层状结构受电弓滑板的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受电弓滑板是电力机车获取动力能源的主要集电元件,它的质量对电力机车的受流状况及接触导线的寿命具有重要影响,目前常用的滑板按照其材质的不同可分为碳系滑板、金属系滑板和复合材料滑板三种类型。随着列车运营速度的不断提高,传统的滑板译不能满足高速列车的要求。本文针对现有滑板存在的缺点,研制出一种新型结构的受电弓滑板材料。该滑板以层状铺设的铜网做骨架以实现优良的导电性,铜网间的复合材料层提供了良好的减磨耐磨特性。本文围绕层状结构受电弓滑板的研制,开展了对滑板的结构设计、配方和工艺优化等方面的研究,通过对比滑板的导电、抗冲击和耐磨性能,确定滑板的最优配方和工艺,并对滑板的导电和磨损机理进行了分析。
     在受电弓滑板的结构设计中,综合考虑复合材料组分和铜网对滑板电阻率、冲击强度和摩擦性能的影响,确定了滑板的结构为层状结构,铜网的最佳尺寸为孔径3.16mm×6.3mm,厚度0.48mm。
     对层状结构树脂基滑板中复合材料的组成进行设计,分析了树脂含量和纤维类型对滑板性能的影响。实验发现酚醛树脂含量的变化对滑板电阻率的影响较小;冲击强度随酚醛树脂含量的增加而降低,在酚醛树脂含量较低时,冲击断面与冲击载荷的方向有一定的角度,说明纤维增强体起到了改变裂纹方向和延缓裂纹扩展的作用,冲击强度较高;而酚醛树脂含量较高时,滑板的冲击断口平整,与载荷加载方向在一个平面,呈脆性断裂,冲击强度较低;磨损量随酚醛树脂含量的增加先减小后增大,在树脂含量为26.4%时,磨损量最低,从而确定26.4%为树脂基滑板的最佳树脂含量。通过对纤维增强复合材料滑板的载流磨损现象和性能的研究发现:碳纤维的加入有利于提高滑板的导电性和耐磨性;铜纤维的加入有利于提高滑板的导电性,改善电弧烧蚀现象;硅灰石纤维的加入改善了滑板的摩擦特性。确定采用碳纤维、铜纤维和硅灰石纤维作为滑板的混杂增强纤维。
     采用均匀设计和回归分析的方法对滑板的配方组成进行优化,对碳纤维、石墨、硅灰石纤维、铜粉和铜纤维五个因素的混料问题进行均匀设计,并对滑板的性能进行回归分析,分析各因素对材料性能的影响程度,确定滑板的最佳配方。结果发现:电阻率与铜纤维的含量大致呈线性关系,随铜纤维含量的增加而降低;冲击强度与碳纤维的含量有关,随着碳纤维含量的增加而增大;摩擦系数主要受碳纤维、石墨和硅灰石纤维含量的影响;影响滑板磨损量的因素较多,碳纤维、石墨、硅灰石纤维和铜纤维的含量对该性能均有一定程度的影响,其中碳纤维、石墨和硅灰石纤维的交互作用明显。根据均匀设计和回归分析的实验结果,对实验配方进行优化,确定层状结构树脂基受电弓滑板的最优配方为:酚醛树脂26.4%,丁腈橡胶2.4%,碳纤维15.2%,石墨14.2%,硅灰石4.8%,铜纤维8%,铜粉5%,铜网24%。
     通过正交试验优化滑板的模压制备工艺,根据实验结果和极差大小,确定模压工艺参数对滑板综合性能的影响顺序为:加压时机>模压温度>保压时间>模压压力;最佳模压工艺为:模压温度170℃,模压压力60MPa,单位厚度保压时间5min·mm-1,加压时机3mmin。
     应用XRD、Raman、SEM和FTIR实验技术,对浓硝酸氧化处理前后碳纤维结构和形貌进行表征,从而选择最佳的氧化处理时间;将硝酸处理后的纤维进行硅烷偶联处理,分析表面处理对滑板性能的影响。结果表明硝酸处理并未改变碳纤维的本体结构,随着液相氧化时间的延长,碳纤维表面的晶粒尺寸略有减小,表面结构趋于紊乱,无序结构与石墨结构的比值R随处理时间的延长而增大;氧化处理使碳纤维的表面沟槽增多并加深,当氧化时间达到12h时,纤维表面有凹坑和孔洞出现,对纤维的损伤较大;经过9h硝酸处理后,FTIR可观察到-COOH,-OH等官能团的吸收峰,因此选择最佳液相氧化时间为9h;将硝酸处理9h后的碳纤维进行硅烷偶联处理,处理后纤维表面的轴向沟槽变浅,偶联剂起到了覆盖微裂纹和沟槽的作用。采用两种表面处理后的碳纤维制备受电弓滑板,表面处理对滑板电阻率的影响不大,硅烷偶联复合处理使滑板的电阻率略有升高;硝酸氧化处理后,滑板的冲击强度略有升高,硅烷偶联复合处理的滑板冲击强度比未处理的提高了37%,从冲击断面的SEM图分析,硅烷处理提高了树脂与纤维的界面结合强度,拔出的碳纤维表面上粘附一层厚薄不均匀的树脂,硅烷偶联剂中的柔性基团的存在有利于冲击能的吸收;碳纤维的两种表面处理均提高了滑板的耐磨性,硅烷偶联复合处理使滑板的磨损量比未处理的滑板降低了32%。因此硅烷偶联复合处理是提高滑板性能的有效表面改性方式。
     为提高树脂基滑板的耐温性能,对滑板进行焙烧处理,分析焙烧温度对滑板性能的影响,从而确定最佳焙烧温度为600℃。为提高焙烧后滑板的性能,对滑板进行致密化处理。结果表明随焙烧-浸渍次数的增加,滑板的密度、导电性、冲击强度和耐磨性与一次焙烧处理后的滑板试样相比均得到提高,除导电性能外,经过致密化处理后的试样性能仍低于未焙烧处理的滑板试样,纤维与树脂之间仍有孔隙存在,制约着滑板性能的提高;随浸渍次数的增加,试样的可增重比例减小,当浸渍3次之后,滑板的性能变化较小,确定滑板的最佳致密化工艺为焙烧4次、浸渍3次。通过对焙烧型滑板中酚醛树脂含量对滑板性能影响的研究,最终确定焙烧型滑板的配比为:酚醛树脂25.8%,碳纤维15.2%,硅灰石4.8%,石墨14.2%,铜纤维8%,铜网24%,铜粉8%。
     通过SEM和EDS技术对不同类型滑板的磨损表面形貌进行分析,讨论滑板的机械磨损机理,结果表明添加铜纤维和铜网后,滑板的磨损形式由涂抹型的粘着磨损转变为擦伤型的粘着磨损,对碳纤维进行硅烷偶联改性可增加纤维与基体的粘结力,耐磨性提高;树脂基滑板的磨损机理为擦伤型的粘着磨损;随焙烧处理温度的提高,滑板的磨损形式由粘着磨损逐渐转化为粘着磨损和磨粒磨损共同作用的结果。
Pantograph contact strip is the main collecting electricity component of electric locomotive. It can help electric locomotive power supply system to obtain electric energy. The quality of contact strip has important impact on current carrying condition of electric locomotives and service life of contact wire. According to its material, strip can be classified into three types:carbon series strip, metal series strip and composites strip. As operation speed of electric locomotive continuous improvements, traditional contact strip can not meet the demand of the high speed train. In this paper, we designed a new structure contact strip to overcome the shortcomings of traditional contact strip. The contact strips obtained excellent conductivity by laminar laying copper mesh being framework, and had good wear resistance due to composite laminated structures. Focus on development of layer structure pantograph contact strip, the structure design, formula and process optimization were investigated in this paper. We could get the optimal formula and process condition by comparing resistivity, impact strength and wear resistance of different formula and process samples. The conductive and wear mechanism of contact strip were also analyzed.
     In the structure design of pantograph contact strip, layer structure was determined by balancing against the influence of composites component and copper mesh on resistivity, impact strength and wear property. The optimal pore diameter size of copper mesh was3.16mm×6.3mm and the thickness was0.48mm.
     In the materials composition design of layer structure resin matrix pantograph contact strip, influence of the resin content and fiber type on performance of contact strip was analyzed. The results showed that phenolic resin content had small impact on the resistivity of contact strip. The impact strength decreases with the increase of phenolic resin content. When phenolic resin content was lower, there was a certain angle between impact fracture section and impact load direction, which suggested that fiber reinforced played an important role in changing directions of crack as well as slowing crack propagation, showing higher impact strength. Impact fracture section of pantograph slide plate was not only smooth but also on the same with load direction when