基于直流串联的海上风电场及其控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,人们对海上风能的关注已超过陆上风能,大型海上风电场建设已经进入很多国家和地区的计划。由于以前在这方面的工程非常少,因此还有很多问题需要研究和解决。从国际研究趋势来看,深入分析直流型风电场并提出创新性的解决方法已成为海上风电场研究的主要方向。
     本文以直流串联型风电场和模块化多电平并网端为研究对象,以风电机组、风电场和并网变流器的控制作为主题,从原理分析、模型建立和仿真验证三个方面入手,全面、深入、细致的开展了研究工作,其研究内容和创新成果包括:
     ⑴根据变速风力发电系统的工作原理设计了直流串联型风机的控制策略,使风机按照最佳功率控制和输出电压限幅控制,满足了直流串联型风电场的运行要求。以永磁同步发电机为对象,建立了各控制目标的控制框图,按照“最优对称法”的形式完成了控制器的设计,通过仿真验证,说明控制系统能够实现串联型风机的控制要求,且效果良好。
     ⑵根据风力发电机和变流器的工作原理和控制策略,设计了风机的简化控制模型,并结合其简化物理模型,形成直流串联型风力发电系统的简化模型。通过和详细模型的比较分析,以及组建风电场进行风场特性分析,说明该模型能够反映风机的各项性能,其稳态响应和动态响应能力和详细模型接近。
     ⑶直流串联型风电场在受端电网发生电压跌落故障时,需要减少风能吸收以保持直流输电电压稳定。针对串联风机的运行特性,本文提出根据风机输出功率实时调整出口电压限幅值的方法,使串联机群的出口电压和直流输电电压的保护值相对应,仿真证明了该控制方法可以使风电场成功实现低电压穿越。
     ⑷以模块化多电平换流站作为并网端,结合电网要求和风场特性,叙述了换流站参数设计的原则和方法。在换流站的阶梯波调制中采用了基于拉格朗日乘子的算法,解决了电平数较多时计算负担过大的问题;同时采用了阶梯波和多重载波混合调制的方法,解决了阶梯波调制范围较窄的问题,提高了并网端应对电网故障的能力。
     ⑸由于并网端采用阶梯波调制,存在采样周期较长的缺点,为提高换流站的动态响应能力,在对电流的控制上采用了基于平坦系统的前馈控制;另外,根据变流器最大输出电压、电流和电网电压的测量值,对参考电流的工作范围进行实时预测。两者结合可以减小控制环之间的冲突,仿真证明该控制策略可以显著提高并网端的动态响应速度。
At present, offshore wind energy has been taken care more than onshore wind energy,so that large-scale offshore wind farm is being planned by many countries. Since fewengineering of such kind have been implemented, there is many issues needed to beresearched. By the conclusion of its research achievements globally, it become a maintrend to analysis of DC wind farm in detail and propose innovative solution in offshorewind farm research.
     The paper takes the wind farm based on series DC and its integration by use ofModular Multilevel Converter (MMC) as subjects, which is intended to the control of windpower generating system, wind farm and its integration converter. Comprehensive,thorough and detailed studies with respect to theoretical analysis,model design andsimulation verification, are carried out. Some important conclusions andindependent-innovative achievements are made and obtained.
     ⑴Based on the operation principle of variable speed wind power generating system,the control strategy is designed for series-connected wind turbine. It consists of MaximumPower Point Tracking (MPPT) and the voltage limitation control, which can grantee thewind turbine running normally in the wind farm based on series-connected DC. In case ofpermanent magnetic synchronous generator, control diagram have been made up for eachtarget and the controller have been designed according to the Optimum Symmetric Method(OSM). The simulation verifies the control system can deal with each status and showsgood performance.
     ⑵In accordance with the theory of wind generator and converter and their controlstrategy, the simplify control model for DC series-connected wind turbine is get. It,combined with the physical simplify model, can be kept as simplify model of wind powergenerating system. By simulation, it has been compared with detailed model and used toconstruct wind farm for testing its characteristics. The results show it can response thewind turbine closely and has likely static and dynamic performance.
