喷雾热解法制备超细锰氧化物及其在碱性介质中的电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锰氧化物尤其是二氧化锰在电池和催化工业中已得到广泛的应用,其品质对电池的性能和催化剂的活性起着决定性的作用,因此合成高活性的锰氧化物显得非常重要。本文选用锰氧化物作为研究对象,首次利用喷雾热解法制备了超细粉体材料,并通过喷涂法制作成Ni-MnO_x薄膜电极,采用SEM、XRD、TG、AFM、激光粒度仪等多种材料分析手段和恒电流、恒电位、线性慢扫描、循环伏安、电化学阻抗谱等电化学实验方法,对碱性介质中锰氧化物的电化学性能和锰氧化物催化剂上氧的电催化还原进行了研究,同时深入考察了二氧化锰放电中间态粒子对氧的电催化还原的影响。
     本文在第三章中,首次利用喷雾热解法合成了锰氧化物超细粉体(Mn_3O_4、Mn_2O_3、Mn_5O_8、α-MnO_2、β-MnO_2、γ-MnO_2和λ-MnO_2),对合成样品的成分、结构和形貌进行表征和分析,考察了其在碱性介质中的电化学性能。研究发现,锰氧化物主要是300℃时前驱体的燃烧产物,通过燃烧有利于微粉超细化。喷雾干燥后的粉末呈空心球形,表面光滑且有裂口。热处理增加了颗粒的团聚,团聚体比较松散,是由最小粒径约0.1 μm小颗粒聚集而成。酸化处理是获得高含量MnO_2样品的有效途径,样品E、F和H的组成和纯度均高于商品EMD。样品G、E和F的电化学性能优异,初始放电容量最高可达215 mAh·g~(-1),放电深度比EMD提高15%。对γ-MnO_2电极在不同阴极极化电位下的电化学阻抗行为的研究发现质子在二氧化锰晶格中的扩散符合多孔电极的阻挡层扩散模型。
     在第四章中,利用原子力显微镜(AFM)观察Ni-MnO_x真电极的表面形貌,通过恒电位阶跃法估算其真实表面积,研究了二氧化锰放电中间态粒子对还原动力学的影响。研究发现,通过喷涂法制作的薄膜电极表面沉积的是样品中粒度分布小于10%的部分。其电化学真实表面积按下列顺序递减:α-MnO_2>γ-MnO_2>β-MnO_2>Mn_3O_4≈Mn_2O_3>λ-MnO_2>Mn_5O_8。经快速循环伏安研究,在Mn_5O_8和α、β、γ-MnO_2电极中检测到了中间态粒子的还原过程,但在电化学活性较低的Mn_3O_4、Mn_2O_3和λ-MnO_2中均没有出现。这表明二氧化锰电极的电化学活性
Manganese oxides, especially manganese dioxide, are widely used in the field of battery and catalysis. Its quality is vital to battery performance and catalysis activity. Therefore, it is all-important to prepare the active manganese oxides. Based on the review of research and development of manganese oxides, spray drying was used to prepare the ultra-fine powders and Ni-MnO_x film electrode was made by mist spray for the first time. The electrochemical reduction of manganese oxides and electro-catalysis reduction of oxygen on some manganese oxides in alkaline solution were investigated by different material characterization methods and electrochemical techniques, such as SEM, XRD, TG, AFM, laser-granularity, linear polarization, cyclic voltammetry and electrochemical impedance spectroscopy.In the third chapter of this dissertation, ultra-fine manganese oxides was firstly prepared by spray drying, such as Mn_3O_4, Mn_2O_3, Mn_5O_8, α-MnO_2, β-MnO_2, γ-MnO_2 and λ-MnO-2. The component, structrue, morphology and electrochemical performance were studied. It is found that manganese oxides was formed at 300 °C by burning precursor. This burning process is propitious to obtain ultra-fine powders. The SEM showed global precursor was hollow. Being heat-treated, particle was formed conglomeration which was made up of smaller particle of 0.1 μm. Acid treating could offer the samples with high content MnO_2. The composition and purity of sample E, F and H was higher than commercial EMD. Particularly, electrochemical performance was good with an initial discharge capacity of 215 mAh·g~(-1). The proton diffusion process in MnO_2 was studied by using the transmission block model of porous electrode.In the fourth chapter, the techniques of atom force microscope and potential steps were used to examine the texture and surface chemical area of Ni-MnO_x film electrode. The effect of reduction kinetics on discharged intermediate spieces was studied by fast cyclic voltammetry in alkaline solution. The experimental results
引文
[1] 王寒竹.锰的氧化物和氢氧化物矿物结晶学及矿物学教学参考文集(二)[M].北京:地质出版社,1982.
    [2] 王运敏,中国的锰矿资源和电解金属锰的发展[J].中国锰业,2004,22(3):26-30.
