覆盖,并利用亚克隆测序的方法获得其中包含目标基因的一个BAC克隆。为了进一步开发与Ms3紧密连锁的标记,并验证BAC克隆筛选的结果及比较该区间在甘蓝和白菜基因组之间的微观共线性关系,从而为Ms4的研究提供可能的便利,本研究从上述BAC克隆测序序列中随机选择20kb的区域在不同材料中进行比较测序并分析,获得如下主要结果:
     1.根据20kb的区域设计18对引物,其扩增产物理论上能够构成一个完整的重叠群并完全覆盖该区间。利用这18对引物在9012A、9012B、白菜和甘蓝中扩增,扩增产物拼接后共得到三种材料52个区段序列信息。
     2.对所得材料的区段序列进行比对分析发现,甘蓝型油菜Tapidor、9012A、9012B、白菜和甘蓝之间存在较好的微观共线性,且甘蓝型油菜9012A和白菜之间的相似性高,9012B、Tapidor和甘蓝之间的相似性高。参考模式植物拟南芥信息进一步基因预测发现:该区段3个对应基因方向相同,外显子区域一致且比较保守;内含子区段序列存在碱基的突变、插入或缺失。根据测序所得序列差异较大的区域,开发9012A和9012B之间6对多态性标记,白菜和甘蓝之间的多态性标记DM1和HWY。
     3.经重组单株验证后,根据9012A和9012B之间序列差异开发的新标记在20,391个单株的分离群体中与ms3基因共分离。和原来的定位结果相比,虽然开发了新的标记,但并没有缩小包含ms3基因的物理区间。
     4.根据白菜和甘蓝的序列差异,开发出在49份白菜和8份甘蓝之间存在稳定多态性的共显性标记2个。利用该标记筛选先前鉴定的甘蓝型油菜BAC克隆文库,发现标记在克隆中扩增产物与白菜基因组中大小和序列一致,而没有发现与甘蓝基因组中大小一致的克隆。而根据先前的研究,ms3基因定位于N19连锁群,对应甘蓝的第9染色体。据此推测,筛选到的BAC克隆事实上可能是ms3基因位于白菜基因组中的同源区。
     5.利用BAC克隆开发出的SSR标记和本实验中开发的A、C基因组特异标记DM1在Ms4定位群体中进行多态性检测,发现所有标记在定位群体中与Ms4基因不连锁,暗示着Ms4基因可能根本就不是Ms3的一个同源基因,而是两个起源不同的基因。因此,以前认为Ms3和Ms4为重叠隐性基因的这一说法可能需要进一步论证。
Brassica napus is a polyploid resulting from the natural hybridization of B. rapa (containing the Brassica A genome) and B. oleracea (containing the Brassica C genome). The A and C genome differentiated from a common ancestor Brassica about 400 million years ago.They have highly conserve genome structure and high micro-collinearity (Rana et al., 2004), which may hamper the genetic mapping in Brassica napus.The research of the variance between A and C genomes on DNA sequence level can be used to distinguish homologous genomes between A and C genomes which have high microcollinearity, and therefore may provide some assistance of the research of Brassica napus.
     9012AB is a novel genic male sterility (GMS) material which has great potential in three line seed production, because of it's a series of advantages, such as complete sterility, high stability, sufficient restore lines, and so on. Genetic analysis indicated that the male sterility of 9012AB was controlled by two pairs of recessive duplicate sterile genes (ms3ms3 and ms4ms4) interacting with one pair of a recessive epistatic inhibitor gene (rfrf) (Chen et al., 1998). The previous study ( He et al., 2008) shown that the ms3 gene was fine mapped to a region of 0.034cM which including at least six BACs and the BAC clone which contained the target gene was identified by subclone sequencing. In order to develop ms3 mocular makers, confirm the results of BAC subclone and compare the micro-collinearity between B. oleracea and B. rapa, we randomly selected 20kb sequences on the basis of the subclone library for comparative sequencing and analyzing from differenent matirials, which can provide the theory basis and help for the mapping and cloning of ms4 gene. The major results were as follows:
     1. A total of 18 primer pairs which were designed according to the 20kb sequences were used in 9012A、9012B、B. rapa and B. oleracea. The amplification products from these primer pairs could constitute a contig that can coverage this region completely in theory. Splicing the sequence of these amplification products, we obtained the the sequence information of these materials.