     ⑶If a grid voltage sag happens in the receiving grid, the wind farm must reduce the wind energy absorbed to keep the DC transmission voltage stable. Based on thecharacteristic of series-connection, the paper proposes a method to adjust the voltagelimitation in real time according the wind power generating system’s output power. It canmake the clsters’ voltage limitation equal to the limitation of DC transmission voltage. Thesimulation verifies the method can make wind farm ride through low voltage successfully.
     ⑷The integration side of wind farm is of MMC. By the requirement of the grid andwind farm, the principle and method are demonstrated for the parameters calculating ofMMC. For its step modulation, an algorithm based on Langrage has been provided whichwouldn’t increase the calculate burden even as the number of levels increases. Furthermore,the hybrid modulation with step and multi carrier has been proposed which can enlarge themodulating range. Such modulation would improve the ability to handle with the fault ofgrid.
     ⑸MMC, with step modulation, has to take long sampling period and is lack ofdynamic response speed. To solve it, flatness based control is applied with the convertercurrent. Simultaneously, the range of current reference is predicted in real time accordingto the converter maximum output voltage, the grid voltage and the current measurement.The two methods decrease the interaction between the control loops, and the simulationverifies they can enhance the dynamic performance of converter obviously.
引文
[1]全国风能资源区域分布情况及区位现状分析.中国风电产业网.
    [2]汤广福.基于电压源换流器的高压直流输电技术[M].北京:中国电力出版社,2010:273-276.
    [3] Chen, Z., F. Blaabjerg. Wind farm-A power source in future power systems [J]. Renewable andSustainable Energy Reviews,2009,3(6-7):1288-1300.
    [4] Europe Wind Energy Association. Wind in our Sails,2011:11-31.
    [5]卞松江.变速恒频风力发电关键技术研究[D].杭州:浙江大学,2003:4-18.
    [6]郭家虎.变速恒频双馈风力发电系统控制技术的研究[D].上海:上海大学,2008:2-6.
    [7]李杰.直驱式风力发电变流系统拓扑及控制策略研究[D].上海:上海大学,2009:18-20.
    [8] de Alegria, I.M., Jose, L., Kortabarria, I., et al. Transmission alternatives for offshore electricalpower [J]. Renewable and Sustainable Energy Reviews,2009,13(5):1027-1038.
    [9] Liu, X., S. Islam. Reliability issues of offshore wind farm topology [C]. Proceeding of the10thInternational Conference on Probabilistic Method Applied to Power System, PMAPS2008, Rincon,Puerto rico: IEEE Computer Society,2008:529-533.
    [10] Axelsson, U., Holm, A., Liljegren, C., et al. The Gotland HVDC light project-Experiences fromtrial and commercial operation [C]. IEE Conference Publication,2001, Amsterdam, Netherlands:Institution of Engineering and Technology,2001(1).
    [11] Wang, X., B.T. Ooi. High voltage direct current transmission system based on voltage sourceconverters [C].21st Annual Power Electronics Specialists Conference,1990. PESC '90Record.,1990:325-332.
    [12] Xu, L., B.R. Andersen. Grid connection of large offshore wind farms using HVDC [J]. WindEnergy,2006,9(4):371-382.
    [13] Chokhawala, R., B. Danielsson, L. Angquist. Power Semiconductors in Transmission andDistribution Applications, http:\\www.abb.com.
    [14] Nandigam, M., S.K. Dhali. Optimal design of an offshore wind farm layout [C]. SPEEDAM2008-International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia,Italy: Inst. of Elec. and Elec. Eng. Computer Society,2008:1470-1474.
    [15] Elkinton, C.N.. Offshore wind farm layout optimization [D]. Massachusetts, US: University ofMassachusetts Amherst,2007:91-99.
    [16]潘武略,徐政,张静.电压源换流器型直流输电换流器损耗分析[J].中国电机工程学报,2008,28(21):7-14.