    [3] Y P Li, J J Yuan, P Y Lin, et al. Catalytic activity nanocrystalline manganese oxide for Co oxidation [J]. Chinese J. Chem. Phy., 1999, 12(1): 86-92.
    [4] S B Kanango. Physicochemical properties of MnO_2 and MnO_2-CuO and their relationship with activity for H_2O_2 decomjposition and Co oxidation [J]. J. Catal., 1979, 58: 419-423.
    [5] X G Qi, J H Fei, Z Y Hou, et al. Study of MnO_x-promoted Cu/γ-Al_2O_3 catalysts for hydrogenation of carbon monoxide [J]. J. Natural Gas Chemistry, 2001, 10(1): 34-41.
    [6] S Hasegawa, K Yasuda, T Mase, et al. Surface active sites for dehydrogenation reaction of isopropanol on manganese [J]. J. Catal., 1977, 46: 125-129.
    [7] K V Rao, V K Venkatesan, H V K Udupa. Electrolytic manganese dioxide as an oxygen electrode [J]. J. Electrochem. Soc. India, 1982, 31-32: 33-39.
    [8] S P Tiang, W R Ashton, A C C Tseung. An observation of homogeneous and heterogeneous catalysis processes in the decomposition of H_2O_2 over MnO_2 and Mn (OH)_2 [J]. J. Catalysis, 1991, 131(1): 88-93.
    [9] D B Zhou, H V Poorten. Electrochemical characterization of oxygen reduction on teflon-bond gas diffusion electrodes [J]. Electrochim. Acta, 1995, 40(12): 1819-1826.
    [10] J S Yang, J J xu. Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reductin in alkaline solutions [J]. Electrochem. Commun., 2003, 5(4): 306-311.
    [11] 游北川.化学二氧化锰工艺研究[J].中国锰业,2001,19(3):11-14.
    [12] 李凤生等编著.超细粉体技术[M].国防工业出版社,2000:7-9.
    [13] 李凤生著.特种超细粉体制备技术及应用[M].国防工业出版社,2002:2-4.
    [14] 张立德主编.超微粉体制备与应用技术[M].中国石化出版社,2001:23-28.
    [15] 闵恩泽.开发石油化工催化新技术的一些科研领域[J].化学反应工程与工艺,1991,7(4):319-322.
    [16] 陈庆龄.新型催化剂新材料的开发动向和新进展[J].化工进展,1990,3:5-10.
    [17] 黄坤,刘煦.纳米级电池活性材料的研究进展[J].电池工业,2001,6(3):133-136.
    [18] 夏熙,郭再萍,高瑞芝.碱性Zn/MnO_2电池技术进步与发展潜力[J].电池工业,1998,3(5):131-137.
    [19] 夏熙,李清文.MnO_2电极可充性问题的探讨[J].电池,1992,22(5):216-219.
    [20] W M Swierbut. Alkaline cell having a cathode including a tindioxide addibive [P]. US: 5 501 924, 1996-05-14.
    [21] J E Mcizkowska, W Sussex. Additive for primary electrochemistry cells having manganese dioxide cathodes [P]. US: 5 516 604, 1996-03-26.
    [22] M Klob, O Raner, W Plieth. The effect of alkaline earth titanates on the rechargeability of manganese dioxide in alkaline electrolyte [J]. J. Power Sources, 1997, 69(1-2): 137-143.
    [23] W M Swierbut, J C Nardi. Alkaline cell having a cathode including a titanate additive [P]. US: 5 569 564, 1996-10-29.
    [24] 夏熙编译.二氧化锰手册[M].成都:四川科技出版社,1994.
    [25] 夏熙.纳米微粒作为电极活性材料的前景[J].电池,1998,6(28):251-255.
    [26] 张立德.纳米材料[M].北京:化学化工出版社,2000:39-42.
    [27] D K Walanda, G A. Lawrance, W D Scott. Hydrothermal MnO_2: synthesis, structure, morphology and discharge performance [J]. J. Power Sources, 2005, 139(1-2): 325-341.
    [28] R M Dell. Batteries fifty years of materials development [J]. Solid State Ionics, 2000, 134: 139-158.
    [29] A Kozawa, J F Yeager. Cathodic Reduction Mechanism of MnOOH to Mn(OH)_2 in Alkaline Electrolyte [J]. J. Electrochem. Soc., 1968, 115(10): 1003-1007.
    [30] 夏熙.中国化学电源50年[J].电池,1999,29(5):209-216.
    [31] X Xia, Q W Li. Study of reduction mechanism of physically modified rechargeable MnO_2 electrode [J]. Progress in Batteries & Battery Materials, 1992, 12: 36-41.