     2. Based on the section sequence, we analyzed the microcollinearity of Tapidor、9012A、9012B、B. rapa and B. oleracea in the selective region. The results indicated that 9012A and B. rapa had the high sequence similarity, so as the 9012B、Tapidor and B. oleracea. Gene prediction of this region refer to the Arabidopsis genome sequence shown that this region included three highly conserved genes with the same direction. The sequences of the exons of those genes had little or no changes, however, the sequences of the introns of those genes had mutation, insertion or deletion. According to these significant differences, we developed six markers as to distinct 9012A and 9012B,markers named DM1 and HWY to distinct B. rapa and B. oleracea.
     3. Five markers developed from 9012A and 9012B showed co-segregated with the target gene ms3 by tested recombination plants of 20,391 individuals. As a result, we did not reduce the physical region of the gene ms3, although five new markers were developed.
     4. According to the different sequences between B. rapa and B. oleracea, Two codominant markers, which showed stable polymorphism in forty nine B. rapa and eight B. oleracea materials were developed. Then, we used the markers to identity the Brassica napus BAC library, which contained the target gene ms3. The amplified products with the same size and sequence information of B. rapa genome,were obtained, however, clone with the same size in B. oleracea genome was not found. According to the previous studies, ms3 gene located in the N19 linkage groups, which corresponding to B. oleracea chromosome of C9. It was speculated that the BAC clones we selected could be the homology region of ms3 in B. rapa.
     5. We used the SSR markers from BAC clones and the A, C genome-specific markers to detect the polymorphism in ms4 mapping population. All markers were not linked with ms4 gene. It is suggested that the ms3 and ms4 were different homologous genes, so the statement about ms3 and ms4 were two pairs of recessive duplicate sterile genes needed to be further confirmed.
引文
1.曹必好,宋洪元,雷建军,宋明,杨朝辉.结球甘蓝抗TuMV相关基因的克隆.遗传学报,2002,29:565-570
    2.陈安河.甘蓝型油菜及其亲本物种C4H基因家族克隆及比较基因组学研究.[博士学位论文].重庆:西南大学,2006
    3.陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24:431-438
    4.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新,李成,陈维生.甘蓝型油菜隐性上位互作核不育双低杂交种皖油14号的选育.中国油料作物学报,2003,25:63-65
    5.陈凤祥,胡宝成,李强生,侯树敏,吴新杰,费维新.甘蓝型油菜隐性上位互作核不育双低杂交种“皖油18”的选育.安徽农业科学,2002,30:535-537
    6.陈凤祥,胡宝成,李强生.细胞核不育材料9012A的发现与初步遗传.见:全国植物雄性不育及杂种优势利用青年学术讨论会论文集.北京农业大学学报(A),1993,2:20-25
    7.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    8.傅廷栋,周永明.中国油菜品种的遗传改良.第十二届国际油菜大会论文集,2007,43
    9.何俊平.甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位.[博士学位论文].华中农业大学,2008
    10.洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[博士学位论文].华中农业大学,2006
    11.胡胜武,樊云芳,赵慧贤,郭学兰,于澄宇,刘胜毅,王汉中.两个显性核不育油菜中MS2Bnap同源基因的克隆及其与拟南芥MS2基因的结构比较.中国科协2005年学术年会文集.2005
    12.蒋梁材,蒲晓斌,王瑞,张启行,蔡平钟.甘蓝型油菜核不育基因的RAPD标记.中国油料作物学报,2000,22:1-4
    13.李殿荣.甘蓝型油菜三系选育初报.陕西农业科学,1980:26-29
    14.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1:1-12
    15.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传验证.上海农业 学报,1986,21:1-8