phenolic resin content was higher, appearing brittle fracture with lower impact strength. With the increase of phenolic resin content, the wear loss increased first and then decreased. The wear loss was lowest when resin content was26.4%. Thus, the optimal content of phenolic resin was26.4%. The study of electrical sliding wear phenomena and behavior of composite contact strip revealed that adding carbon fiber could facilitat conductivity and wear resistance. The existence of copper fiber obviously enhanced the conductivity and improved the arc ablation phenomenon. The wear resistance was greatly improved due to extinguishing of the wollastonite fiber. So we choose carbon fiber, copper fiber and wollastonite fiber as hybrid fiber to reinforce contact strip.
     The uniform design and regression analysis method were used in formula design of contact strip. The influence of carbon fiber, graphite, wollastonite fiber, copper powder and copper fiber content on properties of pantograph contact strip was investigated. The appropriate formula was determined by mean of regression analysis. The results showed that electrical conductivity was linear to copper fiber content and decreased with the increase of copper fiber content. Impact strength of pantograph contact strip was in direct proportion to CF content. The friction coefficient of pantograph contact strip was mainly influenced by carbon fiber, graphite and wollastonite content. Many factors including CF, graphite, wollastonite and copper content influenced wear loss, and significant interaction was found in CF, graphite and wollastonite fiber. Copper powder had smaller effect to performance of pantograph contact strip. According to the results of uniform design and regression analysis experiment, the formula of contact strip was optimized and the optimum of layered structure resin matrix pantograph contact strip as follows:phenolic resin at26.4%, nitride rubber at2.4%, carbon fiber at15.2%, graphite at14.2%, wollastonite fiber at4.8%, copper fiber at8%, copper powder at5%, and copper mesh at24%.
     By the orthogonal experiment, the mold pressing process was optimized. Based on test results and range value, the sequence of affecting contact strip behavior was ranked as pressure applying time>molding temperature>holdup time> pressure. The optimum process parameters were molding temperature at170℃, holdup time at5min·mm-1, pressure at60MPa, and pressure applying time at3min.
     Raman spectroscopy (Raman), X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to investigate the evolution of surface structure and morphology before and after oxidation treated. Thereby the best oxidation time was determined. Carbon fibers oxidated by nitric acid was treated by silane coupling agents and investigated the effect of different surface treatment on performance of contact strip. The results indicated that nitric acid oxidation treatment did not change the entity structure of carbon fibers. With the increase of the oxidation time, interplanar spacing of carbon fiber surface increased and crystalline size decreased slightly. The entire structure disordered and R values of carbon fiber increased with the increase of oxidation time. The grooves of surface became wider and deeper with the increase of the oxidation time. Some big holes and grooves could be observed when the oxidation time reached to12h, which would severely damage the fiber. After oxidation treatment to9h,-COOH,-OH could be found by FTIR. So the best oxidation time was9h. After silane coupling agents treated, the grooves of the surface were covered with thin films and the surface grooves became shallower compared with the fiber treated by nitric acid. The results showed that silane coupling agents were effective for overlaying the micro cracks and grooves. The performance of contact strip which reinforced by different trcated carbon fiber was investigated. Surface treatment had little effect on resistivity of contact strip. The resistivity of contact strip increased slightly after silane coupling agent treatment. Impact strength increased after surface treatment by nitric acid and the impact strength increase by37%after silane coupling agent treatment. From scanning electron microscopy images, it could be seen that the surface of fiber coated with resin in uneven thickness. The existence of flexible groups came from silane coupling agent facilitated absorption of impact energy, which indicated that silane treatment improved interface bonding strength between resin and fiber. The wear resistance was enhanced by surface treatment of carbon fibers, and the wear loss decreased by32%after silane coupling agent treatment. The technology of silane coupling agent compound treatment was an effective method to improve performance of contact strip.