    [32] H S Wroblowa, N Gupta. Rechargeable manganese oxide electrodes: Part Ⅱ. Physically modified materials [J]. J. Electroanal. Chem., 1987, 238(1-2): 93-102-.
    [33] 宋文顺主编.化学电源工艺学[M].中国轻工业出版社,2000:186-187..
    [34] G S Jonathan, I Brown and B Koretz. New development in the Electric Fuel Ltd. Zinc/air system [J]. J. Power Sources, 1999, 80:171-179.
    [35] F Beck and R Paul. Rechargeable batteries with aqueous electrolytes [J]. Electrochimica Acta, 2000, 45: 2467-2482.
    [36] W W Clark, E Paolucci, J Cooper. Commercial development of energy-enviromentally sound technologies for the auto-industry [J]. J. Cleaner Production, 2003, 11: 427-437.
    [37] K Karl, G Josef, C Martin, et al. Intermittent use of a low-cost alkaline frel cell-hybrid system for electric vehicles [J]. J. Power Sources, 1999, 80(1-2): 190-197.
    [38] M Sudoh, N Kamiya. In: C W Walton, E J Rudd (Eds). Energy and electrochemical processing for a cleaner environment, 97-28, The Electrochemical Society, Pennington, NJ, 1997: 129-135.
    [39] H Arai, S Muller, O Haas. Ac impedance analysis of bifunctional air electrodes for metal-air batteries [J]. J. Electrochem. Soc., 2000, 147(10): 3584-3591.
    [40] S Ahn, B J Tatarchuk. Air electrode: Identification of intraelectrode rate phenomena via ac impedance [J]. J. Electrochem. Soc., 1995, 142(12): 4169-4175.
    [41] M Sudoh, T Kondoh, N Kamiya, et al. Impedance analysis of gas-diffusion electrode coated eith a thin layer of fluoro ionomer to enhance its stability in oxygen reduction [J]. J. Electrochem. Soc. 2000, 147(10): 3739-3744.
    [42] A S Arico, V Alderucci, V Antonucce, et al. Ac impedance spectroscopy of porous gas diffusion elctrode in sulphuric acid [J]. Electrochim Acta, 1992, 37: 523-529.
    [43] N Jia, R B Martin, Z Qi, et al. Modification of carbon supported catalysts to improved performance in gas diffueion electrodes [J]. Electrochim Acta, 2001, 46: 2863-2869.
    [44] E Brillas, E Mur, J Casado. Iron(Ⅱ) catalysis of the mineralization of aniline using a carbon-PTFE O_2-fed cathode [J]. J. Electrochem. Soc., 1996, 143(3): LA9-L53.
    [45] E Brillas, R Sauleda, J Casado. Peroxi-coagulation of aniline in acidic medium using an oxygen diffusion cathode [J]. J. Electrochem. Soc., 1997, 144(7): 2374-2379.
    [46] E Brillas, R Sauleda, J Casado. Degradation of 4-chlorophenol by anodic oxidation electro-fenton, photoelectro-fenton and peroxide-coagulation processes [J]. J. Electrochem. Soc., 1998, 145(3): 759-765.
    [47] T Harrington, D Pleteher. The removal of low levels of organics from aqueous solutions using Fe(Ⅱ) and hydrogen peroxide formed In Stru at gas dirrudion electrodes [J]. J. Electrochem. Soc., 1999, 146(8): 2983-2989.
    [48] D F Maurizio, C Paola. On the design of electrochemical ractors for the treatment of polluted water [J]. J. Cleaner Production, 2004, 12(2): 159-163.
    [49] E Brillas, J C Calpe, J Casado. Mineralization of 2,4-D by advanced electrochemical oxidation processes [J]. Water Res. 2000, 34(8): 2253-2262.
    [50] R Darby. A comparison of several models for porous gas-diffusion electrodes [J]. Advanced Energy Conversion, 1965, 5(1): 43-56.
    [51] T Ohsaka, L Q MAO, K Aihara, et al. Bifunctional catalytic activity of manganese oxide toward O_2 reduction: novel insight into the mechanism of alkaline air electrode [J]. Electrochem. Commun., 2004, 6: 273-277.
    [52] L Q MAO, D Zhang, T Sotomura, et al. Mechanistic study of reduction of oxygen in air electrode with manganese oxides as electrocatalysts [J]. Electrochim Acta, 2003, 48: 1015-1021.
    [53] A Damijanovic, M A Genshaw, J O' M Bockris. Hydrogen peroxide formation in oxygen reduction at gold elelctrodes: Ⅱ. Alkaline solution [J]. J. Electroanal. Chem., 1967, 15: 137-180.
    [54] 查全性等著.电极过程动力学导论(第三版)[M].科学出版社,2002:258-260.
    [55] 朱文祥编著.中级无机化学[M].高等教育出版社,2004:151-153.