    16.李树林,钱玉秀,周熙荣.显性核不育油菜的遗传性.上海农业学报,1987,3:1-8
    17.李树林,周熙荣,周志疆.显性核不育油菜的遗传与利用.作物研究,1990,4:27-32
    18.李媛媛,傅廷栋,马朝芝.芸薹属植物比较基因组学研究进展.植物学通报,2007,24(2):200-207
    19.李柱刚,崔崇士,马荣才,曹鸣庆,王广金.芸薹属植物基因组学研究进展.2005,25(8):30-34
    20.李宗芸,栗茂腾,黄荣桂,伍晓明,宋运淳.基因组原位杂交辨别芸薹属异源四倍体AA、BB、CC基因组研究.中国油料作物学报,2002,24(1):10-14
    21.栗茂腾,张椿雨,刘列钊,余龙江.芸薹属A,B和C基因组之间关系研究进展.遗传,2005,27(4):671-676
    22.林宝刚,黄海,张龙,张明龙.甘蓝型油菜Polima和Shan 2A CMS的orf224基因的序列分析.中国农业科学,2006,39:1282-1286
    23.刘后利.油菜遗传育种学[M].北京:中国农业大学出版社,2000
    24.宋来强.甘蓝型油菜显性细胞核雄性不育的遗传与应用模式.[博士学位论文].华中农业大学,2005
    25.宋雪梅,李宏滨,杜立新.比较基因组学及其应用.生命化学,2006,26:425-427
    26.孙超才,王伟荣,李延莉,周熙荣,钱小芳.甘蓝型双低隐性核不育杂种“沪油杂2号”的选育.上海农业学报,2005,21:1-3
    27.孙超才,赵华,王伟荣,李延莉,钱小芳,方光华.甘蓝型双低隐性核不育杂交种沪油杂1号的选育.中国油料作物学报,2004,26:63-65
    28.涂金星,傅廷栋,郑用琏.甘蓝型油菜隐性核不育材料90-2441A的遗传及其等位性分析.华中农业大学学报,1997,16:255-258
    29.涂金星,郑用琏.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,1997,16:112-117
    30.王贵春.甘蓝型油菜隐性细胞核雄性不育两型系9012AB雄性不育基因分子标记的开发.[博士学位论文].华中农业大学,2007
    31.王丽侠,赵建伟,徐芳森,刘仁虎,孟金陵.与甘蓝型油菜重要经济性状有关的DNA克隆在拟南芥遗传图谱中的整合.遗传学报,2002,29:741-746
    32.轩淑欣,王彦华,李晓峰,赵建军,张成合,申书兴.芸薹属作物分子遗传连锁图谱应用研究进展.中国农业科学,2008,41(7):2055-2062
    33.杨成军.甘蓝型油菜CHSA、CHSB基因以及WRKY44同源基因片段的克隆与序列分析.[博士学位论文].重庆:西南大学,2004
    34.杨光圣,傅廷栋.油菜杂种优势利用的一条可能途径—细胞核+细胞质雄性不育.华中农业大学学报,1993,12(4):307-316
    35.张森,李辉,顾志刚.功能基因组学研究的有力工具—比较基因组学.东北农业大学学报,2005,36(5):664-668
    36.张天真.作物育种学总论.北京:中国农业出版社,2003
    37.赵志伟,曾凡亚,赵云等.甘蓝型油菜BAN同源基因片段克隆与序列分析.中国油料作物学报,2001,23:7-10
    38.Axelsson T,Shavorskaya O,Lage rcrantz U.Multiple flowering time QTLs within several Brassiea species could be the result of duplicated copies of one ancestral gene.Genome,2001,44:856-864
    39.Ayele Met al.Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis.Genome Research,2005,15,487-495
    40.Babula D,Kaczmarek M,Barakat A,Delseny M,Quiros C F,Sadowski J.Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map.Molecular Genetics and Genomics,2003,268:656-665
    41.Bannerot H,Boulidard L,Cauderon Y,Tempe J.Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea.Proc Eucarpia Meeting Cruciferae,1974
    42.Bonierbale M W,Plaisted R L,Tanksley SD.RFLP maps based on a common set of clones revealmodes of chromosomal evolution in tomato and potato.Genetics,1988,120:1095-1103
    43.Bowman J L.Molecules and morphology:comparative developmental genetics of the Brassicaceae.P1.Syst.Evol.2006,259:199-215
    44.Brown GG,Formanova N,Jin H,Wargachuk R,Dendy C,Patil P,Laforest M,Zhang J,Cheung W Y,Landry B S.The radish Rfo restorer gene of Ogura cytoPlasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J, 2003, 35:262-272
    45. Chaim A B, Paran I, Grube R. QTL mapping of fruit related traits in pepper (Capsicum annuum ). Theor Appl Genet, 2001, 102: 1016-1028
    46. Chao S. Proceedings of the 7th International Wheat Genetics Symposium [C].1988, 493-498
    47. Cheung W Y, Champagne G, Hubert N. Comparison of genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet, 1997, 94:569-582
    48. Christiane G, Birgit W, Heike H, Abdelali B, Michel D, Kurt U. Comparative mapping between potato (Solarium tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. The Plant Journal, 2003, 34,529-541