    [17] DeCarolis, J.F., D.W. Keith. The economics of large-scale wind power in a carbon constrainedworld [J]. Energy Policy,2006,34(4):395-410.
    [18] Sandeberg, P., L. Stendius. Large scale Offshore Wind Power Energy evacuation by HVDC Light[C]. EWEC2008, Brussels, Belgium:2008.
    [19]周国梁,石新春,魏晓光.电压源换流器高压直流输电不平衡控制策略研究[J].中国电机工程学报,2008.28(22):137~143.
    [20]孙涛,王伟胜,戴慧珠.风力发电引起的电压波动和闪变[J].电网技术,2003,27(12):62-70.
    [21]卢向东,赵成勇.基于VSC-HVDC的线路过电压抑制策略研究[J].高电压技术,2008,34(3):462-467.
    [22] Cuiqing, D., A. Sannino, M.H.J. Bollen. Analysis of the control algorithms of voltage-sourceconverter HVDC [C]. Power Tech,2005IEEE Russia,2005:1-7.
    [23] Negra, N.B., J. Todorovic, T. Ackermann. Loss evaluation of HVAC and HVDC transmissionsolutions for large offshore wind farms [J]. Electric Power Systems Research,2006,76(11):916-927.
    [24] Bresesti, P., W.L. Kling, R. Vailati. Transmission expansion issues for offshore wind farmsintegration in Europe. Transmission and Distribution Conference and Exposition,2008. T&D.IEEE/PES:2008:1-7.
    [25] N. Gibo, K. Takenaka, M. Takasaki, et al. Enhancement of continuous operation performance ofHVDC with self-commutated converter [J]. IEEE Transactions on Power Systems,2005,15(2):552-558.
    [26]陈谦,唐国庆.采用dq0坐标的VSC-HVDC稳态模型与控制器设计[J].电力系统自动化,2005,28(6):61-66.
    [27]陈海荣,徐政.基于同步坐标变换的VSC-HVDC暂态模型及其控制器[J].电工技术学报,2007,22(2):121-126.
    [28] Bjorklund, P.E., K. Srivastava, W. Quaintance. Hvdc Light Modeling for Dynamic PerformanceAnalysis [C]. Power Systems Conference and Exposition,2006. PSCE '06.2006IEEE PES:2006:871-876.
    [29] Jovcic, D., L. Lamont, K. Abbott. Control system design for VSC transmission [J]. Electric PowerSystems Research,2007,77:721–729.
    [30] Ruan Si-Ye, Li Guo-Jie, Peng Lin, et al. A nonlinear control for enhancing HVDC lighttransmission system stability [J]. International Journal of Electrical Power and Energy Systems,2007,29(7):565-570.
    [31] Ruan Si-Ye, Li Guo-Jie, Jiao Xiao-Hong, et al., Adaptive control design for VSC-HVDC systemsbased on backstepping method [J]. Electric Power Systems Research,2007,77(5-6):559-565.
    [32] Vrionis, T.D., Koutiva, X.I., Vovoset, N.A., et al. Control of an HVdc link connecting a wind farmto the grid for fault ride-through enhancement [J]. IEEE Transactions on Power Systems,2007,22(4):2039-2047.
    [33] J. L. Thomas, S. Poullain, and A. Benchaib. Analysis of a robust DC-bus voltage control system fora VSC transmission scheme[C].7th International Conference on AC-DC Power Transmission,November,2001: IEE,2002(4):119-124.
    [34] Jiang-Hafner, Y., M. Hyttinen, B. Paajarvi. On the short circuit current contribution of HVDCLight [C]. Transmission and Distribution Conference and Exhibition2002: Asia Pacific. IEEE/PES.2002(3):1926-1932.
    [35] N. Prabhu, K. R. Padiyar. Investigation of subsynchronous resonance with VSC-based HVDCtransmission systems[J]. IEEE Transactions on Power Delivery,2009,24(1):433-440.
