水稻抗旱QTL区域的连锁不平衡结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选取国内外有代表性的籼稻品种和粳稻品种为材料,研究水稻抗旱QTL区域的单核苷酸多态性及连锁不平衡结构,探讨采用关联分析发掘水稻抗旱基因的可行性,主要结果如下:
     1.选取来自国内外籼稻品种42份,粳稻品种28份为实验材料,测序获得分布在水稻6条染色体上的6个QTL区域内98个位点总长为46895bp的DNA序列,采用DNASP软件分析发现了455个SNPs,其中转换306个,颠换149个,转换与颠换的比值约为2.05:1,与理论值2:1相当。籼稻中有371个SNPs, SNP频率(θw)为1.84×10-3,π值为1.74×10-3;粳稻中有271个SNPs, SNP频率(θw)为1.49×10-3,π值为0.76×10-3。籼稻和粳稻中都存在丰富的单核苷酸多态性,籼稻大于粳稻。6个QTL区域之间单核苷酸多态性的频率存在较大差异:在籼稻中,QTL QRT10区域最高(θw=2.31×10-3), QTL QRfp12区域的SNPs频率最低(θw=1.15×10-3),相差达两倍。在粳稻中,OA8.1区域上最高(θw=2.70×10-3),QRfp12区域SNPs频率最低(θw=0.48×10-3),相差五倍多。
     2.对比籼粳群体的次等位基因频率发现,籼稻和粳稻群体中分布最多的均为次等位基因频率小于等于10%的稀有SNPs位点。粳稻表现得更为明显,在271个SNPs位点中有121个是频率小于等于10%的稀有SNPs位点,占总数的44.6%;而籼稻中,在371个SNPs位点中有131个是频率小于等于10%的稀有SNPs位点,占总数的35.3%。而且在不同的QTL区域,稀有SNPs数目相差较大,籼稻在QTL qDT-5区域稀有SNPs所占的比例最大,为81.1%,在QRfp12区域所占比例最小,仅为6.3%;粳稻在QRT10区域稀有SNPs所占的比例达100%,而在OA8.1区域仅占24.1%。
     3.籼粳群体在6个水稻抗旱QTL区域呈现出不同的连锁不平衡结构,粳稻群体LD衰减距离为500-1500kb以上,籼稻群体LD衰减距离为500-1500kb。粳稻连锁不平衡强度R2平均值为0.2957,籼稻R2平均值为0.2473,粳稻的连锁不平衡强度大于籼稻。籼稻R2平均值在QTL PRL11.1最小,为0.0840,在QTL qCC-1最大,为0.3535;粳稻R2平均值在QTL PRL11.1最小,为0.1334,在QTL qDT-5最大,为0.4389,说明同一群体在不同染色体上QTL区域连锁不平衡强度差异较大。
     4.基于SNP单倍型进行聚类分析,结果发现籼稻和粳稻明显地聚为两大独立类群,但是无论是在籼稻还是粳稻中,水稻和旱稻的区别并不明显,互相混杂。表明籼稻和粳稻的群体差异高于水稻和旱稻的差异。
     5.对抗旱性与SNP/单倍型进行关联分析,发现QTL qCC-1、qDT-5、OA8.1和PRL11.1都与抗旱性之间存在着显著的关联,与抗旱性关联性最强的标记位于11号染色体上PRL11.1 QTL,关联分析与QTL定位结果吻合的比率高达67%,说明用关联分析方法发掘抗旱基因是可能的。
We choose representative Chinese and foreign cultivated rice including accessions of indica and japinica for the study of single nucleotide polymorphisms (SNPs) and linkage disequilibrium (LD), to explore the feasibility of association analysis in finding rice drought-resistant gene. The mainly results are as follows:
     1. Ninety eight DNA fragments which distribution on six drought-resistance QTL of Oryza sativa L. were successfully sequenced in 42 Indica and 28 Japonica. The total length of the sequence is 46895 bp.455 single-base changes (SNPs) were found. There were 306 transitions and 149 transversions in all single-base changes (SNPs). And TslTv was 2.05:1, which is consistent with the theoretical ratio 2:1. There are 371 SNPs in Indica, the SNPs frequencies (θw) in indica is 1.84×10-3,πis 1.74×10-3. There are 271 SNPs in japonica, the SNPs frequencies (θw) in japonica is 1.49×10-3,πis 0.76×10-3, the SNPs frequencies in indica are higher than in japonica. The SNPs frequencies in the six QTL region are significantly different. In indica, QTL QRT10 has the highest SNPs frequency (0w=2.31×10-3). QTL QRfp12 has the lowest SNPs frequency (9w=1.15×10-3). In japonica, QTL QRT10 has the highest SNPs frequency (9w=2.70×10-3). QTL QRfp12 has the lowest SNPs frequency (9w=0.48×10-3), a difference of more than five times.