    49. Fu T D. Production and research of rapeseed in the People's Republic of China. Eucarpia Cruciferae Newsletter, 1981, 6: 6-7
    50. Gale M D, Devos K M. Comparative genetics in the grasses. Proc Natl Acad Sci USA, 1998,95:1971-1974
    51. Hazen S P, Hawley R M, Davis G L, Bernard H, Jonathan D W. Quantitative traits loci and comparative genomics of cereal cell wall composition. Plant Physiology, 2003, 132:263-271
    52. Hoenecke M, Chyl Y S. Comparison of Brassica napus and B.rapa genomes based on the restriction fragment length polymorphism mapping.Proc.8th international Rapeseed Congress. 1991,1102-1107
    53. Isobel A P, Parkin, Sigrun M, Gulden, Andrew G. S, Lewis L, Martin T, Thomas C, Osborn, Derek J. Segmental Structure of the Brassica napus Genome Based on Comparative Analysis with Arabidopsis thaliana. Genetics, 2005,171:765-781
    54. Karine B, Adile A, Rosa-Stella M, Oliver C, Renate S. The Arabidopsis Genome Sequence as a Tool for Genome Analysis in Brassicaceae. A Comparison of the Arabidopsis and Capsella rubella Genomes. Plant Physiology, 2004, 135: 735-744Ke L P, Sun Y Q, Liu P W, Yang G S. Identification of AFLP fragments linked to one recessive genic male sterility (RGMS) in rapeseed (Brassica napus L.) and conversion to SCAR markers for marker-aided selection. Euphytica. 2004, 138: 163-168
    55. Kianian S F, Quiros C F. Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet, 1992, 84:544-555
    56. Kole C, Williams P H, Rimer S R, Osben T C. Linkage mapping of genes controlling resistance to white rust(Albugo Candida) in Brassica rape and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome, 2002,45:22-27
    57. Kowalski P, Lan T H, Feldmann K A, Paterson A H. Comparative Mapping of Arabidopsis thaliana and Brassica oleracea Chromosomes Reveals Islands of Conserved Organization.Genetics, 1994,138:499-510
    58. Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica. Genetics, 1996, 144: 1903-1910
    59. Lagercrantz U. Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of gene controlling flowering time. Plant J., 1996,9:13-21
    60. Lagererantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics, 1998,150: 1217-1228
    61. Lan T H, Delmonte T A, Reischmann K P, Hyman J, Owalski S P, Mcferson J, Kresovich S, Paterson A H. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Research, 2000,10: 776-788
    62. Lei S L, Yao X Q, Yi B, Chen W, Ma C Z, Tu J X, Fu T D. Towards map-based cloing: fine mapping of the recessive genic male-sterile gene (Bnms2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet, 2007, 115: 643-651
    63. Leister D, Kurth J, Laurie D A, Yano M, Sasaki T, Devos K, Graner A, Schulze-Lefert P. Rapid reorganization of resistance gene homologues in cereal genomes.Proc Natl Acad Sci USA.1998,95(1):370-375
    64. Levois L, Fei Z, Derek L. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003, 164:359-372
    65. Levois Lukens, Fei zou, Derek Lydiate. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetic, 2003,164:359-372
    66. Li G, Gao M, Yang B, Quiros C F. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor Appl Genet, 2003, 107:168-180
    67. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics, 2003, 164:359-372.