    [36] Corsi, S., A. Danelli, and M. Pozzi. Emergency-stability controls through HVDC links [C]. PowerEngineering Society Summer Meeting,2002IEEE:2002(2):774-779.
    [37] Weixing, L., O. Boon Teck. Simultaneous inter-area decoupling and local area damping by voltagesource HVDC [C]. Power Engineering Society Winter Meeting,2001: IEEE.2001(3):1079-1084.
    [38] Ying, J.-H., Duchen, H., Karlsson, M., et al. HVDC with voltage source converters-a powerfulstandby black start facility. Transmission and Distribution Conference and Exposition,2008. T&D.IEEE/PES:2008:1-9.
    [39] Robinson, J., G. Joos. VSC HVDC transmission and offshore grid design for a linear generatorbased wave farm [C]. Electrical and Computer Engineering,2009. CCECE '09. Canadian Conference on.2009:54-58.
    [40] Jovcic, D., N. Strachan. Offshore wind farm with centralised power conversion and DCinterconnection [J]. IET Generation, Transmission and Distribution,2009,3(6):586-595.
    [41] N. R. Ullah, T. Thiringer, D. Karlsson. Temporary Primary Frequency Control Support by VariableSpeed Wind Turbines-Potential and Applications[J]. IEEE Transactions on Power Systems,2008,23(2):601-612.
    [42] S. M. Muyeen, R. Takahashi, J. Tamura. Operation and Control of HVDC-Connected OffshoreWind Farm[J]. IEEE Transactions on Sustainable Energy,2010,1(1):30-37.
    [43] Hansen, A.D., Srensen P., Lov F., et al., Centralised power control of wind farm with doubly fedinduction generators [J]. Renewable Energy,2006,31(7):935-951.
    [44] K. Eriksson, C. Liljegren, K. Sobrink. HVDC light experiences applicable for power transmissionfrom offshore wind power parks[C]. Collection of the2004ASME Wind Energy Symposium TechnicalPapers at the42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, United states, January,2004:498-456.
    [45] Lie, X., Y. Liangzhong, C. Sasse. Grid Integration of Large DFIG-Based Wind Farms Using VSCTransmission [J]. IEEE Transactions on Power Systems,2007,22(3):976-984.
    [46] Hansen, A.D., Srensen P., Lov F., et al. Control of variable speed wind turbines with doubly-fedinduction generators [J]. Wind Engineering,2004,28(4):411-432.
    [47] Tsili, M., S. Papathanassiou. A review of grid code technical requirements for wind farms [C]. IETRenewable Power Generation,2009, Six Hills Way, Stevenage, SG12AY, United Kingdom: Institutionof Engineering and Technology,2009:308-332.
    [48] Yijing, X., V. Akhmatov. Grid-connection of large offshore windfarms utilizing VSC-HVDC:modeling and grid impact [J]. Wind Engineering,2009,33(5):417-32.
    [49] Ramtharan, G., Arulampalam, A., Ekanayake, J.B., et al.. Fault ride through of fully rated converterwind turbines with AC and DC transmission [J]. IET Renewable Power Generation,2009,3(4):426-438.
    [50] Norrga, S., S. Meier, S. Ostlund. A Three-Phase Soft-Switched Isolated AC/DC Converter WithoutAuxiliary Circuit [J]. IEEE Transactions on Industry Applications,2008,44(3):836-844.
    [51] Jovcic, D.. Bidirectional, high-power DC transformer [J]. IEEE Transactions on Power Delivery,2009,24(4):2276-2283.
    [52] Max, L., S. Lundberg. System efficiency of a DC/DC converter-based wind farm [J]. Wind Energy,2008,11(1):109-120.
    [53] Jovcic, D., Offshore wind farm with a series multiterminal CSI HVDC [J]. Electric Power SystemsResearch,2008,78(4):747-755.
    [54] Prasai, A., Yim, J.-S., Divan, D., et al. A new architecture for offshore wind farms [J]. IEEETransactions on Power Electronics,2008,23(3):1198-1204.