    [56] J H Zagal. Metallophthalocyanines as catalyst in electrochemical reactions [J]. Coord. Chem. Rev., 1992, 119: 89-136.
    [57] K Shigeyuki. Advanced PEFC development for fuel cell powered vehicles [J]. J. Power Sources, 1998, 71: 150-155.
    [58] S Srinivasan, O A Velev, A Parthasarathy. High energy efficiency and high power density PEMFC [J]. J. Power Sources, 1991, 36: 399-320.
    [59] G J Koncar, S Marianow. Proton exchange menbrane fuel cell separator plate [P]. US: 5 942 347, 1999-08-24.
    [60] H Streckert, H, Blue. Portable electronic device powered by proton exchange membrane fuel cell [P]. US 6 447 945, 2002-09-10.
    [61] S M Wilson, A J Valerio, G Shimshon. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers [J]. Electrochim. Acta, 1995, 40: 355-363.
    [62] 毛宗强,阎军,何向明等.列管式质子交换膜燃料电池[P].China:2 298 604,1998-11-25.
    [63] K A Starz, E Auer, T Lehmann, et al. Characteristics of platinum-based electrocatalysts for mobile PEMFC applications [J]. J. Power Sources, 1999, 84: 167-172.
    [64] V M Jalan. Electrode assembly for use in a solid polymer electrolyte fuel cell [P]. US: 4 876 115, 1989-10-24.
    [65] C A Landsman, F J Luczak. Noble metal-chrmium alloy catalysts and electrochemical cell [P]. US: 4 316 944, 1982-2-23.
    [66] F J Luzak, C A Landsman. Ternary fuell cell catalysts containing platinum, cobalt and chromium [P]. US: 4 447 506, 1984-05-08.
    [67] B C Beard, P N Ross. Characterization of a titanium-promoted supported platinum electrocatalyst [J]. J. Electrochem. Soc., 1986, 133(9): 1839-1845.
    [68] J T Glass, G L Cohen, G E Stoner. The effect of metallorgical variables on the electrocatalytic properties of PtCralloys [J]. J. Electrochem. Soc., 1987, 134(1): 58-65.
    [69] S Mukerjee, S Srinivasan, M P Soriaga. Role of structural and electronic propertiies of Pt and Pt alloys on electrocatalysis of oxygen reduction [J]. J. Electrochem. Soc., 1995, 142(5): 1409-1422.
    [70] M K Min, J Cho, K Cho, et al. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications [J]. Electrochim. Acta, 2000, 45(25-26): 4211-4217.
    [71] S Mukerjee, S Srinivasan. Enhanced electrocatalysis of oxygen reduction on platinum alloy in proton exchange menbrane fuel cells [J]. J. Electroanal. Chem., 1993, 357: 201-224.
    [72] M T Paffett, J G Beery, S Gottesfeld. Oxygen reduction at Pt_(0.65)Cr_(0.35), Pt_(0.2)Cr_(0.8) and roughened platinum [J]. J. Electrochem. Soc., 1988, 135(6): 1431-1436.
    [73] T Toda, H Igarashi, H Uchida. Enhancement of the electroreduction of oxygen on Pt alloy with Fe, Ni, Co [J]. J. Electrochem. Soc., 1999, 146(10): 3750-3756.
    [74] T Ito, S Matsuzawa, K Kato. Platinum alloy electrocatalyst and acid-electrolyte fuel cell electrode using the same [P]. US: 4 797 054, 1988-12-27.
    [75] A Freund, T Lehmarm, K A Starz. Platinum-aluminum alloy catalyst for fuel cells and method of its production [P]. US: 5 767 036, 1998, 07-16.
    [76] B C Beard, P N Ross. The structure and activity of Pt-Co alloy as oxygen reduction electrocatalysts [J]. J. Electrochem. Soc., 1990, 137(11): 3368-3373.
    [77] T Ito, S Matsuzawa, K Kato. Platinum-copper alloy electrocatalyst and acid-electrolyte fuel cell electrode [P]. US: 4 716 087, 1987-12-29.
    [78] C Z Wan. Electrocatalyst and fuel cell electrode [P]. US: 4 822 699, 1989-04-18.
    [79] K V Ramesh, A K Schukla. Carbon-based electrodes carrying platinum-group bmetal catalysts for oxygen reduction in fuel cells with acidic or alkaline electrolytes [J]. J. Power Sources, 1987, 19(4): 279-285.
    [80] M A Shibli, M Noel. Development and evaluation of platinum-ruthenium bietal catalyst-based carbon electrodes for hydrogen/oxygen fuel cells in NaOH media [J]. J. Power Sources, 1993, 45(2): 139-152.