     In order to improve heat resistance, we adopted calcinations to treat contact strip. The influence of calcinations temperature on properties of contact strip was analyzed to confirm the optimum temperature at600℃. The densification process was used to improve the properties of contact strip treated with calcinations. The results showed that the density, conductivity, impact strength and wear resistance were improved with increase of calcinations-impregnation times compared with contact strip treated by one-shot calcinations. The performance of contact strip after densification process was still lower than untreated contact strip. The existence of pore between fiber and resin restricted improvement of contact strip performance. The weight increase rate was decreased when increasing of impregnation time. The properties changed very slight when impregnation time was three, thus we confirmed the best densification process as four times of calcinations and three times of impregnation. The impact of resin content on performance of calcinations type pantograph contact strip was analyzed to determine optimal formula as follows:phenolic resin at25.8%, carbon fiber at15.2%, graphite at14.2%, wollastonite fiber at4.8%, copper fiber at8%, copper powder at8%, and copper mesh at24%.
     The morphologies of the worn surfaces were observed with SEM and EDS, and the wear mechanics were discussed. The results showed that the adhesive wear behavior changed from smearing type to scratches type after adding copper fiber and mesh. Silane compound treatment of carbon fiber would enhance adhesive strength between fiber and matrix to improve wear resistance. The wear mechanism of resin matrix contact strip was smearing type adhesive wear. Raising calcinations temperature made the major wear mechanism of contact strip changed from adhesive wear to adhesive wear together with abrasive wear.
引文
[1]Javier G, Rafael G, Gabriel G. The European high-speed train network[J]. Journal of Transport Geography,1996,4(4):227-238.
    [2]林修洲,朱吴,陈光雄,张卫华,周仲荣.高速电气化铁路弓/网系统的摩擦磨损研究进展[J].润滑与密封,2007,32(2):180-183.
    [3]Franscois L. Alstom-future trends in railway transportation[J]. Japan Railway & Transport Review,2005,42:4-9.
    [4]杨连威,姚广春,陆阳.新型铜-碳复合受电弓滑板的制备[J].过程工程学报,2005,5(4):460-463.
    [5]李世珷.我国电气化铁路发展的历程及前景[J].郑铁科技通讯,2006,(1):1-5.
    [6]何吉成.从数据看中国电气化铁路的发展进程[J].上海铁道科技,2011,(2):112-113.
    [7]Shunichi K, Koji K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear,1998,216(2):172-178.
    [8]潘连明,张国荣,钱中良,于鹰,盛伟.杨永吉,游庆.电力机车受电弓滑板[J].机车车辆工艺,2001,(3):1-4.
    [9]Ding T, Chen GX, Bu J, Zhang WH. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph-catenary systems[J]. Wear,2011,271(9-10):1629-1636.
    [10]Ma XC, He GQ, He DH, Chen CS, Hu ZF. Sliding wear behavior of copper-graphite composite material for use in maglev transportation system[J]. Wear.2008,265(7-8):1087-1092.
    [11]Azevedo CRF, Sinatora A. Failure analysis of a railway copper contact strip[J]. Engineering Failure Analysis,2004,11(6):829-841.
    [12]刘敬超,赵燕霞,孙乐民.离线率对铜基粉末冶金载流摩擦磨损性能的影响[J].润滑与密封,2011,36(6):22-24.
    [13]韩焓.浅析接触网弹性与受电弓相互改进及改性措施[J].黑龙江科技信息,2008,(19):37.
    [14]Kim JW, Chae HC, Park BS. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force[J]. Journal of Sound and Vibration,2007,303(3-5):405-427.
    [15]Park TJ, Han CS, Jang JH. Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle[J]. Journal of Sound and Vibration,2003,266(2):235-260.
    [16]刘建军,朱波,王成国.碳纤维复合材料电力机车受电弓滑板的研制[J].工程塑料的应用,2003,31(8):39-41.
    [17]侯明,孙乐民.李爱娜.电力机车受电弓滑板的现状[J].粉末冶金技术.2006.24(3):223-226.
    [18]丁红卫,王永第,许富强,张兴林,关林长.机车受电弓用新型粉末冶金滑板[J].电工材料,2002,(1):22-25.
    [19]朱成才,张鹏,杜云慧,肖军,卢艳玲,张君.性能卓越的铜石墨受电弓滑板[J].铁道机车车辆,2006,26(3):62-66.
    [20]杨连威,姚广春,陆阳.新型电力机车受电弓滑板的研制[J].有色金属,2005,57(4):9-12.
    [21]Jung SK. An experimental study of the dynamic characteristics of the catenary-pantograph interface in high speed trains[J]. Journal of Mechanical Science and Technology.2007.21(12):2108-2116.
    [22]Jia SG, Liu P. Ren FZ, Tian BH, Zheng MS. Zhou GS. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J]. Wear,2007,262(7-8):772-777.
    [23]胡建红,陈敬超,李强.阎杏丽.电力机车用滑动集电材料的研究及其选用[J].电工材料,2004,(1):28-42.
    [24]涂川俊.树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究[D].博士学位论文,湖南大学,2009.
    [25]迟春阳,周成学,王家襄,孙静.电力机车滑板材料的发展[J].炭素,1999,(4):41-43.
    [26]涂川俊,陈振华,陈刚.炭系电力机车受电弓滑板材料的研究进展[J].炭素技术,2007,26(4):23-29.
    [27]钱中良.粉末冶金电力机车受电弓滑板的研究概况[J].粉末冶金工业,2007,17(4):43-46.
    [28]张晓娟,孙乐民.受电弓滑板和接触网导线材料的现状及展望[J].河南科技大学学报,2006,27(6):4-7.
    [29]Wei Q, Xu LX, Shi HJ. Study on network structure C-Cu composites of pantograph slide plates[J]. Advanced Materials Research,2011,150:941-946.
