管件带坡口相贯线数控切割建模与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着我国钢结构应用的日益广泛,具有带坡口相贯线一次切割成型能力的5轴联动以上数控切割机逐渐开始应用。由于加工轨迹编程等工艺环节非常复杂,此类设备均需配备专用的辅助软件。目前,虽然有极少数国内企业能够制造此类设备,但和国外相比还存在较大差距,数控切割设备配套软件技术水平的落后是一个重要制约因素。因此,本文针对实际工程应用中最为普遍的圆管、圆锥管和方管间相贯问题,展开了对自动编程、自动后处理、仿真校验和虚拟训练技术的研究工作。为使研究结果更具有普适性,本文基于一种功能全面的六轴龙门式数控切割机模型进行研究。
     通过对圆管、圆锥管和方管带坡口相贯线切割过程进行运动分解,确定了切割不同类型管件时所需的联动轴,建立了各联动轴间的运动速度数学约束模型。在此基础上,根据管件轮廓特点和相贯线切割轨迹的空间直线拟合需求,提出了一种便于计算机求解的相贯线计算方法。该方法首先为主管和支管建立各自的坐标系,并分别建立参数式方程;然后根据两者坐标系之间的位置关系建立支管坐标系到主管坐标系的坐标变换矩阵,利用坐标变换方法将支管参数方程映射到主管坐标系中以求解主管上的相贯线切割轨迹;最后再将求得的轨迹进行逆变换,从而得到支管上的相贯线轨迹。利用该方法,建立了方管与方管、方管与圆锥管、方管与圆管、圆锥管与圆锥管、圆管与圆锥管、圆管与圆管相贯时的相贯线数学模型。
     对管件切割误差的构成进行了详细分析,建立了误差补偿模型。针对其中的安装误差和轮廓误差补偿问题,提出一种利用双目机器视觉技术进行误差获取的方法,对误差获取装置的构成和工作原理进行了说明,给出了根据连续捕获的图像重建钢管三维轮廓的算法,通过调整图像采集间隔,可方便的实现根据加工需要动态调整误差补偿精度的目的。
     研究了数控相贯线切割机仿真模块的构成,根据功能分析将虚拟仿真模块划分为虚拟机床、虚拟执行器和虚拟切割效果分析器三个主要组成部分。提出了一种快速搭建平台无关的虚拟相贯线切割机床的方法;给出了利用正规文法和上下文无关文法描述数控代码语法规则,进而根据文法编写数控代码译码程序的具体过程;探讨了虚拟运动控制器的构成和工作机制,用以使仿真切割过程与实际切割过程更为贴近;建立了虚拟割炬和风线的位姿计算模型,给出了在设置割缝误差补偿功能时的虚拟割缝的计算方法和图形绘制算法。研究了在采用火焰切割工艺时,提高切割仿真过程真实感的方法,根据对实际割焰的化学分析,建立了割焰的仿真模型,给出了采用粒子系统实现割焰视觉特效的方法,并对燃渣飞溅效果的产生方法进行了初步探讨。
     上述研究工作构成了比较完整的用于开发多轴数控相贯线切割机专用配套软件的技术链条。对本文工作进行进一步的深入研究和完善,可以大幅缩小我国数控相贯线切割机和国外产品在软件技术方面的差距。
In recent years, along with the increasingly application of steel struct,5-axis or more complex CNC cutting machine has been gradually used to cut intersecting curves and its groove one time. As cutting path programming and other processing technics very complex, all of such devices need to be equipped with special assistive softwares. At present, although a handful of domestic companies to manufacture such equipment, but compared with foreign there are still a wide gap. CNC cutting equipment behind the level of supporting software technology is an important constraint. Therefore, this paper to be directed against the most common practical application of the circular tube, conical tube and square tube's intersection problem, to launch study on the automatic programming, automatic post-processing, simulation and virtual training technology validation.To make sure the research more universal, all study is based on a full-featured six-axis CNC cutting machine model.