    [81] O Savadogo, P Beck. Five percent platinum-tungsten oxide-based electrocatalysts for phosphic acid fuel cell cathodes [J]. J. Electrochem Soc., 1996, 143(12): 3842-3846.
    [82] T Itoh, K Kate, S Kamitomai. Suported platinum quaternary alloy electrocatalyst [P]. US: 5 178 971, 1993-01-12.
    [83] J Shim, D Y Yoo, J S Lee. Characteristics for electocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell [J]. Electrochim. Acta, 2000, 45(12): 1943-1951.
    [84] S Pyun, S B Lee. Effect of survace rroups on the elctrocatalytic behaviour of Pt-Fe-Co alloy-dispersed carbon electrodes in the phosphoric acid fuel cell [J]. J. Power Sources, 1999, 77(2): 170-177.
    [85] F J Luczak, D A Landsman Ternary fuel cell catalyst containing platinum and gallium [P]. US: 4 880 711, 1989-11-14.
    [86] G Tamizhmani, G A Capuano. Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymei-elelctrolyte fuel cells [J]. J. Electrochem. Soc., 1994, 141(4): 968-975.
    [87] G Tamizhmani, G A Capuano. Life tests of carbon-supported Pt-Cr-Cu elelctrocatalysts in solid-polymer-electrolyte fuel cells [J]. J. Electrochem. Soc., 1994, 141(9): L132-L34.
    [88] F J Luczak, D A Landsman. Ordered ternary fuel cell catalysts containing platinum and cobalt [P]. US: 4 711 829, 1987-12-08.
    [89] Y J Li, C C Chang, T V Wen. A mixture design approach to thermally prepared Ir-Pt-Au ternary electrodes for oxygen reduction in alkaline solution [J]. J. Appl. Electrochem., 1997, 27: 227-234.
    [90] S Ye, A K Vijh, H Daol. Carbonized aerogel-platinum composite as fuel cell electrocatalysts: Someelectrochemical and surface effects [J]. J. New Materials for Electrochemical Systems, 1998, 1(1): 17-22.
    [91] H Maria, Y C Ming, U Stimming. Polypyrrole/Pt composites as potential electrode materials for fuel cells [A]. In: Int. Symp. On New Materials for Fuel Cell Systems [C]. Montreal, Canada: 1995, 9-13: 629-635.
    [92] J Bett, J Lundquist, E Washington, et al. Platinum crystallite size considerations for electrocatalytic oxygen reduction [J]. Electrochem. Acta., 1973, 18: 343-348.
    [93] M L Sattler, P N Ross. The surface structure of Pt crystallites supported on carbon black [J]. Ultramicroscopy, 1986, 20(1-2): 21-28.
    [94] K Kinoshita. Particle size effects for oxygen reduction on hihyly dispersed platium in acid electrolytes [J]. J. Electrochem. Soc., 1990, 137(3): 845-848.
    [95] N Markovic, H Gasteiger, P N Ross. Kinetics of oxygen reduction on Pt(hkl) electrodes: Implications for the crystallite sixe effect with spported Ptelectrocatalysts [J]. J. Electrochem. Soc., 1997, 144(5): 1591-1597.
    [96] 清华大学锌-空气电池研究组.锌-空气(氧)电池进展[M].北京:科学出版社,1975.
    [97] H K Lee, J P Shim, M J Shim, et al. Oxygen reduction behavior with silver alloy catalyst in alkaline media [J]. Materials Chemistry and Physics, 1996, 45(3): 238-242.
    [98] L Demarconnay, C Coutanceau, J M Leger. Electroreduction of dioxygen(ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol [J]. Electrochim. Acta, 2004, 49:4513-4521.
    [99] 滕加伟,金丽华,唐伦成.碱性燃料电池氧电极的研究[J].电源技术,1997,21(6):252-255.
    [100] J A R Vanveen, C Visser. Oxygen reduction on monomeric transition metal phthalocyanines in acid elelctrolyte [J]. Electrochim. Acta, 1979, 24:921-928.
    [101] J Zagal. Metallophthalocyanines as catalysts in electrochemical reactions [J]. Coordination Chemistry Reviews, 1992, 119: 89-136.
    [102] G Tamizhmani, J P Dodelet, D Guay, et al. Electrocatalytic activity of nafion-impregnated coblt phthalocyanine [J]. J. Electrochem. Soc., 1994, 141(1): 41-45.
    [103] G Lalande, G Faubert, R Cote, et al. Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells [J]. J. Power Sources, 1996, 61(1-2): 227-237.
    [104] 吕鸣祥.扣式锌-空电池的研究进展[J].电源技术,1987,11(3):21-27.
    [105] K Matsuki, H Kamada. Oxygen reduction electrocatalysis on some manganese oxides [J]. Electrochimi. Acta, 1986, 31(1): 13-18.