    [30]Wang YA, Li JX, Yan Y, Qiao LJ. Effect of surface film on sliding friction and wear of copper-impregnated metallized carbon against a Cu-Cr-Zr alloy[J]. Applied Surface Science,2012,258(7):2362-2367.
    [31]久保俊一.碳系滑板材料[J].国外机车车辆,2008,(4):31-33.
    [32]Shangguan B, Zhang YZ, Xing JD, Sun LM, Chen Y. Comparative study on wear behaviors of metal-impregnated carbon material and C/C composite under electrical sliding[J]. Tribology Transactions,2010,53(6):933-938.
    [33]姚汤伟,朱建华,朱建昌.电力机车受电弓滑板选型探讨[J].机车电传动.2007,(2):71-72.
    [34]Lin XZ, Zhu MH, Mo JL, Chen GX, Jin XS, Zhou ZR. Tribological and electric-arc behaviors of carbon/copper pair during sliding friction process with electric current applied[J]. Transactions of Nonferrous Metals Society of China, 2011,21(2):292-299.
    [35]Tu CJ, Chen D, Chen ZH, Xia JT. Improving the tribological behavior of graphite/Cu matrix self-lubricating composite contact strip by electroplating Zn on graphite[J]. Tribology Letters,2008,31(2):91-98.
    [36]Tang YP, Liu HZ, Zhao HJ, Liu L, Wu YT. Friction and wear properties of copper matrix composites reinforced with short carbon fibers[J]. Materials and Design, 2008,29(1):257-261.
    [37]Yang HJ, Luo RY, Han SY, Li MD. Effect of the ratio of graphite/pitch coke on the mechanical and tribological properties of copper-carbon composites [J]. Wear, 2010,268(11-12):1337-1341.
    [38]吴渝英,张国定,高强.连续长碳纤维增强碳铜复合材料受电弓滑板[P].CN1265429A.2000-9-6.
    [39]Korab J, Stefanik P, Kavecky S, Sebo P, Korb G. Thermal expansion of cross-ply and wove carbon fibre-copper matrix composites[J]. Composites:Part A:Applied Science and Manufacturing,2002,33(1):133-136.
    [40]郭斌,金永平,郑艾龙,周健.铜基受电弓滑板材料抗拉强度和冲击韧性研究[J].材料科学与工艺,2003,11(1):59-63.
    [41]刘军.铜基复合材料受电弓滑板的制备及其摩擦磨损性能研究[D].硕十学位论文,湖南大学,2007.
    [42]鹤木,孝典,张耀宏.受电弓滑板用碳/金属纤维复合材料[J].国外机车车辆工艺,1994,(6):11-13.
    [43]迁村太郎,金祥林,张达恭.滑板用材料[J].国外机车车辆工艺,2000,(1):45-46.
    [44]士屋広志,蔡千华.受电弓滑板用材料的开发与应用[J].国外机车车辆工艺,2009,(3):30-33.
    [45]Jia JH, Chen JM, Zhou HD, Hu LT, Chen L. Comparative investigation on the wear and transfer behaviors of carbon fiber reinforced polymer composites under dry sliding and water lubrication[J]. Composites Science and Technology,2005, 65(7-8):1139-1147.
    [46]Gopal P, Dharan LR. Frank DB. Load, speed and temperature sensitivities of a carbon-fiber-reinforced phenolic friction material[J]. Wear,1995,181-183 (2): 913-921.
    [47]Wan YZ, Chen GC, Raman S, Xin JY, Li QY, Huang Y, Wang YL, Luo HL Friction and wear behavior of three-dimensional braided carbon fiber/epoxy composites under dry sliding conditions[J]. Wear,2006,260(9-10):933-941.
    [48]Shang Guan QQ, Cheng XH. Friction and wear of rare earths modified carbon fibers filled PTFE composite under dry sliding condition[J]. Applied Surface Science,2007,253(22):9000-9006.
    [49]Xu YD, Zhang YN, Cheng LF, Zhang LT, Lou JJ, Zhang JZ. Preparation and friction behavior of carbon fiber reinforced silicon carbide matrix composites[J]. Ceramics International,2007,33(3):439-445.
    [50]Tu CJ, Chen ZH, Chen D, Yan HG, He FY. Tribological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current[J]. Transactions of Nonferrous Metals Society of China,2008,18(5):1157-1163.
    [51]Chen ZH, Tu CJ, Chen D, Xia JT, Yan HG. Preparation and tribological investigation of resin-matrix contact strip with variable current[J]. Materials Science and Technology,2009,25(5):607-613.
    [52]Tu CJ. Chen ZH, Xia JT. Thermal wear and electrical sliding wear behaviors of the polyimide modified polymer-matrix pantograph contact strip[J]. Tribology International,2009,42(6):995-1003.
    [53]高春明.凌跃成,钱振华,刘春.减磨型碳纤维复合材料受电弓滑板的研制[J].电力机车与城轨车辆,2004,27(4):31-33.
    [54]陈振华,涂川俊,陈刚,严红革,夏金童.改性树脂基滑板的制备及其热磨损性能[J].中国有色金属学报,2007,17(11):1785-1791.
    [55]王泽华.复合材料在高速列车上的应用[J].机械工程材料,2001,25(10):1-4.
    [56]Michel WB, Tamer ER. Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2[J] Journal of the American Ceramic Society.1996,79(7):1953-1956.
    [57]Li SB, Cheng LF. Zhang LT. The morphology of oxides and oxidation behavior of Ti3SiC2-based composite at high-temperature[J]. Composites Science and Technology,2003,63(6):813-819.
    [58]Tong X, OKANO T, ISEKI T, YANO T. Synthesis and high temperature mechanical properties of Ti3SiC2/SiC composite[J]. Journal of Materials Science, 1995,30(12):3087-3090.
    [59]Li H, Peng LM, Gong M, Zhao JH, He LH, Guo CY. Preparation and characterization of Ti3SiC2 powder[J]. Ceramics International,2004,30(8):2289-2294.
