水力机械胶粘耐磨涂层的制备与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文综述了耐磨涂层的研究概况,介绍了采用接枝聚合法制备具有互穿聚合物网络的聚氨酯(PU)改性环氧树脂(EP)胶粘剂,并对水力机械胶粘耐磨涂层的制备技术及性能进行了详细研究。
     水力机械胶粘耐磨涂层的特点在于由三层组成:富锌环氧底部涂层、环氧云铁中间涂层及耐磨表面涂层,并且耐磨表面涂层采用聚氨酯改性环氧树脂为胶粘剂,添加硬质耐磨的陶瓷骨料,其抗冲蚀磨损性能尤其突出。在制备底部涂层的过程中,分别研究了涂层的防蚀机理,及锌粉含量、磷铁粉含量和硅烷偶联剂处理金属表面对涂层性能的影响。研究得出:当锌粉占干膜的80wt%,磷铁粉和环氧溶液的质量比为0.25,金属基体表面经过KH-550型硅烷偶,联剂处理时,富锌涂层具有优良的防蚀性能。在制备中间涂层的过程中,采用正交实验法获得涂层的优化配方,并对涂层的防蚀机理、固化机理、固化动力学及热裂解过程进行了研究。结果表明:选择鳞片状云母氧化铁能有效地防止金属基体腐蚀;采用低分子聚酰胺(LMPA)固化E-44环氧树脂时,固化反应主要为环氧基团与胺基间的反应,其表观活化能为75.2kJ/mol;固化剂用量在一定范围内用得越多,固化越完全,体系柔性及抗冲击性增加,但耐腐蚀性能降低;此外,固化反应也与固化温度有关,温度越高,固化越完全,120℃时几乎完全固化,且在50~80℃范围内不宜快速升温。在制备表面涂层过程中,分析探讨了改性环氧胶粘剂的改性原理及固化机理,骨料的含量、骨料级配及涂层厚度对涂层耐磨性能的影响及涂层的磨损机理。得出:当PU/EP的质量比为0.3时,改性胶粘剂的性能较好;当固化剂LMPA用量为改性胶粘剂中EP的50wt%时,常温下涂层表干时间为4小时,实干时间为3~5天;当骨料含量为25wt%,粗颗粒含量为20wt%,涂层厚度在130~180μm时,耐磨表面涂层的耐冲蚀磨损性能是A_3钢基体的1.5~2倍。
     论文同时研究了由三层涂层组成的水力机械胶粘耐磨涂层的耐磨防腐性能。结果指出,与同类产品相比,涂层具有更好的耐冲蚀磨损性能。研究涂层之间及涂层与基体之间的界面结合性能发现:底部涂层与基体间的相互吸附、涂层间的相互扩散、偶联剂的共价键连接及机械互锁,均能使涂层与涂层之间、底层与基体之间在界面处形成牢固结合,有利于提高其抗冲蚀磨损性能。测试具有不同涂层层数的试样的阳极极化曲
    
    线,结果表明:随涂刷层数增加,涂层具有很好的耐蚀性能,可更好地
    保护基材。水力机械胶粘耐磨涂层己成功地应用于湘潭炼铁厂的水轮机
    叶片上,使原本3个月就需检修一次的水轮机经半年后仍然正常运作,
    有效地提高了水轮机的耐冲蚀磨损性能,并延长了其使用寿命。
This paper firstly gave a brief overview on the past and the future of the abrasion resistant coatings, and then the major work focused on the preparation of the epoxy resin / polyurethane (EP/PU) IPN using the graft co-polymerization method and on the investigation on its related abrasion resistant coatings used for components serving in hydraulic engines.
    The characteristics of abrasion resistant coatings used for components serving in hydraulic engines were that them included three layers of coatings: a zinc-riched epoxy primer, an epoxy micaceous iron mica intermediate coating and a top layer of abrasion resistant coating, and the top layer with the modified epoxy resin binder and the rigid ceramic aggregate had good erosion wear resistance. For the primer, the corrosion resistant mechanism and the effects of the fraction of zinc powder in weight, the amounts of ferrophosphorous powder and the silane coupling agent on the primer were studied. It was found that the zinc-riched primer had excellent corrosion resistant property when the fraction of zinc powder was of 80wt% in weight, the ratio between ferrophosphorous and the epoxy mucus was 0.25. and the metal substrate was treated by KH-550 type silane coupling agent. For the intermediate coating, optimal composition of the coating was obtained by the orthogonal method. In addition, the corrosion resistant mechanism, the curing mechanism, the curing kinetics, and the thermal cracking process of this coating were investigated in depth. The results showed that the scale-like structure of micaceous iron mica prevented the substrate from corrosion effectively. It was also found that the curing reaction was the reaction between the epoxy and amine groups when the EP was cured by the polyamide (LMPA) with low molecular weight. The surface activation for the reaction was 75.2 kJ/mol. The toughness and the impact resistance improved, but the corrosion resistance reduced with the increase of the content of LMPA with in a specific range. On the other hand, the curing degree depended on the temperature. The
    