    [55] Nishikata, S. and F. Tatsuta. Dynamic control of series connected wind turbine generating system[C]. PowerTech,2011IEEE Trondheim:1-6.
    [56] Nishikata, S., F. Tatsuta. A New Interconnecting Method for Wind Turbine/Generators in a WindFarm and Basic Performances of the Integrated System [J]. IEEE Transactions on Industrial Electronics,2012,57(2):468-475.
    [57] Veilleux, E., P.W. Lehn. Interconnection of direct-drive wind turbines using a distributed HVDCconverter station [C].35th Annual Conference of Industrial Electronics,2009. IECON '09. IEEE,2009:584-589.
    [58] Garce, X., s, A., et al., A Study of Efficiency in a Reduced Matrix Converter for Offshore WindFarms [J]. IEEE Transactions on Industrial Electronics,2012,59(1):184-193.
    [59] Lundberg, S.. Evaluation of wind farm layouts [J]. EPE Journal (European Power Electronics andDrives Journal),2006,16(1):14-20+27.
    [60] LUNDBERG, S.. Wind Farm Configuration and Energy Efficiency Studies-Series DC versus ACLayouts [D]. Goteborg, Sweden: Chalmers University of Technology,2006:39-64.
    [61] Zhao, M., Z. Chen, F. Blaabjerg. Optimisation of electrical system for offshore wind farms viagenetic algorithm [J]. IET Renewable Power Generation,2009,3(2):205-216.
    [62] Schettler, F., H. Huang, N. Christl. HVDC transmission systems using voltage sourced converters-Design and applications [C]. Proceeding of the IEEE Power Society Transmission and DistributionConference,2000. Seattle, WA, United states: Institute of Electrical and Electronics Engineers Inc,2000(2):715-720.
    [63] P. Haugland. It’s time to connect-Technical description of HVDC Light technology. ABB TechnicalReports,2006.
    [64] JUHLIN, L.-E., Larsson, T., Skansen, J., et al. Considerations regarding RI limits for high voltageHVDC or FACTS stations. CIGRE2006, PARIS: http://www.cigre.org.
    [65] Ronstr m, L., Hoffstein ML., Pajo, R., et al. The Estlink HVDC Light Transmission System [C].Security and Reliabilty of Electrical Power System CIGRé Regional Meeting. June18-20,2007. Tallinn,Estonia: http://www.cigre.org.
    [66] Lie, X., B.R. Andersen, P. Cartwright. VSC transmission operating under unbalanced ACconditions-analysis and control design [J]. IEEE Transactions on Power Delivery,2005,20(1):427-434.
    [67] Liu, Y.H., J. Arrillaga, N.R. Watson. Cascaded H-Bridge Voltage Reinjection Part I: A NewConcept in Multilevel Voltage-Source Conversion [J]. IEEE Transactions on Power Delivery,2008,23(2):1175-1182.
    [68] Liu, Y.H., J. Arrillaga, and N.R. Watson, Cascaded H-Bridge Voltage Reinjection Part II:Application to HVDC Transmission [J]. IEEE Transactions on Power Delivery,2008,23(2):1200-1206.
    [69] R. Marquardt, A.L., A new modular voltage source inverter topology [C]. EPE'03,2003. Toulouse,France.
    [70] Gemmell, B., Dom, J., Retzmann, D., et al. Prospects of multilevel VSC technologies for powertransmission [C]. Transmission and Distribution Conference and Exposition,2008. T&D. IEEE/PES.2008:1-16.
    [71] Kim, H.-W., S.-S. Kim, H.-S. Ko. Modeling and control of PMSG-based variable-speed windturbine [J]. Electric Power Systems Research,2010,80(1):46-52.
    [72] M. E. Haque, M. Negnevitsky, K. M. Muttaqi. A Novel Control Strategy for a Variable-Speed WindTurbine With a Permanent-Magnet Synchronous Generator [J]. IEEE Transactions on IndustryApplications,2010,46(1):331-339.