     Through intersecting curve cutting process with groove conduct sports decomposition for circular tube, conical tube and square tube determine required linkage axis cutting different types of pipe, established mathematical constraints model about move speed between every, linkage axis.On this basis, according to the tube outlined characteristics and space linear fitting needs of intersecting curve's cutting locus, Proposed a kind of calculate methed,convenient gets solution for computer This method first for the head tube and the branch tube establish their own coordinate system, and respectively established parametric equations; then according to the position relationship between the two coordinate systems, established coordinate transformation matrix from branch tube coordinates to main tube coordinates, using coordinate transformation method make branch tube parameter equation is mapped to head tube coordinate system for solve intersecting curve's cutting locus of main tube. At last carry on inverse transformation for getting locus then obtain intersecting curve's cutting locus of. branch tube using this method, established intersecting curve mathematical model of square tube and square tube, square tube and the conical tube, square tube and round tube, conical tube and the conical tube, conical tube and circle tube, circle tube and circle tube.
     A detailed analysis for pipe cutting error composition is carrid on, the error compensation model is established also. Contrary to the installation error and contour error's compensatory problem, a method of obtaining error using of binocular machine vision technology is proposed, conducted illustrate for error acquisition devices composing and working principle are described, given arithmetic according to reconstructed three-dimensional outline of steel profile through capture continuous image, by adjusting the image acquisition interval, can be easily achieved popose for dynamically adjusted error compensate filter.
     Another study is concentrated on the structure of simulation module composition of CNC intersecting curve's cutting machine. This module can be used to simulate the NC program and can be used to process a virtual operator training too. According to functional analysis, the virtual simulation module is divided into three major components include virtual machines, virtual actuator and the virtual analyzer of cutting course. Proposed a method about constructing platform-independent virtual intersecting curve's cutting machine quickly. The concrete procedure include using formal grammar and context-free grammar rules to discrib CNC code grammar rule and using these rules to build NC code decoder is brought forward. Formation and operating mechanism of the virtual motion controller are discussed to make simulated cutting process more similar with actual cutting process. The calculation model of virtual cutting torch and cutting wind position are established and the method of increasing the realism of cutting process simulation when using flame cutting technology are studied. In these reserch, a simulation model is established accoding to the chemical analysis of the actual cutting flame. On this basis, the course of producing visual effects cutting flame using particle system is elaborated. Finally, the effects producing technology of burning slag splashing is study preliminary.