     2. The most SNPs have Minor SNPs frequency≤10% in Indica and Japonica. the number of SNPs tends to reduce when the Minor SNPs frequency increase. japonica has more rare SNPs, There are 121 SNPs with Minor SNPs frequency (<10%) in 271 SNPs, the frequency is 44.6%. In indica, there are 131 SNPs with Minor SNPs frequency (<10%) in 371 SNPs. the frequency is 35.3%, The number of rare SNPs is different in different QTL regions. In Indica, the proportion of rare SNPs in QTL qDT-5 is 81.1%, the proportion of rare SNPs in QTL QRfp12 is 6.3%. In Japonica, the proportion of rare SNPs in QTL QRT10 is 100%, the proportion of rare SNPs in QTL OA8.1 is 24.1%.
     3. Linkage disequilibrium structures were detected in the six investigated drought-resistance QTL regions. Each regions show different patterns of LD, The extent of LD in japonica group is500->1500 kb, the extentof LD in indica group is 500-1500 kb. The median R2 values of japonica group is 0.2957, indica group is 0.2473. The extent of LD in japonica is larger than indica. In indica, QTL PRL11.1 has the lowest R2 values (0.0840), QTL qCC-1 has the largest R2 values (0.3535). In japonica, QTL PRL11.1 has the lowest R2 values (0.1334), QTL qDT-5 has the largest R2 values (0.4389). It shows that different QTL regions has different LD structure even in the same group.
     4. Cluster analysis based on SNPs haplotype shows that indica and japonica clearly clustered into two separate groups, but both in the indica and japonica, the difference of lowland rice and upland rice is not obvious, mixed with each other. It shows that the differences between indica and. japonica are higher than lowland rice and upland rice.
     5. The association analysis show that QTL qCC-1, qDT-5, OA8.1, PRL11.1 associated with drought-resistance, and the most notable association was on QTL PRL11.1 of chromosome 11. The ratio of QTL linkage analysis agree with association analysis is 67%, it suggests that association analysis in finding rice drought-resistance genes is possible.
引文
[1]Yu J, Hu S N, Wang J, Gane K S. A draft sequence of the rice genome (Oryza sativa L. ssp. indica) [J]. Science,2002,296(79):79-92.
    [2]Shen L, Courtois B, McNally K L, Robin S, Li Z. Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection [J], Theoretical and Applied Genetics,2001,103 (1):75-83.
    [3]薛金义,荆宇,华玉凡.略论我国早稻的生产及发展[J].中国稻米,2002,2(4):5-7.
    [4]廖显辉.话说”节水农业”[J].农业考古,2002,(1):44-47.
    [5]Clark L J, Cope R E. Root penetration of strong soil in rainfed lowland rice:comparison of laboratory screens with field performance [J]. Field Crops Research,2002,76:189-198.
    [6]李茂松,李森,李育慧.中国近50年旱灾灾情分析[J].中国农业气象,2003,24(1):7-10.
    [7]郭进修,李泽椿.我国气象灾害的分类与防灾减灾对策[J].灾害学,2005,20(4):106-109.
    [8]成福云.干旱灾害对21世纪初我国农业发展的影响探讨[J].水利发展研究,2002,2(10):31-33.
    [9]辛吉武,许向春.我国的主要气象灾害及防御对策[J].灾害学,2007,22(3):85-89.
    [10]Lin J Y, Shen M. Rice production constraints in china[J]. In Evenson R E, Herdt R W, Hossain M. Rice research in Asia:progress and priorities. Cab International in association with International. Rice Research Institute,1996:161-178.
    [11]陈传波,丁士军,陈风波.基于地块的南方水稻干旱损失估计[J].农业技术经济,2004(1):345-351.
    [12]凌祖铭,李自超,余荣.水旱栽培条件下水陆稻品种产量和生理性状比较[J].中国农业大学学报,2002,7(3):13-18.