    
    
    results indicated that the higher the temperature, the higher curing degree would be, and the coating completely cured at 120 . For the top layer (abrasion resistant coating), the modification mechanism of modified epoxy, the curing mechanism, the wear mechanism, and the effects of the aggregate content, the aggregate size, and the coating thickness on the erosive wear resistant property of the abrasion resistant coating were investigated. The results showed that the modified epoxy resin with excellent properties was prepared when the ration of PU/EP was 0.3, and the drying time in the air was about 3~5 days at room temperature with the ratio of LMPA/EP 50wt%. It was also found that the abrasive resistant property of the coating was about 2 times of the As steel under the proper conditions.
    The abrasion and corrosion resistance of the fabricated coatings were studied in the present work. The erosive wear resistance of the coatings was better than those of the others reported in the literature. The results indicated that the good erosive wear resistance of the fabricated coatings was resulted from the absorption between the primer and the substrate, the diffusion between the three layers, the strong covalent bond coherence of the SA, and the mechanical interlocking. The anodic polarization curves of the top layer, the top layer + the intermediate layer, and the top layer + the intermediate layer + the primer layer showed that these coatings protected the substrate effectively with the increase of the number of the layers. The coatings have been used to improve the erosion wear resistance of the water-wheel machines successfully.
引文
[1] 马海华,李志章,袁训.耐磨复合材料涂料研究与发展.材料科学与工程,1995,13(2):34-37
    [2] 隋育松,徐可君,江龙平等.陶瓷涂层在航空发动机轮叶片表而处理中的应用.材料保护,2001,34(3):38-40
    [3] 翟海潮.耐磨胶粘涂层及其磨损机理分析.中国胶粘剂,1997,7(3):32-34
    [4] MPELLETIER J. Improvement of mechanical properties of steel surfaces by laser cladding with cast tungsten carbide, laser application in the Automotive Industries (proc.conf), Italy, 1992:341-347
    [5] Molian P A. Hualun L Laser cladding of Ti-6Al-V with BN for improved wear performance, wear, 1989, 130(2): 337-352
    [6] Zhou X B, De Hosson J T M. A reaction coating on aluminum alloy by laser processing. Sci. Metall., 1993, (28): 219
    [7] 裴宇韬,欧阳家虎,雷廷权.激光熔覆耐磨复合涂层的研究现状.材料导报,1996,(1):60-63
    [8] Ayers J. D., Ives L. K., Malanzo F., et al. Abrasive Wear Studies of Laser Surface-mel-ted Aluminum and Titanium Alloys with Carbide Additions. In K. C. Ludema (ed.) Proc. Int. Conf. on Wear of Materials, 1983, American Society of Mechanical Engineers, New York, 1983:265
    [9] 李刚,夏元良,王存山等.激光熔覆涂层与热喷涂涂层组织性能比较.材料科学与工艺,2001,9(3):325-328
    [10] Sture H, Per H. Tribology Characterization of Thin, Hard Coatings. Proceedings of the 6th Nordic Symposium on Tribology, 1994, 3:735-747
    [11] 任靖日,金石三.Al_2O3-40%TiO_2和Cr_2O_3等离子喷涂层的摩擦磨损特性,摩擦学学报,2000,20(1):18-21
    [12] 陈传忠,李士同,王曙光等.等离子喷涂Al_2O_3+TiO_2复合陶瓷涂层的组织结构.陶瓷学报,1999,20(1):17-22
    [13] 曾爱香,唐绍裘.金属基陶瓷涂层的制备和应用及发展.表面技术,1999,(1):1-3
    