     The study constitutes a entire technology chain that can be used to develop specific supporting software of multi-axis CNC intersection cutting machine. Work on this further in-depth research and improvement can significantly reduce the gap between domestic CNC intersection cutting machine and similar foreign products in the software technology area.
引文
[1]张文祥.展开放样技术手册.太原:山西科学技术出版社,2006:1-20
    [2]S. Bedi,G. W. Vickers.Surface lofting and smoothing with skeletal-lines[J]. Computer Aided Geometric Design,1989,6(2):87-96
    [3]李浩.海洋工程管子相贯线坡口切割专家FastCAM[J].金属加工(热加工),2009(20):14~15
    [4]赵渭钧.画法几何学科中图—数结合的探讨—叉管相贯线的源程序编制[J].河海大学学报(自然科学版),1980,(4):93~119
    [5]张宏勋.应用微机作相贯线的展开样板[J].纺织器材,1986,1(1):40~41
    [6]杨广茂.常见组合构件相贯线的计算公式[J].石油工程建设,1982,(4):26~28
    [7]杨广茂.相贯线的数学模型及电算[J].石油施工技术,1984,(6):4~8
    [8]肖读春.用矩阵求解球与圆柱的相贯线[J].成都信息工程学院学报,1987,1:87~96
    [9]肖燕玉.计算机求解两任意位置棱锥和棱柱相贯线的一种方法[J].西南交通大学学报,1988,6(4):96~104
    [10]宋晓梅.计算机绘制正圆环与圆球的相贯线[J].青岛化工学院学报,1989,10(4):91~96
    [11]康国珍,王尔均.圆柱与圆锥斜交相贯线的计算机处理[J].陕西机械学院学报,1989,5(2):191~196
    [12]吴新友,陈鹰,邵大文.两两相贯的圆孔相贯线计算机自动处理研究[J].机械与电子,1991(5):23~24
    [13]谢有才,谢瑞男.圆锥、圆柱形支管展开CAD[J]机械设计与研究,1999(1):38~39
    [14]叶继业.相贯线展开计算的程序设计[J].航空制造技术,1991(6):30~31
    [15]高丽华,王煜.异径三通管的展开图的计算机绘制[J].淮海工学院学报,2000,9(1):11~13
    [16]李志红.各种相交圆柱管制件的CAD展开[J].机床与液压,2003(2):126~127
    [17]丁沃圻,黄健.圆柱相贯线切割原理[J].武汉水利电力学院学报,1992,25(1):12-16
    [18]李宝清,贾安东.多管板相贯坡口切割数学模型[J].天津大学学报,2000,33(9):583~586
    [19]李宝清,贾安东.海洋工程结构中多管—板相贯的求交算法[J].中国造船,2000,41(4):52~57
    [20]崔大妍.实现程控化焊接两贺形管件的几何建模及计算方法[J].中国民航学院学报,2000,18(1):54~56
    [21]李莉.管件相贯线数控切割数学模型及其自动编程系统的开发[J].电加工与模具,2001(6):35~38
    [22]季忠,刘韧.管管相交数学模型及其在数控加工中的应用[J].工程图学学报,2002(2):139~144
    [23]王令其.相贯线插补方式的研究[J].机械工程师,2003(2):21~23
    [24]李小刚,吕碧峰,姚伟伟,薛继仁.相交双管的焊接装配接触线[J].焊接学报,2003,24(4):39~42
    [25]肖会军.黄健.一种复杂圆柱相贯线的数控切割原理[J].机床与液压,2003(4):254~255
    [26]甄洪栋,季忠,刘韧等.多管相贯的数学模型及其在自动切割中的应用[J].山东机械,2004(6):23~26
    [27]李小刚,吕碧峰.相交双管焊接坡口的数据化处理[J].中国机械工程,2004,15(4):355-357
    [28]黄振山,王国栋,王刚.管端相贯焊接坡口数控切割研究[J].制造业自动化,2005,27(9):34~41
    [29]王国栋,阎祥安,肖聚亮等.管端相贯线坡口切割割炬位姿控制[J].天津大学学报,2005,38(8):684~688
    [30]肖聚亮,阎祥安,王国栋等.火焰数控切管机割炬轨迹研究及仿真[J].机械工程学报,2005,41(4):234~238
    [31]谭金涛,龚景海.利用坐标转换方法进行钢管相贯线程序设计[J].四川建筑科学研究,2005,31(6):34~36
    [32]王晓鹏.正交相贯线坡口数控加工G代码的自动生成[J].机械工程与自动化,2006(4):161~162
    [33]聂晓根,刘艳斌,曾露莎.管件数控火焰切割割炬轨迹建模[J].工程图学学报,2008(3):145~150
    [34]袁泽虎,黄健.数控钢管切割机切割误差补偿的研究[J].武汉理工大学学报,2001,23(4):64~66
    [35]Ian Braid. The synthesis of solids bounded by many faces [J]. Comm. ACM,1975,18(4): 209~216
    [36]J. Woodwark and K. Quinlan, The derivation of graphics from volume models by recursive subdivision of the object space.[C].Computer Graphics 80, Proceeedings of a Conference in Brighton,1980:335~343,
    [37]S.P.Bhat, N.M. Aziz.The implementation of a simplified CSG model[J]. Advances in Engineering Software,1988,10(1):26~31