    [73] Robinson, J., Jovic, D., Joo, et al., Analysis and Design of an Offshore Wind Farm Using a MV DCGrid [D]. IEEE Transactions on Power Delivery,2011,25(4):2164-2173.
    [74]赵仁德,王永军,张加胜.直驱式永磁同步风力发电系统最大功率追踪控制[J].中国电机工程学报,2009,29(27):106-111.
    [75] Busca, C., Stan, A., Stanciu, T., et al. Control of Permanent Magnet Synchronous Generator forlarge wind turbines [C].2010IEEE International Symposium on Industrial Electronics (ISIE),2010:3871-3876.
    [76] Li, H., Z. Chen, Overview of different wind generator systems and their comparisons [J]. IETRenewable Power Generation,2008,2(2):123-138.
    [77] Perdana, A.. Dynamic Models of Wind Turbines [D]. Goteborg, Sweden: Chalmers University ofTechnology,2008:137-163.
    [78]廖勇,庄凯,姚骏等.直驱式永磁同步风力发电机双模功率控制策略的仿真研究[J].中国电机工程学报,2009,29(33):76-82.
    [79]耿华,许德伟,吴斌等.永磁直驱变速风电系统的控制及稳定性分析[J].中国电机工程学报,2009,29(33):68-75.
    [80] MAX, L., Energy Evaluation for DC/DC Converters in DC-Based Wind Farms [D]. Goteborg,Sweden: Chalmers University of Technology,2007.
    [81]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2006:100-104.
    [82] Chinchilla, M., S. Arnaltes, J.C. Burgos. Control of permanent-magnet generators applied tovariable-speed wind-energy systems connected to the grid [J]. IEEE Transactions on Energy Conversion,2006,21(1):130-135.
    [83] G. Escobar, A. M. Stankovic, J. M. Carrasco, et al. Analysis and design of direct power control(DPC) for a three phase synchronous rectifier via output regulation subspaces [J]. IEEE Transactions onPower Electronics,2003,18(3):823-830.
    [84]张崇魏,张兴. PWM整流器及其控制[M].北京:机械工业出版社,2003:114-121.
    [85]陈伯时.电力拖动自动控制系统-运动控制系统[M].北京:机械工业出版社,2006:59-71.
    [86] Lu, W., B.T. Ooi. Optimal Acquisition and Aggregation of Offshore Wind Power by MultiterminalVoltage-Source HVdc [J]. IEEE Power Engineering Review,2002,22(8):71-72.
    [87] Meyer, C., Hoing, M., Peterson, A., et al. Control and Design of DC Grids for Offshore WindFarms [J]. IEEE Transactions on Industry Applications,2007,43(6):1475-1482.
    [88] Weixing, L.. Control and application of multi-terminal HVDC based on voltage-source converter[D]. Montereal: Migill University,2003:42-46.
    [89]汤广福,贺之渊,滕乐天等.电压源换流器高压直流输电技术最新研究进展[J].电网技术,2008,32(22):39-89.
    [90] N. Flourentzou, V. G. Agelidis, D. Demetriades. VSC-based HVDC power transmission systems:An overview [J]. IEEE Transactions on Power Electronics,2009,24(3):592-602.
    [91] Lie, X., G.A. Vassilios, VSC Transmission System Using Flying Capacitor Multilevel Convertersand Hybrid PWM Control [J]. IEEE Transactions on Power Delivery,2007,22(1):693-702.
    [92] Konstantinou, G.S., V.G. Agelidis. Performance evaluation of half-bridge cascaded multilevelconverters operated with multicarrier sinusoidal PWM techniques [C].2009. Xi'an, China: IEEEComputer Society,2009:3399-3404.
    [93] Karlsson, P., J. Svensson. DC bus voltage control for a distributed power system [J]. IEEETransactions on Power Electronics,2003,18(6):1405-1412.
    [94] Kundur, P.. power system stability and control [M].北京:中国电力出版社,2001:211-230.