    
    [14] 战凤昌,李悦良.专用涂料.北京:化学工业出版社,1988
    [15] Tanaka K. Effect of various fillers on the friction and wear of PTFE-based composites, wear, 1982, 79
    [16] Stack M M. Effects of particle velocity and applied potential oil erosion of mild steel in carbonate slurry. Materials Science and Technology, 1996, 12: 261-268
    [17] 潘国顺,曲敬信,邵荷生.耐磨环氧胶粘涂层的浆体冲蚀磨损特性研究.表面技术,1997,26(2):23-24
    [18] 马向东,林福严,邵荷生.耐磨胶粘涂层在浆体冲蚀条件下的研究.润滑与密封,1991,(4):11-15
    [19] S. Horiuchi, A. C. Street, T. Ougizawa, et al. Fracture toughness and morphology study of ternary blends of epoxy, poly (ether sulfone) and acrylonitrile-butadience rubber. Polymer, 1994, 35(24): 5283-5292
    [20] Clive B. Bucknall, Clara M. Gomez, Isabelle Quintard. Phase separation from solutions of poly (ether sulfone) in epoxy resin. Polymer, 1994, 35(2): 353-359
    [21] A F Yee, R A Pearson. Toughening mechanisms in elastomer-modified epoxies. J Mater. Sci, 1986, 2462-2474
    [22] L. H. Lee. Recent Adhesives in Adhesion. New York, Gordon and Breach, Science Publishers, 1973
    [23] 饭岛孝雄,友井正男.工树脂强韧化.高分子加工(日),1994,43(1):21-26
    [24] 小池常夫.工系接着剂.工业材料(日),1993,41(12):30-35
    [25] Tadshi Ashida, Atsushi Katoh, Kohichi Handa, et al. Structure and properties of epoxy resins modified with acrylic particles. Journal of Applied Polymer Science, 1999, (74): 2955-2962
    [26] 耿同谋,李欣欣,李丽敏等.聚氨酯改性环氧树脂及其应用.化工新型材料,1998,26(5):28-30,27
    [27] 王箴.化学辞典.北京:化学工业出版社,2000
    [28] K.H.Hsieh,何涌(译).聚氨酯-环氧接枝互贯网络聚合物 I.机械特性.化学与粘合,1995,(4):236-238,242
    
    
    [29] 常鹏善,左瑞霖,王汝敏.环氧树脂增韧改性技术.中国胶粘剂,2002,11(2):37-39
    [30] 李莉,郭旭虹.聚氨酯改性环氧讨脂粘合剂.化学与粘合,1997,(2):63-65,78
    [31] 高义民,邢建东,徐欣等.环氧树脂耐磨胶粘涂层冲蚀磨损特性研究.西安交通大学学报,2001,35(3):319-321
    [32] 区召阳,马文右,潘惠铭.环氧树脂改性研究新进展.中国胶粘剂,2001,10(2):41-44
    [33] 袁金颖,潘才元.膨胀单体改性环氧树脂粘合剂.粘接,1997,18(2):17
    [34] 黄志,苏立志,李志章.耐温耐磨有机硅基复合涂料的冲蚀磨损研究.材料科学与工程,2001,18(4):39-44
    [35] 刘文超.磷酸盐结合剂及金属基高温耐磨陶瓷涂层的制备与性能的研究:[硕士学位论文].湖南:湖南大学材料科学与工程学院,2001
    [36] 罗立新,倪惠琼.无机高温耐磨粘涂剂的研究和应用.材料保护,2001,34(4):38-39
    [37] 陈秀琴,杨少明.提高硅酸盐无机高分子涂料耐水性能的途径.涂料工业,1995,(5):28-30
    [38] 徐国财.纳米SiO_2在紫外光固化涂料中的应用.涂料工业,2000,(7):3-6
    [39] 徐涛,谢长生.纳米材料在涂料中的应用进展.化工进展,2001,(11):28-30
    [40] 周树学,武利民.纳米材料在涂料中的应用研究.中国涂料,2001,(3):33-35,44
    [41] Eyre T S. Treatise on materials science and technology. Wear, 1968, 13:363-374
    [42] 姚仲民,陈荣庭.聚氨酯-环氧树脂的研究.中国胶粘剂,1996,5(4):5-8
    [43] 施利毅,陈伟,陆永生等,PU/EP共混物中的化学反应及粘接性能的研究.中国胶粘剂,1998,7(1):20-22
    [44] 徐秉恺,张彬渊,任宗发.涂料使用手册.江苏:江苏科学技术出版社,2000
    