    68. Lydiate D, Sharpe A, Lagercrantz U. Mapping the Brassica genome. Outlook Agric, 1993,22:85-92
    69. Lysak M A, Koch M A, Pecinka A. Chromosome triplication found across the tribe Brassicea. Genome Res, 2005,15:516-525
    70. Lysak M A, Lexer C. Towards the era of comparative evolutionary genomics in Brassicaceae. Pl.Syst.Evol.2006, 259:175-198
    71. M. Eric Schranz, Martin A L, Thomas Mitchell-Olds. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. TRENDS in Plant Science, 2006,11(11): 535-542
    72. Martin A. L, Marcus A, Koch, Ales P, Ingo S. Chromosome triplication found across the tribe Brassiceae. Genome Research, 2005,15:516-525
    73. McGrath J M, Quiros C F. Generation of alien chromosome addition lines from Synthetic Brassica napus, morphology, cytology, fertility, and chromosome transmission. Genome, 1990, 33:374-383
    74. Michelmore R, Paran W I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991,88:9828-9832
    75. Muangprom A, Osborn T C. Characterization of adwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet, 2004, 108:1378-1384
    76. Mueller U G, Wolfenbarger L L. AFLP genotyping and fingerprinting. Trends Ecol Evol, 1999, 14:389-394
    77. Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. Scanning human gene deserts for long-range enhancers.Science, 2003, 302(5644): 413
    78. O'Neill C N, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J, 2000, 23: 233-243
    79. Ogura H. Studies on the new male-sterility in Japanese radish with special reference to the ultilization of this sterility towards the practical raising of hybrid seeds. Mem Fac. Agric Kagoshima Univ. 1968, 6:39-78
    80. Olmstead R G, Palmer J D. Implication for the phylogeny, classificaton, and biogeography of Solanum from cpDNA restriction site variation. Syst. Bot, 1997,22:19-29
    81. Park J Y et al. Physical mapping and microsynteny of Brassica rapa ssp.pekinensis genome corresponding to a 222kb gene-rich region of Aribidosis chromosome 4 and partially duplicated on chromosome 5. Mol.Genet.Genomics, 2005, 274,579-588
    82. Parkin I A P, Sharpe A G, Lydiate D J. Patterns of genome duplication within the Brassica napus genome. Genome,2003,46:291-303
    83. Peng J, Richards DE, Hartley NM, Munrphy GP, Devos KM, Flintham JE, Beales J, Fish L J, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. Green revolution genes encode mutant gibberellin response modulators. Nature, 1999,400:256-261
    84. Pereira M G, and Lee M. Identification of genomic regions affecting plant height in shorghum and maize, Theor Appl Genet, 1995, 90:380-388
    85. Plieske J, Struss D. STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus. Theor Appl Genet, 2001,102: 483-488
    86. Priya P, Arun J, Naveen C B, Sarita S, Vibha G, Akshay K P, Deepak P. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 2008, 9:113
    87. Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I. A comparative linkage map of oilseed rape and its use for QTLs analysis of seed oil and erucic acid content. Theor Appl Genet, 2006,114:67-80
    88. Rana D T, Boogaart van den O'Neill C M, Hynes L, Bent E, Macpherson L, Park J P, Kim Y P, Bancroft I. Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J, 2004, 40:725-733
    89. Robert L S, Robson F, Sharpe A, Lydiate D, Coupland G. Conserved structure and function of the Arabidopsis flowering time gene constans in Brassica napus. Plant Molecular Biology, 1998, 37:763-772
    90. Rod S, Ana G B, Panji B, Niklas F, Maen H, Florin L, Ana S, Benjamin W, Wolfgang F. Dissection of quantitative traits in oilseed rape for marker development using Brassica-Arabidopsis comparative genomics. the 12th international rapeseed congress, 155