    [13]Turner N C. Further progress in crop water relations [J]. Advances in Agronomy,1997,58: 293-339.
    [14]Nguyen H T, Babu R C, Blum A. Breeding for drought resistance in rice:physiology and molecular genetics considerations [J]. Crop Science.1997.37:1426-1434.
    [15]O Toole J C, Soemartono. Evaluation of simple technique for characterizing rice root System relation to drought resistance [J]. Euphytica,1981,30:283-290.
    [16]Ali M L, Pathan M S, Zhang J, Bai G, Sarkarung S, Nguyen T. Mapping QTL for root traits in a recombinant inbred population from two indica ecotypes in rice [J]. Theoretical and Applied Genetics,2000,101:756-766.
    [17]Price A H, Virk D S, Tomos A D. Genetic dissection of root growth in rice(Oryza sativa L.). I A hydroponic screen[J]. Theoretical and Applied Genetics,1997a,95:132-142.
    [18]Liu Y, Deng L Q. The Drought Resistance of the Main Tree Species in Relation with Their Root Characteristics in the Western Areas of Liaoning Province [J]. Jurnal of Sheng yang Agricultural University,1995,26(2):171-176.
    [19]Ling Z M, Li Z C, Yu R. Agronomic root characters of upland rice and paddy rice(Oiyza sativa L.) [J]. China Agricultural University,2002,7:7-11.
    [20]Fu kai S, Cooper M. Development of drought resistant cultivars using physio-morphological traits in rice [J]. Field Crops Research,1995,40:67-86.
    [21]Grill E, Ziegler H. A plant dilemma [J]. Science,1998,282:252-253.
    [22]赵九洲,刘绍洪.渗透调节机制与植物的抗旱性研究[J].江西林业科技.2005,4:27-30.
    [23]张燕之,周毓珩.水稻抗早性鉴定方法与指标研究1.生理生化方法鉴定稻的抗旱性与水分胁迫下产量关系[J].辽宁农业科学,1996(1):11-13.
    [24]张华,子会.干旱胁迫下玉米木质部汁液pH和ABA含量变化及其与气孔的关系[J].河北农业科学,2004,8(2):35-39.
    [25]Ouk M, BasnayakeJ, Tsubo M. Genotype-by-environment interactions for grain yield associated with water availability at flowering in rainfed lowlandrice [J]. Field Crops Research,2007,101:145-154.
    [26]Lafitte H R, Courtois B, Atlin G, The international rice research institute's experience in field screening for drought tolerance and implications for breeding [J]. New York, USA,25-40.
    [27]Kumar R., Sarawgi A.K, Ramos C. Partitioning of dry matter during drought stress in rainfed lowland rice [J]. Field Crops Research,2006,98:1-11.
    [28]Mitchell J H, Siamhan D, Wamala M H. The use of seedling leaf death seore for evaluation of drought resistace of rice. Field Crops Research [J].1998,55:129-13.
    [29]马余平,李道远.栽培稻抗旱性研究进展[J].广西农业科学2007,38(4):398-403.
    [30]陈凤梅,龙媛梅,程建峰等.南方籼稻抗旱性状的遗传分析[J].江西农业大学学报,2001,23(1):41-45.
    [31]陆朝福,朱立煌.植物育种中的分子标记辅助选择[J].生物工程进展,1995,15(4):11-17.
    [32]宿少勇,顾东风,两种常用数量性状连锁分析方法的原理和进展[J].遗传,2004,26(2):253-256.
    [33]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics,1992,132:823-839.
    [34]Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185-199.
    [35]Zeng Z B. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1468.
    [36]朱军.复杂性状基因定位的混合线性模型方法[C].全国作物育种学术讨论会论文集.中国农业科技出版社,1998.
    [37]王阳,于永涛,王天宇.作物耐旱性QTL定位和分析的思路.植物遗传资源学报,2009,10(1):]46-151
    [38]Champoux M C, Wang G, Sarkarung S. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers [J]. Theoretical and Applied Genetics,1995,90:69-981.
    [39]Ray J D, Yu L X, McCouch S R, Champoux M C, Wang G, Nguyen H T. Maping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L.) [J]. Theoretical and Applied Genetics,1996,42:627-636.
    [40]Babu R C, Nguyen B D, Chamarerk V. Genetic analysis of drought resistance in rice by molecular markers:association between secondary traits and field performance [J]. Crop Science,2003,43:1457-1469.