    [60]翟洪祥,汪长安.Ti3SiC2材料在受电弓滑板中的应用研究[J].机车电传动,2003,(S1):43-45.
    [61]高闰丰.梅炳初,朱教群,赵莉,朱达炎.Cu/Ti3SiC2新型受电弓滑板材料的研究[J].稀有金属快报,2005,24(11):16-20.
    [62]梁若清,冯勇祥,陆木林.日本电力机车受电弓滑板的发展及浸渍金属碳滑板的开发[J].机车电传动,1994,(5):45-47.
    [63]青久纯木.高速铁道车辆用受电弓滑板的现状与存在问题[J].国外机车车辆工艺.1994,(3):44-49.
    [64]久保俊一.碳系受电弓滑板的开发[J].国外机车车辆工艺, 2000,(5):4-6.
    [65]Zhou L, Shen ZY. Progress in high-speed train technology around the world[J]. Journal of Modern Transportation,2011,19(1):1-6.
    [66]He DH, Manory R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear,2001,249(7):626-636.
    [67]久保俊一.新干线受电弓碳系滑板的研制[J].国外机车车辆工艺,2003,(6):21-25.
    [68]久保俊一.新干线受电弓碳滑板的开发[J].电力牵引快报,1998,(3):27-32.
    [69]Kubo SC, Kato K. Effect of arc discharge on the wear rate and wear mode transition of a copper-impregnated metallized carbon contact strip sliding against a copper disk[J]. Tribology International,1999.32(7):367-378.
    [70]Mochizuki A. Conventional line speed increases and development of Shinkansen[J]. Japan Railway & Transport Review,2011, (57):42-49.
    [71]Campos Javier. Rus G. Some stylized facts about high-speed rail:A review of HSR experiences around the world[J]. Transport Policy,2009, (16):19-28.
    [72]Ebeling K. High-speed railways in Germany[J]. Japan Railway & Transport Review,2005, (40):36-45.
    [73]邓明丽,吴广宁,张雪原,何常红,叶强.电力机车受电弓发展综述[J].电气化铁道,2008,(1):43-47.
    [74]杨连威.高性能电力机车受电弓滑板的研究[D].博士学位论文,东北大学,2008.
    [75]Smith RA. Railway speed-up:A Review of its history technical developments and future prospects[J]. Japan Society of Mechanical Engineers International Journal, 2004,47(2):444-450.
    [76]刘志远,罗平.浸金属碳滑板的研制[J].电碳,1995,(2):8-14.
    [77]张秀兰.电力机车受电弓滑板的调查分析[J].中国铁路,1996,(11):16-17.
    [78]肖军,张鹏,杜云慧,刘汉武.电力机车受电弓滑板材料的发展[J].铁道机车车辆,2005,25(6):65-68.
    [79]刘邦基.电力机车受电弓滑板[P].CN 2132646Y.1993-05-12.
    [80]陈忠华,郭凤仪,董讷,仲伟深.新型受电弓滑板的设计与实现[J].煤炭科学技术,2005,33(3):30-33.
    [81]黄岭茂.在铜质接触网区段电力机车使用铜基粉末冶金滑板效果良好[J].机车电传动,1994,(5):57-58.
    [82]北京粉末冶金厂.机械复合式受电弓滑板[P].CN 2162379Y.1994-04-20.
    [83]闵泳,葛继平.赵红.电力机车受电弓滑板的发展概况[J].中国科技信息,2005,(22):100.
    [84]冀盛亚,孙乐民,上官宝,张永振.受电弓滑板材料的研究现状及展望[J].材料热处理技术,2009,38(6):80-83.
    [85]Yang LW. Wang RJ, Jia M. Research on high performance of pantograph slider used by high speed train[J]. Applied Mechanics and Materials.2011,55-57: 1736-1741.
    [86]韦强,徐立新,王彦平.受电弓滑板用三维网状铜-碳复合材料的研究[J].铁道学报,2011,33(5):43-47.
    [87]宝山钢铁(集团)公司.电力机车用碳-碳复合材料受电弓滑板[P].CN 1178745A.1998-04-15.
    [88]卓钺,刘希从,文思维,日书欣,熊德赣.受电弓滑板用轻质高碳-石墨/铝复合材料[J].机车电传动,2003,(S1):37-38.
    [89]Cho YH. Numerical simulation of the dynamic responses of railway overhead contact lines to a moving pantograph, considering a nonlinear dropper[J]. Journal of Sound and Vibration,2008,315(3):433-454.
    [90]He D H, Manory RR, Grady N. Wear of railway contact wires against current collector materials[J]. Wear,1998,215(1-2):146-155.
    [91]Yin S, Ma L, Wu LZ. Carbon fiber composite lattice structure filled with silicon rubber[J]. Procedia Engineering,2011,10:3191-3194.
    [92]Zhao F, Huang YD, Liu L, Bai YP, Xu LW. Formation of a carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube hybrid reinforcement and its effect on the interfacial properties of carbon fiber/epoxy composites[J]. Carbon,2011,49(8):2624-2632.
    [93]Zhang YF, Luo RY, Zhang JS, Xiang Q. The reinforcing mechanism of carbon fiber in composite adhesive for bonding carbon/carbon composites[J]. Journal of Materials Processing Technology.2011.211 (2):167-173.
    [94]Lv XY, Wang RG, Liu WB, Jiang L. Surface and interface properties of carbon fiber composites under cyclical aging[J]. Applied Surface Science,2011.257(24): 10459-10464.
    [95]Choi MH, Jeon BH, Chung IJ. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites[J]. Polymer, 2000,41(9):3243-3252.
    [96]Li B, Zhang CR. Cao F, Wang SQ, Chen bang. Li JS. Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites[J]. Materials Science and Engineering A.2007.471(1-2):169-173.
    [97]Neo CP, Varadanv K. Optimization of carbon fiber composite for microwave absorber[J]. Electromagnetic Compatibility.2004.46(1):102-106.
    [98]Xian GJ. Zhang Z. Sliding wear of polyetherimide matrix composites:I. Influence of short carbon fiber reinforcement[J]. Wear.2005,258(5-6):776-782.