    91. Sadowski J, Gaubier P, Delseny M, Quiros C F. Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet, 1996,251:298-306
    92. Searle I R, Men A E, Laniya T S, Buzas D M, Iturbe-Ormaetxe I, Carroll B J, and Gresshoff P M. Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. science, 2003, 299:109-112
    93. Shiga T, Baba S. Cytoplasmic male sterility in rape plants (Brassica napus L.). Japanese Journal of Breeding, 1971,21:16-17
    94. Song K M, Suzuki J Y, Slocum M K, Williams P H, Osborn T C. A linkage map of Brassica rapa (syn campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet, 1991, 82:296-304
    95. Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment length Polymorphisms (RFLPs) Genone evolution of diploid and amphidiploid species. Theor Appl Genet, 1996, 75:784-794
    96. Struss D, Quiros C F, Pliieske J. Construction of Brassica B genome synteny groups based on chromosomes extracted from three different sources by Phenotypic, isozyme and molecular marker. Theor Appl Genet, 1996, 93:1026-1032
    97. T Shiga, S Baba. Cytoplasmic male sterility in oilseed rape (Brassica napus L.), and its utilization to breeding. Japanese Journal of Breeding, 1973
    98. Teutonico R A, Osborn T C. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to linkage maps of B.napus, B.oleracea and Arabidopsis thaliana. Theor Appl Genet, 1994, 89:885-894
    
    99. Thompson K F. Heterosis for yield in winter rape. Plant breeding Institute Annual Report, 1972: 95-96
    
    100.Town C D, Cheung F, Maiti R, Crabtree J, Haas B J, Wortman J R, Hine E E, Althoff R, Arbogast T S, Tallon L J, Vigouroux M, Trick M, Bancroft I.Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell, 2006,18: 1348-1359
    101 .Town C D, Cheung F, Maiti R, Crabtree J, Haas B J, Wortman J R, Hine E E, Althoff R, Arbogast T S, Tallon L J, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy.Plant Cell, 2006,18: 1348-1359
    102.Truco M J, Hu J, Sadowski J, Quiros C F. Inter-and intra-genomic homology of Brassica genomes: implications for their origin and evolution. Theor Appl Genet, 1996, 93:1225-1233
    103.U N. Genome analysis in Brassica with special reference to the experimental formation of Brassica napus and peculiar mode of fertilization. Japanese Journal of Botany, 1935, 7:389-452
    104.U T D.Fine mapping of the recessive genic male sterility gene (Bnms3) in Brassica napus L. Theor Appl Genet, 2007,115: 113-118
    105.Vos P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting.Nucl Acid Res, 1995,23:4407-4414
    106.Wang L X, Zhao J W, Xu F S, Liu R H, Meng J L.Integration of DNA clones related to important economic traits of Brassica napus onto Arabidopsis genetic map. Acta Genetica Sinica, 2002,29: 741-746.
    107.Wikstrom N, Savolainen V, Chase M W.Evolution of the angiosperms: calibrating the family tree. Proc R Soc Lond Biol Sci. ,2001, 268: 2211-2220
    108.Wilson W A, Harrington S E, Woodman W L, Lee M, Sorrells ME, MeCouch S R. Inferences on the genome structure of Progenitor maize through comparative analysis of rice, maize and the domesticated Panicoids. Genetics, 1999,153(1): 453-73
    109.Yang T J, Kim J S, Kwon S J, Lim K B, Choi B S, Kim J A, Jin M, Park J Y, Lim M H, Kim H, Lim Y P, Kang J J, Hong J H, Kim C B, Bhak J, Bancroft I, Park B S. Sequence-level analysis of the diploidization process in the triplicated flowering locus C region of Brassica rapa. Plant Cell, 2006,18: 1339-1347
    110.Yi B, Chen Y N, Lei S L, Tu J X, Fu T D.Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus. Theor Appl Genet, 2006,113: 643-650

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700