    [41]Bing Yue, Li Zhong Xiong, Weiya xue, Xing Y Z, Luo L J, Xu C. Genetic analysis for drought resistance of rice at reproductive stage in field with different type of soil [J]. Theor Apple Genet 2005,111:1127-1136.
    [42]Lilley M, Ludlow M, McCouch S R. Locating QTL for osmotic adjustment and dehydration tolerance in rice [J]. Journal of Experimental Botany.1996,47(9):1427-1436.
    [43]Zhang J, Zheng H G, Aarti A. Locating genomic regions associated with components of Drought-resistance in rice:Comparative mapping within and across species [J]. Theoretical and Applied Genetics,2001,103:19-29.
    [44]Teulat B, This D, Khairallah M. QTLs involved in osmotic-adjustment trait variation in barley (Hordeum vulgare L.) [J]. Theoretical and Applied Genetics,1998,96:688-698.
    [45]Zheng H G, Babu R C, Quantitative trait loci for root-penetration ability and root thickness in rice:comparison of genetic backgrounds[J]. Genome,2002,43:53-61.
    [46]Manickavelu A, Nadarajan N, Ganesh S K, Ganesh S K, Gananamalar R P, Babu R C. Drought tolerance in rice:morphological and molecular genetic consideration[J]. Plant Growth Regul,2006,50:121-138.
    [47]Shashidhar H E, Hash C T, Seetharama N. Target traits for QTL analysis and marker assisted selection strategy for drought tolerance in rice. In:Proceedings of an International workshop on Field screening for drought tolerance in rice, ICRISAT, Patencheru, India, (2002),92-103.
    [48]Yadav R, Courtois B, Huang N, Mclaren G. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice [J]. Theoretical and Applied Genetics,1997,94:619-632.
    [49]Teng S. Qian Q, li Z D. Analysis of gene loci and epistasis for drought tolerance in seedling stage of rice [J]. Acta Genetica Sinica,2002,29:235-240.
    [50]Srinivasan S, Michael Gomez S, Satheesh Kuma S,Ganesh S K, Biji K R, Senthil A, Chandra R. QTLs linked to leaf epicuticular wax physio-morphological and plant production traits under drought stress in rice (Oryza sativa L.) [J]. Plant Growth Regulation,2008,56:245-256.
    [51]Nguyen T, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena A C M. Saturation mapping of QTL regions and identifcation of putative candidate genes for drought tolerance in rice[J]. Molecular Genetics and Genomics,2004,272:35-46.
    [52]Selvaraj M G, Manikanda Boopathi S, Satheesh Kumar S, Ramasubramanian T, Zhu chengsong. Molecular mapping and location of QTLs for drought-resistance traits in indica rice (Oryza sativa L.) lines adapted to target environments [J]. Acta Physiologiae Plantarum, 2010,32:355-364.
    [53]Kamoshita A, Wade L J, Ali M L, Pathan M, Zhang J, Sarkarung S, Nguyen H. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions [J]. Theoretical and Applied Genetics,2002,104:880-893.
    [54]Capel T, Escobar C, Liu H. Over expression of the oatarginine decarbOxy lasee DNA intrans genic rice(Oryza stiva L.)affects normal develop merit patterns in vitro and results in putre scine accumulation in transgenic plants[J]. Theor etical and Applied Genetics,1998(97): 246-254.
    [55]Zhu B C, Su J, Chang M C. Overexpression of analysis of tolerance to water and salt-stress in transgenic rice [J]. Plant science,1998(139):41-48.
    [56]吴亮其,范战民,郭蕾.通过转6-OAT基因获得抗盐抗旱水稻[J].科学通报,2003,48(19):2050-2056.
    [57]Shen Y J, Jiang H, Jin J P,Zhang Z B, Xi Biao, He Y Y, Wang G. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes[J]. Plant Physiology, 2004,135(3):1198-1205.
    [58]Salvi S. Sponza G, Morgante M, Tomes D, Niu X M, Fengler K A, Meeley R. Conserved noncoding genomic sequences controlling flowering time differences in maize [J]. PNAS, 2007,104:11376-11381.
    [59]何俊平,阮松林,祝水金,马升华.图位克隆技术在农作物基因分离中的应用与评价[J].遗传.2010,32(9):903-913.