    [106] K Bretislav, B Jiri, V Jana. MnO_x/C composites as electrode materials Ⅱ. Reduction of oxygen on bifunctional catalyses based on manganese oxides [J]. Electrochimi. Acta, 2002, 47: 2365-2369.
    [107] Y L Cao, H X Yang, X P Ai, et al. The mechanism of oxygen reduction on MnO_2-catalyzed air cathode in alkaline solution [J]. J. Electroanal. Chem., 2003, 557: 127-134.
    [108] L Q Mao, T Sotomura, K Nakatsu, et al. Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution [J]. J. Electrochem. Soc., 2002, 149(4): A504-A507.
    [109] G Q Zhang, X G Zhang. MnO_2/MCMB electrocatalyst for all solid-state alkaline zinc-air cells[J]. Electrochim. Acta, 2004, 49: 873-877.
    [110] G Q Zhang, X G Zhang, Y G Wang. A new air electrode based on carbon nanotubes and Ag-MnO_2 for metal air electrochemical cells [J]. Carbon, 2004, 42(15): 3097-3103.
    [111] L Jaakko. Preparation of air electrode and long run tests [J]. J. Electrochem Soc., 1991, 138(94): 905-908.
    [112] Z D Wei, W H Huang. S T Zhang, et al. Carbon-based air electrodes carrying MnO_2 in Zinc-air batteries [J]. J. Power Sources, 2000, 91: 83-85.
    [113] Z D Wei, W H Huang, S T Zhang, et al. Induced effect of Mn_3O_4 on formation of MnO_2 crystals favorable to catalysis of oxygen reduction [J]. J. Appl. Electrochem., 2000, 30(10): 1133-1136.
    [114] D hartouni, N Kuriyama, T Kiyobayashi, et al. Air-metal hydride secondary battery with long cycle life [J]. J. Alloys and Compounds, 2002, 330-332: 766-770.
    [115] 王连驰,于作龙,吴越.稀土催化新貌[J],稀土,1990,11(5):36-49.
    [116] T Hyodo, M Hayashi, N Miura, et al. Catalytic activities of rare-earth manganites for cathodic rduction of oxygen in alkaline solution [J]. J. Electrochem. Soc., 1996, 143(11): L266-L267.
    [117] N L Wu, W R Liu, S J Su. Effect of oxygenation on electrocatalysis of La_(0.6)Ca_(0.4)CoO_(3-x) in bifunctional air electrode [J]. Electrochim. Acta, 2003, 47: 1-5.
    [118] M Bursell, M Pirjamali, Y Kiros. La_(0.6)Ca_(0.4)CoO_3, La_(0.1)Ca_(0.9)MnO_3 and LaNiO_3 as bifunctional oxygen electrodes [J]. Electrochim. Acta, 2002, 47:1651-1660.
    [119] C H Li, K C K Soh, P Wu. Formability of ABO_3 perovskites [J]. J. Alloys and Compounds, 2004, 372: 40-48.
    [120] R E Carbonio, C Fierro, D Tryk, et al. Pervskite-type oxides: Oxygen electrocatalysis and bulk structure [J]. J. Power Sources, 1988, 22(3-4): 387-398.
    [121] S Youichi, U Kenichi, M Haruyuki, et al. Bi-functional oxygen electrode using large surface area La_(1-x)Ca_xCoO_3 for rechargeable metal-air battery [J]. J. Electrochem. Soc. 1990, 137(11): 3430-3433.
    [122] G Karlsson. Reduction of oxygen on LaNiO_3 in alkaline solution [J]. J. Power Sources, 1983, 10(4): 319-331.
    [123] 池玉娟,王占良,景晓燕等.钙钛矿型La_(1-x)Sr_xFeO_3和LaNiO_3纳米晶在双功能氧电极上的应用[J].电源技术,1999,23(5):275-278.
    [124] A Kahoul, A Hammouche, F Naamoune, et al. Solvent effect on synthesis of perovskite-type La_(1-x)Ca_xCoO_3 and their electrochemical properties for oxygen reactions [J]. Materials Research Bulletin, 2000, 35:1955-1966.
    [125] X Y Wang, P J Sebastian, M A Smit, et al. Studies on the oxygen reduction catalyst for zine-air battery electrodce [J]. J. Power Sources, 2003, 124: 278-284.
    [126] Isupova, A Lyubov, V Sergey, et al. Real structure and catalytic activity of La_(1-x)Ca_xMnO_(3+δ) perovskites [J]. Solid State Ionics, 2001, 141-142: 417-425.
    [127] F Svegl, B Orel, I G Svegl, et al. Characterization of spinel Co_3O_4 and Li-doped Co_3O_4 thin film electrolysts prepared by the sol-gel route [J]. Electrochim. Acta, 2000, 45: 4359-4371.