    [99]王贵青,陈敬超,孙家林.电力机车受电弓滑板材料的研究状况及发展趋势[J].材料导报.2003,17(1):18-20.
    [100]郭凤仪,陈忠华.电接触理论及其应用技术[M].北京:中国电力出版社.2008.
    [1]Kim JW, Chae HC, Park BS, Lee SY, Hand CS, Jang JH. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force[J]. Journal of Sound and Vibration,2007,303(3-5):405-427.
    [2]Jia SG, Liu P, Ren FZ, Tian BH, Zheng MS. Zhou GS. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J]. Wear,2007,262(7-8):112-111.
    [3]Ding T, Chen GX, Bu J, Zhang WH. Effect of temperature and arc discharge on friction and wear behaviours of carbon strip/copper contact wire in pantograph-catenary systems[J]. Wear,2011,271(9-10):1629-1636.
    [4]Montes Moran MA, Hattum FWJ, Nunes JP, Martinez Alonso A, Tascon JMD, Bernardo CA. A study of the effect of plasma treatment on the interfacial properties of carbon fibre-thermoplastic composites[J]. Carbon,2005,43(8): 1778-1814.
    [5]Gu YZ, Li M, Wang J, Zhang ZG. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique[J]. Carbon,2010,48(11):3229-3235.
    [6]Tessonnier JP, Rosenthal D, Hansen TW. Hess C, Schuster ME, Blume R, Girgsdies F, Pfander N, Timpe O, Su DS, Schlogl R. Analysis of the structure and chemical properties of some commercial carbon nanostructures [J]. Carbon,2009, 47(7):1779-1798.
    [7]涂川俊.树脂型受电弓滑板材料的制备与磨损特性及抗磨机理研究[D].博士 学位论文,湖南大学,2009.
    [8]Zhao HS, Liang TX, Liu B. Synthesis and properties of copper conductive adhesives modified by SiO2 nanoparticles[J]. International Journal of Adhesion & Adhesives,2007,27(6):429-433
    [9]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [10]宋正芳.碳石墨制品的性能及其应用[M].北京:机械工业出版社,1987.
    [11]胡法竹,王利民,吕东洲,吕洪全,刘惠生.对冷压炭-铜纤维复合材料性能的考察与分析[J].炭素,2000,(2):10-15.
    [12]Kogut L, Komvopoulos K. Electrical contact resistance theory for conductive rough surfaces[J]. Journal of Applied Physics,2003,94(5):3153-3162.
    [13]郭凤仪,陈忠华.电接触理论及其应用技术[M].北京:中国电力出版社,2008.
    [1]He DH, MANORY R. A novel electrical contact material with improved self-lubrication for railway current collectors[J]. Wear,2001,249(7):626-636.
    [2]Jia SG, Liu P, Ren FZ, Tian BH, Zheng MS, Zhou GS. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J]. Wear,2007,262(7-8):772-777.
    [3]Azevedo CRF, Sinatora A. Failure analysis of a railway copper contact strip[J]. Engineering Failure Analysis,2004,11(6):929-941.
    [4]He DH, Manory R, Grady N. Wear of railway contact wires against current collector materials[J]. Wear,1998,215(1-2):146-155.
    [5]Yang LW, Wang RJ, Jia M. Research on high performance of pantograph slider used by high speed train[J]. Applied Mechanics and Materials,2011,55-57: 1736-1741.
    [6]Zhu ZC, Xu L, Chen GA, Li YL. Optimization on tribological properties of aramid fibre and CaSO4 whisker reinforced non-metallic friction material with analytic hierarchy process and preference ranking organization method for enrichment evaluations[J]. Materials and Design,2010,31(1):551-555.
    [7]刘建军,朱波,王成国.碳纤维复合材料电力机车受电弓滑板的研制[J].工程塑料应用,2003,31(8):39-41.
    [8]Reghunadhan Nair CP. Advances in addition-cure phenolic resins[J]. Progress in Polymer Science.2004,29(5):401-498.
    [9]Jang J, Yang H. The effect of surface treatment on the performance improvement of carbon fiber/polybenzoxazine composites[J]. Journal of Materials Science, 2000,35(9):2297-2303.
    [10]Wang JG, Jiang HY, Jiang N. Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin[J]. Thermochimica Acta,2009,496(1-2):136-142.
    [11]唐路林.高性能酚醛树脂及其应用技术[M].北京:化学工业出版社,2008.
    [12]Tran MQ, Ho KKC, Kalink G, Shaffer MSP, Bismarck A. Carbon fibre reinforced poly(vinylidene fluoride):Impact of matrix modification on fibre/polymer adhesion[J]. Composites Science and Technology,2008,68(7-8):1766-1776.
    [13]Jia JH, Zhou HD, Gao SQ, Chen JM. A comparative investigation of the friction and wear behavior of polyimide composites under dry sliding and water-lubricated condition[J]. Materials Science and Engineering:A,2003,356(1-2):48-53.
    [14]Zhang H. Zhang Z, Friedrich K. Effect of fiber length on the wear resistance of short carbon fiber reinforced epoxy composites[J]. Composites Science and Technology,2007,67(2):222-230.
    [15]Lee HG, Hwang HY, Lee DG. Effect of wear debris on the tribological characteristics of carbon fiber epoxy composites[J]. Wear,2006,261(3-4):453-459.
    [16]Yao W, Li J, Wu K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction[J]. Cement and Concrete Research,2003,33(1):27-30.
    [17]Rahman M, Ramakrishna S, Prakash JRS, Tan DCG. Machinability study of carbon fiber reinforced composite[J]. Journal of Materials Processing Technology, 1999,89-90:292-297.
    [18]王元,方开泰.混料均匀设计[J].中国科学:A辑,1996,26(1):1-10.
    [19]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [20]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001.
    [21]袁华,王成国,卢文博,于美杰,陈旸,乔琨.碳纤维增强受电弓滑板的性能表征[J].功能材料,2011,42(6):1094-1099.
    [22]Hokao M, Hironaka S, Suda Y, Yamamoto Y. Friction and wear properties of graphite/glassy carbon composites[J]. Wear,2000,237(1):54-62.