    [60]朱祯,转基因水稻研发进展[J],中国农业科技导报,2010,12(2):9-16.
    [61]吴为人,唐纪良.作物DNA标记辅助育种[M],科学出版社,2002.
    [62]杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展[J].作物学报,2007,33:523-53
    [63]文阳平,贺浩华,王建革,关联分析及其在玉米中的研究进展.安徽农业科学,2009,19:8947-8949.
    [64]Agrama H A, Eizenga G C, Yan W. Association mapping of yield and its components in rice cultivars [J]. Molecular breeding,2007,19:341-356.
    [65]Tereza Cristina de Oliveira Borba, Rosana Pereira Vianello Brondani,Flavio Breseghello. Association mapping for yield and grain quality traits in rice(Oryza sativa L.) [J]. Genetics and molecular Biology Online Ahead of Print 2010
    [66]Risch.N, Merikangas k. The future of genetic studies of complex human diseases [J]. Science, 1996,273:1516-1517.
    [67]Kristin G, Ardlie, Leonid Kruglyak, Mark S. Patterns of linkage disequlibrium in the human genome [J]. Nature Rev.Genetics.2002,3:299.
    [68]Flint-Garcia.sherry A., Jeffry M, Thornsberry. Structure of linkage disequilibrium in plant [J].Plant Bilogy,2003.54:357-374.
    [69]Tenaillon M.I, Sawkins M.C., Long A.D, Gaut R L, Doebley J F, Gaut B S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.) [J]. Proceedings of the National Academy of Sciences USA,2001,98:9161-9166.
    [70]Ching A, Caldwell K S, Jung M., Maurine D, Oscar S, Scott T. SNP frequency haplotype structure and linkage disequilibrium in elite maize inbred lines[J]. BMC Genet,2002,3:19.
    [71]Remington D L, Thornsberry J M., Matsuoka Y. Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS,2001,98(20):11479-11484.
    [72]Garris A.J, Susan R, Kresovich S. Population Structure and Its Effect on Haplotype Diversity and Linkage Disequilibrium Surrounding the xa5 Locus of Rice(Oryza sativa L.) [J].Genetics,2003,165:759-769.
    [73]Rakshit S, Rakshit A, Matsumura H. Large-scale DNA polymorphisms study of oryza sativa and O.rufipogon reveals the origin and divergence of Asian rice [J]. Theoretical and Applied Genetics,2007,114:731-743.
    [74]Mathre K A, Caicedo A.L, Polato N.R, Olsen K M, McCouch S, Purugganan M D. The Extent of Linkage Disequilibrium in Rice(Oryza sativa L.) [J].Genetics,2007,77:2223-2232.
    [75]Anthony J.Brookes. The essence of SNPs[J].1999, Gene,234(2):177-186
    [76]杨昭庆,洪坤学.单核营酸多态性的研究进展[J].国外遗传学分册,2000,23(1):4-8.
    [77]郝岗平,杨清,吴忠义,曹鸣庆,黄丛林.植物的单核苷酸多态性及其在作物遗传育种中的应用[J].植物学通报2004,21(5):618-624.
    [78]Vroh Bi I, McMullen M D, Villeda H S. Single nucleotide polymorphisms and insertion-deletions for genetic markers and anchoring the maize fingerprint contig physical map[J]. Crop Science,2006,46:12-21.
    [79]Wang Z, Weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats [J]. Theoretical and Applied Genetics,1994,88:1-6.
    [80]Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y. Search for and analysis of single nucleotide polymorphisms(SNPs) in rice (Oryza sativa,Oryza ruffipogon) and establishment of SNP markers[J]. DNA Research,2002,9(5):163-171.
    [81]Shen Y J, Jiang H, Jin J P, Zhang Z B, Xi B, He Y Y, Wang G. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes [J]. Plant Physiology, 2004,135(3):1198-1205.
    [82]Brookes A J. The essence of SNPs [J]. Gene,1999,234:177-186.
    [83]Cargill M, Ahshuler D, Ireland J, Sklar P, Ardlie K, Patil N. Characterization of single— nucleotide polymorphisms in coding regions of human genes[J]. Nature Genetic,1999,22(3): 231-238.
    [84]Jones E S, Sullivan H, Bhattramakki D, A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize(Zea mays L.) Theoretical and Applied Genetics,2007,115:361-371.