    [95]王姗姗,周孝信,汤广福等.交流电网强度对模块化多电平换流器HVDC运行特性的影响[J]..电网技术,2011.35(2):17-24.
    [96]王姗姗,周孝信,汤广福等.模块化多电平换流器HVDC直流双极短路子模块过电流分析[J].中国电机工程学报,2011.31(1):1-7.
    [97] Knaak, H.-J. Modular multilevel converters and HVDC/FACTS: A success story [C]. Proceedingof the201114thEuropean Conference on Power Electronics and applications, EPE2011, Birmingham,United kingdom: IEEE Computer Society.
    [98]管敏渊,徐政.模块化多电平换流器型直流输电的建模与控制[J].电力系统自动化,2010,34(19):64-68.
    [99]耿俊成,刘文华,袁志昌,链式STATCOM电容电压不平衡现象研究(一)仿真和试验[J].电力系统自动化,2003,27(16):53-86.
    [100]耿俊成,刘文华,袁志昌.链式STATCOM电容电压不平衡现象研究(二)数学模型[J].电力系统自动化,2003.27(17):35-39.
    [101] Lesnicar, A., R. Marquardt. An innovative modular multilevel converter topology suitable for awide power range [C]. Power Tech Conference Proceedings,2003IEEE Bologna.2003(3):6pp.
    [102]单庆晓.级联型逆变器关键技术研究[D].长沙:国防科学技术大学,2003:29-47.
    [103] Li, L., Czarkowski, D., Dariusz, L., et al. Multilevel selective harmonic elimination PWMtechnique in series-connected voltage inverters [D]. IEEE Transactions on Industry Applications,2000,36(1):160-170.
    [104] Li, Q., Z. He, G. Tang. Investigation of the harmonic optimization approaches in the new modularmultilevel converters [C].2010Asia-Pacific Power and Energy Engineering Conference, APPEEC-2010,Chengdu, China: IEEE Computer Society.
    [105] C Zheng, C., B. Zhang, Qiu. Selective harmonic elimination technique based on walsh transformfor multilevel inverters[J]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society,2006,21(7):121-126.
    [106] Filho, F., Tolbert, L.M., Cao, Y., et al. Real-time selective harmonic minimization for multilevelinverters connected to solar panels using artificial neural network angle generation [J]. IEEETransactions on Industry Applications,47(5):2117-2124.
    [107] Liu, Y., H. Hong, A.Q. Huang. Real-time calculation of switching angles minimizing THD formultilevel inverters with step modulation [D]. IEEE Transactions on Industrial Electronics,2009,56(2):285-293.
    [108]屠卿瑞,徐政,姚为正.模块化多电平换流器型直流输电电平数选择研究[J].电力系统保护与控制,2010,38(20):33-38.
    [109]王姗姗,周孝信,汤广福等.模块化多电平HVDC输电系统子模块电容值的选取和计算[J].电网技术,2011,35(1):26-32.
    [110]屠卿瑞,徐政,郑翔等.模块化多电平换流器型直流输电内部环流机理分析[J].高电压技术,2010,36(2):547-552.
    [111]杨晓峰,王晓鹏,范文宝等.模块组合多电平变换器的环流模型[J].电工技术学报,2011,.26(5):21-27.
    [112] Siemaszko, D., Antonopoulos, A., Llves, K., et al. Evaluation of control and modulation methodsfor modular multilevel converters [C].2010International Power Electronics-ECCE Asia-, IPEC2010,Sapporo, Japan: Association for Computing Machinery,2010:746-753..
    [113] L. Angquist, A. Antonopoulos, D. Siemaszko, et al. Inner control of Modular MultilevelConverters-An approach using open-loop estimation of stored energy[C]. Power ElectronicsConference (IPEC),2010International, June,2010:1579-1585.
    [114]王姗姗,周孝信,汤广福等.模块化多电平电压源换流器的数学模型[J].中国电机工程学报,2011,31(24):1-8.