    [23]Xu JC, Yu H, Xia L, Li XL. Yang H. Effects of some factors on the tribological properties of the short carbon fiber-reinforced copper composite[J]. Materials and Design,2004,25(6):489-493.
    [24]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [1]张京珍.塑料成型工艺[M].北京:中国轻工业出版社,2010.
    [2]Kim MS, Lee WI, Han WS, Vautrin A, Park CH. Thickness optimization of composite plates by Box's complex method considering the process and material parameters in compression molding of SMC[J]. Composites:Part A,2009,40(9): 1192-1198.
    [3]唐路林.高性能酚醛树脂及其应用技术[M].北京:化学工业出版社,2008.
    [4]梁国正,顾媛娟.模压成型技术[M].北京:化学工业出版社,1999.
    [5]Choi MH, Jeon BH, Chung IJ. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites[J]. Polymer, 2000,41(9):3243-3252.
    [6]Li B, Zhang CR, Cao F, Wang SQ, Chen B, Li JS. Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites[J]. Material Science and Engineering A,2007,471(1-2):169-173.
    [7]Ji MX, Wang CG, Bai YJ, Yu MJ, Wang YX. Structural Evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization[J]. Polymer Bulletin,2007,59(4):527-536.
    [8]Neo CP, VaradanVK. Optimization of carbon fiber composite for microwave absorber[J]. Electromagnetic C,2004,46(1):102-106.
    [9]Liu J. Tian YL, Chen YJ, Liang JY., Zhang LF., Fong H. A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers[J]. Material Chemistry and Physics.2010,122(2-3):548-555.
    [10]Xu ZW, Chen L, Huang YD, Li JL. Wu XQ. Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy[J]. European Polymer Journal,2008,44(2):494-503.
    [11]Gulas J, Folders E, Lazar A, Pukanszky B. Electrochemical oxdiation of carbon fibers:surface chemistry and adhension[J]. Composites part A,2001,32(3-4): 353-360.
    [12]Lee WH, Lee JG, Reucroft PJ. XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2+N2)[J]. Applied Surface Science, 2001,171(1-2):136-142.
    [13]Naganuma T, Naito K, Yang JM, Kyono J, Sasakura D, Kagawa Y. The effect of a compliant polyimide nanocoating on the tensile properties of a high strength PAN-based carbon fiber[J]. Composites Science and Technology,2009,69(7-8): 1319-1322.
    [14]Xu B, Wang XS, Lu Y. Surface modification of polyacrylonitrile-based carbon fiber and its interaction with imide[J]. Applied Surface Science,2006,253(5): 2695-2701.
    [15]黄锐.塑料成型工艺学[M].北京:中国轻工业出版,1997.
    [16]Zickler GA, Smarsly Bern, Gierlinger N, Peterlik H, Paris Oskar. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy[J]. Carbon,2006, 44(15):3239-3246.
    [17]曹伟伟,朱波,井敏,王成国.PAN基碳纤维在表面处理中的拉曼光谱研究[J].光谱学与光谱分析,2008,28(12):2885-2889.
    [18]Guo H, Huang YD, Meng LH, Liu L. Fan DP, Liu DX. Interface property of carbon fibers/epoxy resin composite improved by hydrogen peroxide in supercritical water[J]. Materials Letters,2009,63(17):1531-1534.
    [19]王彦明,王威强,李爱菊,阴强,夏利刚,敖海勇,童佳佳.碳纤维增强酚醛树脂/石墨复合材料双极板的性能[J].机械工程材料,2006,30(7):4-6.
    [20]宋艳江,高鑫,朱鹏,王晓东.黄培.表面处理碳纤维增强聚酰亚胺复合材料力学性能[J].复合材料学报,2008,25(5):64-68.
    [21]益小苏.杜善义,张立同.复合材料手册[M].北京:化学工业出版社,2009.
    [22]Shi YJ, Feng X, Wang HY, Lu XH. Tribological properties of PTFE composites filled with surfacetreated carbon fiber[J]. Journal of Materials science,2007, 42(20):8465-8469.
    [1]Jia SG, Liu P, Ren FZ, Tian BH, Zheng MS, Zhou GS. Sliding wear behavior of copper alloy contact wire against copper-based strip for high-speed electrified railways[J]. Wear,2007,262 (7-8):772-777.
    [2]Kim JW, Chae HC, Park BS. State sensitivity analysis of the pantograph system for a high-speed rail vehicle considering span length and static uplift force[J]. Journal of Sound and Vibration,2007,303:405-427.
    [3]Park TJ, Han CS, Jang JH. Dynamic sensitivity analysis for the pantograph of a high-speed rail vehicle[J]. Journal of Sound and Vibration,2003,266:235-260.
    [4]Ma XC, He GQ, He DH, Chen CS, Hu ZF. Sliding wear behavior of copper-graphite composite material for use in maglev transportation system [J]. Wear,2008,265(7-8):1087-1092.
    [5]Kuboa S, Katob K. Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current[J]. Wear, 1998,216 (2):172-178.
    [6]Krstkova M, Filipb P, Weissa Z, Peter R. Influence of metals on the phenol-formaldehyde resin degradation in friction composites[J]. Polymer Degradation and Stability,2004,84 (1):49-60.
    [7]唐路林.高性能酚醛树脂及其应用技术[M].北京:化学工业出版社,2008.
    [8]Ho SC, Lin JHC, Ju CP. Effect of carbonization on mechanical and tribological behavior of a copper-phenolic-based friction material[J]. Carbon,2005,43 (3): 491-502.
    [9]涂建华,张利波,彭金辉,张世敏,普靖中,夏洪应,马祥元.酚醛树脂基玻璃 炭制备机理及结构的研究进展[J].炭素技术,2005,24(6):21-29.
    [10]Lorjai P, Wongkasemjit S, Chaisuwan T, Jamieson AM. Significant enhancement of thermal stability in the non-oxidative thermal degradation of bisphenol-A/aniline based polybenzoxazine aerogel[J]. Polymer Degradation and Stability,2011,96(4):1-11.