    [128] A C Tavares, M A M Cartaxo, M I Da, et al. Effect of the partial replacement of Ni or Co by Cu on the electrocatalytic activity of the NiCo_2O_4 spinel oxide [J]. J. Electroanal. Chem., 1999, 464: 187-197.
    [129] R N Singh, N K Singh, J P Singh. Electrocatalytic properties of new active ternary ferrite film anode for O_2 evolution in alkaline solution [J]. Electrochim. Acta, 2002, 47: 3873-3879.
    [130] J L Gautier, J F Marco, M Gracia, et al. Ni_(0.3)Co_(2.7)O_4 spinel particles/polypyrrole composite electrode: Study by X-ray photoelectron spectroscopy [J]. Electrochim. Acta, 2002, 48: 119-125.
    [131] R N Sigh, J F Koenig, G Poillerat, et al. Thin films of Vo_3O_4 and NiCo_2O_4 prepared by the method of chemical spray pyrolysis for electrocatalysis [J]. J. Electroanal. Chem., 1991, 314: 241-253.
    [132] H N Cong, K E Abbassi, P Chartier. Electrocatalysis of oxygen reduction on polypyrrole/mixed valence spinel oxide nanoparticles [J]. J. Electrochem. Soc., 2002, 149(5): A525-A530.
    [133] A Restovic, E Rios, S Barbato, et al. Oxygen reduction in alkaline medium at thin Mn_xCo_(3-x)O_4 spinel films prepared by spray pyrolysis. Effect of oxide cation composition on the reaction kenetics [J]. J. Electroanal. Chem., 2002, 522: 141-151.
    [134] J Ponce, J L Rehspringer, G Poillerat, et al. Electrochemical study of nickel aluminium manganese spinel Ni_xAl_(1-x)Mn_2O_4. Electrocatalytical properties for the oxygen evolution reaction and oxygen reduction reaction in alkaline media [J]. Electrochim. Acta, 2001, 46: 3373-3380.
    [135] J Prakash, D A Tryk, W Aldred, et al. Investigations of ruthenium pyrochlores as bifunctional oxygen electrodes [J]. J. Appl. Electrochem., 1999, 29:1463-1469.
    [136] J Prakash, A T Donald. Kinetic investigation of oxygen reduction and evolution reaction on lead ruthenate catalysis [J]. J. Electrochem. Soc., 1999, 146(11): 4145-4151.
    [137] P J Sebastian. Chemical synthesis and characterization of Mo_xRu_ySe_z-(CO)_n electrocatalysts [J]. Int. J. Hydrogen energy, 2000, 25: 255-259.
    [138] F J Rodriguez, P J Sebastian. Mo_xSe_y-(CO)_n electrocatalyst prepared by screen printing and sintering [J]. Int. J. Hydrogen Energy, 2000, 25: 243-247.
    [139] A Kozawa, J F Yeager. Cathodic Reduction Mechanism of MnOOH to Mn(OH)_2 in Alkaline Electrolyte [J]. J. Electrochem. Soc., 1968, 115(10): 1003-1007
    [140] W D Scott, A L Geofrey, G A J Swinkels. Redox Processes at the Manganese Dioxide Electrode [J]. J. Electrochem. Soc., 1997, 144(9): 2949-2967
    [141] D Y Qu, B E Conway, L Bai. Role of Dissolution of Mn(Ⅲ) Species in Discharge and Recharge of Chemically-modified MnO_2 Battery Cathode Materials [J]. J. Appl. Electrochem, 1993, 23: 693-706.
    [142] Y Chabre, J Pannetiert. Structural and Electrochemical Properties of the Proton/γ-MnO_2 System [J]. Prog. Solid St. Chem., 1995, 23: 1-130.
    [143] Z Rogulski, H Siwek, I Paleska et al. Electrochemical Behavior of Manganes Diosice on a Gold Electrode [J]. J. Electroanal. Chem., 2003, 543: 175-185.
    [144] M H Rossouw, D C Liles, M M Thackeray, et al. Alpha manganese dioxide for lithium batteries: A structural and electrochemical study [J]. Materials Research Bulletin, 1992, 27(2): 221-230.
    [145] J C Hunter. Preparation of a new crystal form of manganese dioxide: λ-MnO_2 [J]. J. Solid State Chemistry, 1981, 39(2): 142-147.
    [146] J P Gabano, J Seguret, J F Laurent. A Kinetic study of the electrochemical reduction of manganese dioxide in homogeneous phase [J]. J. Electrochem. Soc., 1970, 117(2): 147-151.
    [147] S Atlung, T Jacobsen. On the ac-impedance of electroactive powders, γ-Manganese dioxide [J]. Electrochim. Acta, 1976, 21(8): 575-584.