    [38]Clark J. H. Hierarchical Geometric Models for Visible Surface Algorithms [J]. Comm. ACM,1976,19(10):547~554
    [39]DEVORRE, KAPOORSG. Mechanistic model for prediction of the force system in face milling operations[J].ASME Journal of Engineering for Industry,1984:106
    [40]Kaufman A. E. Yagel R. Yagel R. Volume Graphics [J]. IEEE Transactions on Computers, 1993,26(7):51~64
    [41]ALTINTASY, SPENCEA. End milling for cell algorithm for CAD system[J]. Annals of CIRP,1991:40
    [42]STREM KOWSKIJS, CARROLLJT. Anorthogonal metal cutting model based on aneulerian finite element method, manufacturing processes, machines and systems[C]. Proceedings of 13 NSF Conference on Production Research and Technology,1986:323~329
    [43]Jense G. J. Voxel-based methods for CAD[J]. Computer-Aided Design,1989, 21(8):528~533
    [44]ELVINS T. T. A Survey of Algorithms for Volume Visualization[J]. Computer Graphics, 1992,26(3):194~201
    [45]Stifter S. Simulation of NC Machining Based on the Dexel Model:A Critical Analysis[J]. The International Journal of Advanced Manufacturing Technology,1995,10:149~157
    [46]Jense G. J. Voxel-based methods for CAD[J]. Computer-Aided Design,1989, 21(8):528~533
    [47]高峰,要艳红,李艳等.基于ObjectARX的车铣复合数控机床虚拟加工仿真研究[J].系统仿真学报,2008,20(12):3183~3186
    [48]周立波;李厚佳.基于UG的加工仿真及后置处理器的开发[J].制造业自动化,2009,31(2):47~50
    [49]李晓东;王好臣;李玉胜等.基于UGNX/IS&V的数控加工仿真[J].机床与液压,2010,38(3):121~123
    [50]吴小康,徐家文.利用UG动态装配实现数控电解加工过程模拟[J].哈尔滨工业大学学报,2009,41(11):258~261
    [51]周仙娥.基于CATIA的数控机床加工仿真的研究与开发[M].沈阳航空工业学院,2009
    [52]彭晓君,董克权,张建VERICUT仿真机加工在数控教学中的应用[J].装备制造技术,2008,(7):154~155
    [53]陈杰,迟永刚,刘梅等.基于VERICUT的数控加工运动学仿真[J].机械设计与制造,2009,(7):192~194
    [54]朱正祥.基于VERICUT数控铣齿机加工仿真的研究与应用[J].机床与液压,2008,36(9):118~120
    [55]牟世刚.基于VERICUT的整体叶轮五轴数控加工仿真[J].机床与液压,2009,37(2):164~165
    [56]段军军.基于UG和VERICUT的义齿模型数控编程与加工仿真的研究[D].北方工业大学,2009
    [57]伍红梅.基于Pro/E的数控功能部件运动仿真研究[M].合肥工业大学,2009
    [58]周四磊.基于Virtual NC的数控加工仿真技术[J].机械工程与自动化,2008(4):24~25
    [59]陈修龙,赵永生.虚拟轴机床数控加工过程的计算机模拟[J].系统仿真学 报,2004,16(3):541~545
    [60]邬再新,程萍,惠相君.基于OpenGL的数控车削动态仿真过程及图形显示[J].机械设计与制造,2007,2:98~99
    [61]姜繁智,李立新等.轧辊孔型数控车削加工的三维动态仿真[J].现代制造工程,2006,11:37~39
    [62]蒲志新,古艳丰,李赢.基于OpenGL数控车削仿真的软件实现[J].组合机床与自动化加工技术,2004,4:101~102
    [63]廖文和,周儒荣.回转体数控车削加工仿真的算法研究[J].工程图学学报,2003,4:20~25
    [64]邢吉利,李翔龙,吉华.基于Linux和OpenGL/Mesa的数控铣削仿真系统的研究[J].工具技术,2008,42(12):36~40
    [65]杨胜宇,李英,宋宇飞.基于VC++和Open Inventor的数控铣削仿真系统研究[J].机械设计与制造,2009(1):162~164
    [66]黄忠.基于VB和VRML的数控仿真教学系统设计[J].精密制造与自动化,2009(1):49~53
    [67]Klaus Weinert, Andreas Zabel, Eduard Ungemach.Improved NC path validation and manipulation with augmented reality methods. Production Engineering,2008,2(4):371-376
    [68]Jacob A. Crossman, David H. Yoon.A cutter motion simulation system. Journal of Integrated Design and Process Science,2000,4(l):25-35
    [69]Robert L. (Scot) Drysdale III, Robert B. Jerard, Barry Schaudt.et. Discrete simulation of NC machining.Algorithmica,1989,4(1):33-60
    [70]冯兴财,郭艳玲.多类型管切割数控轨迹建模与仿真[J].新技术新工艺,2006,2:50~51
    [71]Ronald Azuma,Malibu.A Survey of Augmented Reality. Teleoperator and Virtual Enviroments,1997,8:355~385.