    [85]Salisbury B A, Pungliya M, Choi J Y,Jiang R H, Sun X J, Stephens C. SNP and haplotype variation in the human genome[J]. Mutation Research,2003,526:53-61.
    [86]Stephens J C, Julie A S, Debra A T, Stanley S E, Jiang R H, Messer C J, Chew A. Haplotype variation and linkage disequilibrium in 313 human genes. Science [J],2001:489-493.
    [87]Murrayand M G, Thompson W F. Rapid isolation of high molecular weight plant DNA [J]. Nucleic Acids Research,1980,8(19):4321-4326.
    [88]Rozas J, Rozas R. DnaSP version 3:an integrated program formolecular population genetics and molecular evolution analysis [J]. Bioinformatics,1999,15:174-175.
    [89]Watterson G A. On the number of segregating sites in genetical models without recombination [J]. Theoretical Population Biology,1975,7:256-276.
    [90]Barrett J C, Fry B, Maller J,Daly M J. Haploviwe:analysis and visualization of LD and haplotype maps [J]. Bioinformatics,2005.21.263-265.
    [91]Richard R, Hudson and Norman L, Kaplan. Statistical properties of the number of recombination events in the history of a sample of DNA sequences [J]. Genetics,1985,111: 147-164.
    [92]Kimura M. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences [J]. Molecular Evolution,1980,16:111-120
    [93]Keiko, Yanazaki, Yoshihiro. Association analysis of genetic variants in IL23R、ATG16LI and 5P13.1 Loci with Crohn's disease in Japanese patients[J]. Hum Genet,2007,52:575-583.
    [94]Hayashi K, Hashimoto N, Daigen M, Ashikawa I. Development of PCR-based SNP markers for rice blast resistance genes at the piz locus [J]. Theoretical and Applied Genetics,2004, 108(7):1212-1220.
    [95]Caicedo A L, Williamson S H, Hernandez R D. Genome-wide pattern of nucleotide polymorphisms in Domesticated Rice [J],2007, PLoS Genetic,3(9):1745-1756.
    [96]Zhu Q H, Zheng X M, Luo J C. Multilocus analysis of Nucleotide variation of oryza sativa and Its wild relatives:severe bottleneck during domestication of Rice[J],2007, Molecular Biology and Evolution,2007,24 (3):875-888.
    [97]Wong GKS, Liu B, Wang J, A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms [J]. Nature,2004,432:717-723.
    [98]Simko Ivan, Haynes K G, Jones R W. Assessment of Linkage Disequilibrium in Potato Genome with single Nucleotide Polymorphism Markers[J]. Genetics,2006,173:2237-2245.
    [99]Tenaillon M. I., Sawkins M.C, Anderson L.K. Patterns of Diversity and Recombination Along chromosome 1 of Maize(Zea mays ssp. Mays L.)[J]. Genetics.2002,162:1401-1413.
    [100]Schmid K. J, Ramos-Onsins S., Ringys-Beckstein H. A multilocus sequence survey in Arabidopsis thaliana Reveals a Genome-Wide Departure from a Neutral model of DNA Sequence Polymorphism [J]. Genetics,2005,169:1601-1615.
    [101]Liu A Z, Burke J. M, Patterns of Nucleotide Diversity in wild and cultivated sunflower[J]. Genetics,2006,173:231-330.
    [102]Zhu Y L, Song Q J, Hyten D L. Single-Nucleotide polymorphisms in soybean [J]. Genetics,2003,163:1123-1134.
    [103]Choi I Y, Hyten D L, Matukumalli L. A soybean transcript map:Gene Distribution, haplotype, and SNP anlysis [J]. Genetics,2007,176:685-696.
    [104]Kim sung, plagrol V, H u T T. Recombination and Linkage disequilibrium in Arabidopsis thaliana [J]. Nature Genetics,2007,39:1151-1155.
    [105]Caldwell K S, Russell J, Langridge P. Extreme population-dependent Linkage Disequilibrium detected in an inbreeding plant species[J], Hordeum vulgare. Genetics,2006, 172:557-567.
    [106]Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D. Dwarf8 polymorphisms associate with variation in flowering time [J]. Nation Genetic,2001,28(3): 286-289.
    [107]Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene association[J]. Plant Cell,2004,16:2719-2733.
    [108]Palaisa K M, Morgante M, Williams A, Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci [J]. Plant Cell,2003, 15:1795-1806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700