    [148] M A Malati, M W Rophael, I I Bayat. The kinetics of pyrophosphate leaching of partially reduced manganese dioxides [J]. Electrochim. Acta, 1981, 26(2): 239-243.
    [149] H Kahil, F Dalard, J Guition, et al. Determination du coefficient de diffusion du proton dans MnO_2-γ par la method de resonance magnetique nucleaire [J]. Surface Technology, 1982, 16(4): 331-340.
    [150] Z Hung, Z H Chen, X Xia. Diffusion Model and Filing Mechanism of Proton in Alkaline γ-MnO_2 Electrode [J]. J. Electrochem. Soc., 1989, 136(10): 2771-2774.
    [151] F Fillaux, H Ouboumour, C H Cachet, et al. Inelastic neutron scattering study of the proton dynamics in manganese oxides Ⅱ. Proton insertion in electrodeposited MnO_2 [J]. J. Electrochem. Soc., 1993, 140(3): 592-598.
    [152] A B Scott. Diffusion Theory of Polarization and Recuperation Applied to the Manganese Dioxide Electrode [J]. J. Electrochem. Soc., 1960, 107(12): 941-944.
    [153] T Valand. Manganese dioxide electrode at potentials at and close to the open circuit potential of the electrode [J]. Electrochim. Acta, 1974, 19(10): 639-643.
    [154] S Atlung, K West. The kinetics of porous insertion electrodes [J]. J. Power Sources, 1989, 26: 139-159.
    [155] D Y Qu. The AC Impedance Studies for porous MnO_2 Cathode by means of Modified Transmission Line Model [J]. J. Power Sources, 2001, 102: 270-276.
    [156] D Y Qu. Application of a. c. Impedance Technique to the Study of the Proton Diffusion Process in the Porous MnO_2 Electrode [J]. Electrochim. Acta, 2003, 48: 1675-1684.
    [157] D Y Qu. The Study of the Proton Diffusion Process in the Porous MnO_2 Electrode [J]. Electrochim. Acta, 2004, 49: 657-665.
    [158] 梁鹏翔.电池材料[M].北京:电子工业出版社,1995:127-147.
    [159] 何英.电池用二氧化锰的制造方法及其进展[J].电池工业,1999,4(6):230-231.
    [160] 李秋珍.从氯化物电解液制备电解二氧化锰[J].中国锰业,1994,12(4):45-51.
    [161] 夏熙,李文清.二氧化锰的可充性探讨[J].电池,1992,22(5):218-222.
    [162] L I Hill, A Verbaere, D Guyomard. Nanofibrous α-, β-, γ- and α-γ-manganese dioxide prepared by the hydrothermal-electrochemical technique [J]. J. Electrochem. Soc. 2003, 150(8): D135-D138.
    [163] P K Everett. Production of electrolytic battery active manganese dioxide [P]. US: 3 951 765, 1976-04-20.
    [164] P P Turillon, M N Hull, G F Nordblom. Method of producing battery and electrolytic cell electrodes [P]. US: 4 358 892, 1982-11-16.
    [165] R A Langan. Manganese carbonate additive for manganese dioxide [P]. US: 4 478 921, 1984-10-23.
    [166] I Tanabe, R Nagata. T Watanabe, et al. Process for producing manganese dioxide [P]. US: 4 402 931, 1983-09-06.
    [167] R F Alan. Process for chemically preparation of manganese dioxide [P]. US: 3 677 700, 1972-07-25
    [168] J X Dai, S F Y Li, K S Siow, et al. Synthesis and characterization of the hollandite-type MnO_2 as a cathode material in lithium batteries [J]. Electrochim. Acta, 2000, 45: 2211-2217.
    [169] H S Wroblowa, N Gupta. Rechargeable manganese oxide electrodes Ⅱ. Physically modified materials [J]. J Electroanal. Chem., 1987, 238: 93-102.
    [170] W M Ralph. Method of chemically precipitated MnO_2 [P]. US: 2 459 714, 1949-07-22.
    [171] B F Godrich, C Birt. Chemically preparation of manganese dioxide [P]. US: 2 674 313, 1952-07-16.
    [172] E I Wang, L F Lin, W L Bowden. Process for producing manganese dioxide [P]. US: 5 348 726, 1994-09-20.
    [173] G Alfre. Process for preparation of manganese dioxide [P]. Fr. Pat: 1 518 624, 1968-04-09.
    [174] R N Ravinder, R G Ramana. Synthesis and electrochemical characterization of amorphous MnO_2 electrochemical capacitor electrode material [P]. J. Power Sources, 2004, 132: 315-320.
    [175] 李娟,夏熙.纳米MnO_2的固相合成及其电化学性能的研究[J].高等学校化学学报,1999,20(3):1434-1437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700