    [72]Azuma,R.Recent advances in augmented reality.IEEE,CG&A,2001:340~47
    [73]Ronald Azuma,Yohan Baillot,Reinhold Behringer and et al.Recent Advances in Augmented Reality. IEEE Computer Graphics and Applications.2001,11:34~47.
    [74]马志艳.面向数控加工仿真的增强现实关键技术研究[D].华中科技大学,2007:1-2
    [75]管涛.增强现实中的虚实配准方法研究[D].华中科技大学;2008:1~2
    [76]Dangelmaier Wilhelm,Fischer Matthias,Gausemeier Jurgen and et al.Virtual and augmented reality support for discrete manufacturing system simulation [J]. Computers in Industry,2005,56(4):371~383
    [77]朱淼良,姚远,蒋云良.增强现实综述.中国图象图形学报,2004(9):767~774
    [78]明德烈,柳健,田金文.增强现实中的虚实注册技术[J].中国图象图形学报:A版,2003,8(5):557~561
    [79]S. Kurada,C. Bradley. A review of machine vision sensors for tool condition monitoring. Computers in Industry,1997,34(1):55~72
    [80]E. R. Davies. Machine Vision:Theory, Algorithms, Practicalities. Morgan Kaufmann.2004:1~2
    [81]Elias N. Malamas, a, Euripides G. M. Petrakis. A survey on industrial vision systems, applications and tools. Image and Vision Computing,2003,21(2):171~188
    [82]Batchelor B.G.,Whelan P.F. Intelligent Vision Systems for Industry. Springer-Verlag.1997:2
    [83]Bruce Batchelora.Machine Vision.Encyclopedia of Optical Engineering,2003:1
    [84]G. A. Al-Kindia,R. M. Baula, K. F. Gilla. An application of machine vision in the automated inspection of engineering surfaces.International Journal of Production Research, 1992,30(2):241~253
    [85]H. Balakrishnan, S. Venkataraman,S. Jayaraman. A Vision-based System for the Identification and Classification of Fabric Defects.Journal of the Textile Institute, 1998,89(2):365-380
    [86]Manoj Gupta, Shivakumar Raman.Machine vision assisted characterization of machined surfaces. International Journal of Production Research,2001,39(4):759~784
    [87]Rocco Furferi; Lapo Governi.Machine vision tool for real-time detection of defects on textile raw fabrics. Journal of the Textile Institute,2007,99(1):57~66
    [88]B. C. Jiang,C. C. Wang,Y. N. Hsu. Machine vision and background remover-based approach for PCB solder joints inspection. International Journal of Production Research, 2007,45(2):451~464
    [89]Maria B. Parr,Richard K. Byler; Kenneth C. Dieh Machine Vision Based Oyster Meat Grading and Sorting Machine. Journal of Aquatic Food Product Technology,1995,3(4):5~24
    [90]F. Rovira, Q. Zhang, J. F. Reid. Machine Vision Based Automated Tractor Guidance.International Journal of Smart Engineering System,2003,5(4):467~480
    [91]F. L. Chen,D. Joo,J. T. Black.Investigation of cutting condition monitoring by visual measurement of surface texture parameters, International Journal of Computer Integrated Manufacturing,1994,7(5):307~319
    [92]SID-AHMED M. A.,BORAIE M. T.Dual camera calibration for 3-D machine vision metrology. IEEE transactions on instrumentation and measurement,1990,39(3):512~516
    [93]C. Geyer and K. Daniilidis, Catadioptric Camera Calibration, In Proc. of International Conference on Computer Vision,1999:398~404,.