    [115]管敏渊,徐政,屠卿瑞等,模块化多电平换流器型直流输电的调制策略[J].电力系统自动化,2010,34(2):48-51.
    [116] Lee, T.-S., Input-output linearization and zero-dynamics control of three-phase AC/DCvoltage-source converters [J]. IEEE Transactions on Power Electronics,2003,18(1I):11-22.
    [117] Moharana, A., P.K. Dash. Input-Output Linearization and Robust Sliding-Mode Controller for theVSC-HVDC Transmission Link [J]. IEEE Transactions on Power Delivery,25(3):1952-1961.
    [118] Harnefors, L., M. Bongiorno. Current controller design for passivity of the input admittance [C].13th European Conference on Power Electronics and Applications,2009. EPE '09:2009:1-8.
    [119] Fliess, M., Levine, J., Martin, P., et al. Flatness and defect of non-linear systems: Introductorytheory and examples [J]. International Journal of Control,1995,61(6):1327-1361.
    [120] Dannehl, J., F.W. Fuchs. Flatness-based control of an induction machine fed via voltage sourceinverter-Concept, control design and performance analysis [C]. IECON Proceeding,2006. Paris,France: Inst. of Elec. and Elec. Eng. Computer Society,2006:5125-5130.
    [121] Dannehl, J. and F.W. Fuchs. Flatness-based voltage-oriented control of three-phase PWMrectifiers [C].200813thInternational Power Electronics and Motion Control Conference, EPE-PEMC2008, Poznan, Poland: Inst. of Elec. and Elec. Eng. Computer Society,2008:444-450.
    [122] A. Gensior, J. Rudolph, H. Guldner. Flatness based control of three-phase boost rectifiers[C].2005European Conference on Power Electronics and Applications, Dresden, Germany, September,2005:5.
    [123] Gensior, A., Woywode, O., Rudolph, J., et al. On differential flatness, trajectory planning,observers, and stabilization for DC-DC converters [C]. IEEE Transactions on Circuits and Systems I:Regular Papers,2006.53(9): p.2000-2010.
    [124] Song, E., A.F. Lynch, V. Dinavahi. Experimental validation of nonlinear control for a voltagesource converter [J]. IEEE Transactions on Control Systems Technology,2009,17(5):1135-1144.
    [125] Cuiqing, D. VSC-HVDC for Industrial Power Systems [D]. Chalmers University of Technology,G teborg,2007:24-37.
    [126] Kumar, A.K., K.R. Padiyar. Modeling, Analysis and Control of a Chain Cell Converter [C]. JointInternational Conference on Power System Technology and IEEE Power India Conference,2008.POWERCON2008:2008:1-8.
    [127] Hagenmeyer, V., E. Delaleau. Exact feedforward linearization based on differential flatness [J].International Journal of Control,2003,76(6):537-556.
    [128] Benchaib, A., Poullain, S., Thomas, J.L., et al. Discrete-time field-oriented control for SM-PMSMincluding voltage and current constraints [C]. IEEE International Electric Machines and DrivesConference,2003. IEMDC'03.2003(2):999-1005.
    [129] Thomas, J.-L., S. Poullain. Discrete-time field-oriented control for induction motors [C]. IEEE31stAnnual Power Electronics Specialists Conference,2000PESC00, Galway, UK: IEEE,2000(1):427-434
    [130]刘豹.现代控制理论[M].北京:机械工业出版社,1998:51-73.
    [131] Eloy-Garcia, J., S. Poullain, A. Benchaib. Discrete-Time Dead-Beat Control of a VSCTransmission Scheme Including Voltage and Current Limitations for Wind Farm Connection [C].12thInternational Power Electronics and Motion Control Conference,2006. EPE-PEMC2006,2006:1425-1430.
    [132] Feltes, C., Wrede, H., Koch, F.W., et al. Enhanced Fault Ride-Through Method for Wind FarmsConnected to the Grid Through VSC-Based HVDC Transmission [J]. IEEE Transactions on PowerSystems,2009,24(3):1537-1546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700