    [11]Chen YF, Chen ZQ, Xiao SY, Liu HB. A novel thermal degradation mechanism of phenol-formaldehyde type resins[J]. Thermochimica Acta,2008, 476 (1-2):39-43.
    [12]Costa L. Structure-charring relationship in phenol-formaldehyde type resins[J]. Polymer Degradation and Stability,1997,56 (1):23-35.
    [13]钱军民,王继平,金志浩.木材陶瓷和Si粉原位反应烧结制备多孔SiC的研究[J].硅酸盐学报,2003,31(7):635-640.
    [14]周绍建,苏君明,苏哲安,李瑞珍,崔红.树脂炭含量对C/C复合材料性能的影响[J].新型炭材料,2001,16(1):49-52.
    [1]Verman AP, Vishwanath B, Kameswara RCVS. Effect of resin modification on friction and wear of glass phenolic composites[J]. Wear,1996,193(2):193-198.
    [2]廖乾初,蓝芬兰.扫描电镜分析技术与应用[M].北京:机械工业出版社,1990.
    [3]Dong H, Bell T. Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment[J]. Wear,2000,238(2):131-137.
    [4]何奖爱,王玉玮.材料磨损及耐磨材料[M].沈阳:东北大学出版社,2001.
    [5]Moustafa SF, E1-Badry SA, Sanad AM, Kieback B. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders[J]. Wear,2000,238(7-8):131-137.
    [6]K-H.哈比希.严立,译.材料的磨损与硬度[M].北京:机械工业出版,1987.
    [1]M.H. Choi, B.H. Jeon, I.J. Chung, The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites, Polym.41(2000)3243-3252.
    [2]B. Li, C.R. Zhang, F. Cao, S. Q. Wang, B. Chen, J. S. Li, Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites, Mat. Sci. Eng. A. 471(2007)169-173.
    [3]M.X. Ji, C.G. Wang, Y.J.Bai, M.J. Yu, Y.X. Wang, Structural Evolution of Polyacrylonitrile Precursor Fibers during Preoxidation and Carbonization, Polym. Bull.59(2007)527-536.
    [4]C.P. Neo, V.K.Varadan, Optimization of Carbon Fiber Composite for Microwave Absorber. Electromagn. C.46(2004) 102-106
    [5]G.J. Xian, Z. Zhang, Sliding wear of polyetherimide matrix composites:I. Influence of short carbon fiber reinforcement, Wear.258(2005)776-782.
    [6]J. Liua, Y.L. Tian, Y.J. Chen, J.Y. Liang, L.F. Zhang, H.Fong, A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers, Mater. Chem. Phys.122(2010) 548-555.
    [7]Z.W. Xu, L. Chen, YD. Huang, J.L. Li, X.Q. Wu, Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy, Eur. Polym. J.44(2008)494-503.
    [8]A.Sadezky, H.Muckenhuber, H.Grothe,R.Niessner, U.Poschl, Raman microspectroscopy of soot and related carbonaceous materials:Spectral analysis and structural information. Carbon. 43(2005)1731-1742.
    [9]G.X.Zhang, S.H.Sun. D.Q.Yang, J.P. Dodelet, E. Sacher, The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment, Carbon.46(2008) 196-205.
    [10]M.X. Ji, C.G. Wang, Y.J. Bai. M.J. Yu, Y.X. Wang, Comparison of tensile fracture morphologies among various polyacrylonitrile-based carbon fibers, Polym. Bull.59(2007)381-390.
    [11]Z.H. Wu, C.U. PITTMAN, JR. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH, Carbon.33(1995)597-605.
    [1]M.H. Choi, B.H. Jeon, I.J. Chung. The effect of coupling agent on electrical and mechanical properties of carbon fiber/phenolic resin composites. Polymer,41(2000), p.3243.
    [2]B. Li, C.R. Zhang, F. Cao, et al. Effects of fiber surface treatments on mechanical properties of T700 carbon fiber reinforced BN-Si3N4 composites. Materials Science and Engineering A, 471(2007), p.169.
    [3]C.P. Neo, K. Varadanv. Optimization of Carbon Fiber Composite for Microwave Absorber. Electromagnetic Compatibility,46(2004), p.102.
    [4]G.J. Xian, Z. Zhang. Sliding wear of polyetherimide matrix composites:Ⅰ. Influence of short carbon fibre reinforcement. Wear,258(2005), p.776.
    [5]J.J. Liu, B. Zhu, C.G. Wang:Development of carbon fiber composites for the pantograph slide slates of the electric locomotive. Engineering Plastics Application,31(2003), p.39.(in Chinese)
    [6]J. Liua, Y. Tian, Y.J. Chen, et al. A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers. Materials Chemistry and Physics,122(2010), p.548.
    [7]Z.W. Xu, L. Chen, Y.D. Huang, et al. Wettability of carbon fibers modified by acrylic acid and interface properties of carbon fiber/epoxy. European Polymer Journal,44(2008), p.494.
    [8]Y. Xu, D.D.L. Chung. Carbon fiber reinforced cement improved by using silane-treated. Cement and Concrete Research,29(1999), p.773.
    [9]N. Iwashita, E. Psomiadou, Y. Sawada. Effect of coupling treatment of carbon fiber surface on mechanical properties of carbon fiber reinforced carbon composites. Composites Part A: Applied Science and Manufacturing,29(1998), p.965.
    [10]H. F. Wu, D. W. Dwight, N. T. Huff. Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites. Composites Science and Technology,57(1997), p.975.
    [11]Y. Suzuki, Z. Maekawa, H. Hanada, et al. Influence of silane coupling agents on interlaminar fracture in glass fibre fabric reinforced unsaturated polyester laminates. Journal of Materials Science,28(1993), p.1725.
    [12]S. Tiwari, J. Bijwe, S. Panier. Tribological studies on polyetherimide composites based on carbon fabric with optimized oxidation treatment. Wear,271(2011), p.2256.
    [13]Z. Wu, C.U. Pittman, S.D. Gardner. Nitric acid oxidation of carbon fibers and the effects of subsequent treatment in refluxing aqueous NaOH. Carbon,33(1995), p.601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700