    [94]S. Kang. Catadioptric self-calibration. IEEE Conf. Computer Vision and Pattern Recognition,2000, 1(6):201~207
    [95]SS. Lin, R. Bajcsy, High Resolution Catadioptric Omni-Directional Stereo Sensor for Robot Vision, IEEE International Conference on Robotics and Automation,2003:91694~1699
    [96]P. Pugeta, T. Skordasa. Calibrating a mobile camera. Image and Vision Computing, 1990,8(4):341~348
    [97]Yau-Ren Shiau,Bernard C. Jiang.Determine a vision system's 3D coordinate measurement capability using Taguchi methods. International Journal of Production Research, 1991,29(6):1101~1122
    [98]张海平,孔庆忠,郑海龙等.基于Pro/E和ADAMS五自由度机械手的运动学分析及仿真.机械制造与自动化,2009,38(2):149~152
    [99]黎海青,郭百巍,徐红.基于ADAMS与SIMULINK的舵机虚拟样机建模和仿真.系统仿真学报,2009,21(21):6886~6888
    [100]OpenGL Architecture Review Board.OpenGL(R) Reference Manual:The Official Reference Document to OpenGL, Version 1.2 (3rd Edition). Addison-Wesley Professional,1999
    [101]NEIDER, J., DAVIS, T., and WOO, M. OpenGL Programming Guide. Addison-Wesley, 1993
    [102]Lewis P M. Compiler Design Theory, Addison-Wesley Publishing company,1976
    [103]William J. Schroeder, Jonathan A. Zarge, William E. Lorensen. Decimation of triangle meshes, ACM SIGGRAPH Computer Graphics,1992,26(2):65~70
    [104]J. Woodwark and K. Quinlan, The derivation of graphics from volume models by recursive subdivision of the object space.[C] Computer Graphics 80, Proceeedings of a Conference in Brighton,1980:335-343,
    [105]刘仕庆,陈幼平,马志艳等.自适应三角片离散法实现三轴数控加工仿真[J].计算机辅助设计与图形学学报,2006,18(8):1885~1891
    [106]徐建国,张友良,汪惠芬.应用改进的区域划分算法提高虚拟加工的可视化仿真速度.计算机辅助设计与图形学学报[J].2007,19(3):381~386
    [107]Reeves W. T. Particle system—a technique for modeling a class of fuzzy objects[J]. Computer Graphics.1983,17(3):359~376.
    [108]Arnauld Lamorlette, Nick Foster. Structural modeling of flames for a production environment.ACM Transactions on Graphics,2002,21(3):729~735
    [109]Lin Shi, Yizhou Yu.Controllable smoke animation with guiding objects.ACM Transactions on Graphics,2005,24(1) 140~164
    [110]Joshua Schpok, Joseph Simons, David S. Ebert. A real-time cloud modeling, rendering, and animation system, Proceedings of the 2003 ACM SIGGRAPH/Euro graphics symposium on Computer animation,2003:26~27
    [111]Idel Montalvo, Politecnica de Valencia, Rafael Perez.etc.Particle Swarm Optimization applied to the design of water supply systems.Computers & Mathematics with Applications archive,2008,56(3):769~776
    [112]Paul Fearing. Computer modelling of fallen snow. International Conference on Computer Graphics and Interactive Techniques archive,2000:37~46
    [113]R. Sumner, J. O'Brien, and J. Hodgins. Animating sand, mud, and snow. In Graphics Interface,1998,6:125~132
    [114]San Rafael. SURVEY OF TEXTURE MAPPING. Graphics Interface'86, 1986,5:207~212
    [115]James F. Blinn, Martin E. Newell. Texture and reflection in computer generated images. Communications of the ACM,1976,19(10):542~547
    [116]Randi J. Rost. OpenGL(R) Shading Language. Addison Wesley Longman Publishing Co., Inc.2004:298~301
    [117]Catmull, E. and Clark, J. Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aid,1978,10(6):350~355
    [118]J. C. Hourcade, A. Nicolas. Inverse Perspective Mapping in Scanline Order onto Non-Planar Quadrilaterals.Euro graphics'83,1983:309~319
    [119]马登武,叶文,李瑛.基于包围盒的碰撞检测算法综述.系统仿真学报,2006,18(4):1058~1061
    [120]Brudea G,Coiffet P.Virtud Reality Technology[M]. John wiley & Sons Inc,1994: 157~189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700