    
    [45] 高学敏,黄世德,李全等.粘接和粘接技术手册.成都:四川科学技术出版社,1990
    [46] 王泳厚.实用涂料防蚀手册.北京:冶金工业出版社,1998
    [47] 朱洪.富锌底漆中锌粉的分析研究.涂料工业,1998,(2):38-42
    [48] Robert Besold. Neusrtige Korrosionsschuteme auf Basis Blattchenformiger Zinkpigmente. Farbe+lack, 1989(3): 393-407
    [49] Kurt Zimmermann. Zinc Flakes for corrosion protection. European Coating Journal, 1991(1): 32-41
    [50] 李国莱,张慰盛,管从胜.重防腐涂料.北京:化学工业出版社,1999
    [51] 杜存山.锌粉含量对环氧富锌漆防锈性能的影响.腐蚀与防护,1999,20(4):168
    [52] 金晓鸿,郑添水.鳞片状锌基环氧富锌底漆的研究.材料保护,1999,32(4):25-26
    [53] 席时俊.富锌底漆评介.中国涂料,2000,(2):23-25
    [54] 杨育珍,何胜刚.有机硅偶联剂及其应用.化学工程师,1994,(5):40-42,51
    [55] 张明宗,管从胜,王威强.有机硅烷偶联剂在金属表面预处理中的应用.腐蚀科学与防护技术,2001,13(2):96-100
    [56] 翟海潮,李印柏,林新松.粘接与表面粘涂技术 (第二版).北京:化学工业出版社,1997
    [57] 宋玉苏,姚树人.涂层与基体金属附着力的研究进展,材料保护,1999,32(9):21-22
    [58] Poul S. Physical chemical interpretation of paint film adhesion. J Coating Technology, 1982, 54:693-698
    [59] 朱骥良,吴申年.颜料工艺学.化学工业出版社,1997
    [60] 毛友安,童乙青.用DSC研究环氧树脂固化动力学.高分子材料科学与工程,1991,(3):18-22
    [61] May C. A., Tanaka Y., Epoxy resin, Chemistry & Technology. New York: Marcel Dekker, 1973
    [62] 杨淑智,王继华.环氧树脂/低分子聚酰胺固化过程的介电分析研究.粘接,1991,12(6):1-4
    
    
    [63] 张庆思.环氧树脂固化反应表现活化能的研究.涂料工业,1996,(3):1-3
    [64] 虞兆年.涂料工业 (第二分册).北京:化学工业出版社,1996
    [65] 胡高平,李明轩,杨映霞.650~#聚酰胺的差异对环氧树脂固化物性能的影响.湖北大学学报(自然科学版),1999,21(3):278-280
    [66] 黄水华,肖卫东,何培新等.环氧树脂聚酰胺固化物的热裂解反应研究.湖北大学学报 (自然科学版),1995,17(4):363-367
    [67] 沈钟吕,周山,陈人金.防腐涂料生产与应用技术.北京:中国建材工业出版社,1994
    [68] 春,成东来.聚氨酯增韧环氧树脂的研究.桂林工学院学报,1998,18(1):66-68
    [69] 震邦,顾海澄,李中华.材料的力学行为.北京:高等教育出版社,1998
    [70] 潘牧,罗志平.材料的冲蚀问题.材料科学与工程,1997,17(3):92-96
    [71] Neislon J A. Erosion by astream of solid particles. Wear, 1968, 11:111-115
    [72] 朱云贵,刘少光,何大春等.环氧胶粘复合涂层气固冲蚀磨损特性研究.合肥工业大学学报 (自然科学版),1997,20(2):90-93
    [73] 孟庆森,刘俊玲,赵利平等.环氧树脂基复合材料抗冲蚀磨损特性研究.材料科学与工艺,1999,7(2):82-86
    [74] 朱云贵,刘少光,何大春.耐冲蚀磨损胶粘涂层的研究.表面技术,1996,25(5):36-38
    [75] 贾梦秋,霍金花,蔡洪伟.重防腐耐磨陶瓷涂料的研制.北京化工大学学报,2001,28(1):73-75,78
    [76] 赖琛.耐高温耐腐蚀涂料的研制:[硕士学位论文].湖南:湖南大学材料科学与工程学院,2002
    [77] 王孟钟.胶粘剂应用手册.北京:化学工业出版社,1994
    [78] 陈华辉,邓海金,李明等,现代复合材料.北京:中国物质出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700