不同形貌SiO_2纳米材料的制备及其荧光颗粒用于大肠杆菌的检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硅纳米材料作为无机纳米材料的重要成员之一,由于具有制备简单、性质稳定、表面易修饰、良好的生物相容性等优良的物理和化学性质,已在化学、工程和生物医学等学科领域得到了广泛的应用。在进一步拓展二氧化硅纳米材料应用的同时,开展形貌可控的二氧化硅纳米材料的制备研究对于二氧化硅纳米材料制备和应用研究都具有非常的重要意义。本论文开展了不同形貌的二氧化硅纳米材料制备研究,此外,将本研究小组发展的基于二氧化硅荧光纳米颗粒和SYBR Green I的双色流式细胞术进一步应用于大肠杆菌O157:H7的检测研究。主要包括以下两个方面的工作:
     一、多聚赖氨酸为模板的形貌可控性二氧化硅纳米材料制备以多聚赖氨酸为内核材料,通过正硅酸乙酯在油包水反相微乳液中水解后制备不同形貌二氧化硅纳米材料的研究,探讨了多聚赖氨酸构象变化与二氧化硅纳米材料形貌变化的关系。结果表明通过采用多聚赖氨酸同一种模板材料,可以分别制备球形结构、棒状核壳结构和管形结构三种不同形貌的二氧化硅纳米材料。在此基础上,以Hela细胞为代表,初步考查了制备的不同形貌的二氧化硅纳米材料的细胞吞噬情况,初步研究结果表明不同形貌的二氧化硅纳米材料和Hela细胞孵育24h后,均能进入细胞,且随机地分布在细胞质中。
     二、二氧化硅荧光纳米颗粒和SYBR Green I双色流式细胞术(FSiNP@SG-FCM)用于大肠杆菌O157:H7的检测研究
     将本研究小组发展的基于二氧化硅荧光纳米颗粒和SYBR Green I的双色流式细胞术应用于大肠杆菌O157:H7的检测研究,通过大肠杆菌O157:H7抗体修饰的二氧化硅荧光纳米颗粒对大肠杆菌O157:H7的识别与结合以及SYBR Green I对大肠杆菌O157:H7的核酸标记染色,完成对大肠杆菌O157:H7的双色标记,再通过流式细胞术的免分离检测方法对大肠杆菌O157:H7进行快速、灵敏检测。研究结果表明,该方法对PB缓冲液体系中大肠杆菌O157:H7的检测下限为2.8×10~3cfu/ml,比基于FITC标记的传统流式细胞术具有低一个数量级的检测下限。
As one of the important members of inorganic nanomaterials, silica nanomaterials have been widely applied in chemical, engineering and biomedical fields, with their extraordinary properties including simple synthesis, high stability, easy modification and good biocompatibility. Studies on shape-controlled preparation of silica nanomaterials are very necessary and important for the development of silica nanomaterials. In this paper, preparation of silica nanomaterials with various morphology has been studied, and the previously developed, fluorescent nanoparticles and SYBR Green I based two-color flow cytometry has also been further applied to detect E. coli. O157: H7.
     1. Shape-controlled preparation of silica nanomaterials by using poly-L-lysine as the template.
     We selected poly-L-lysine as the core material and prepared silica nanomaterials with various morphologies through TEOS hydrolysis in the reverse microemulsion. The influence of poly-L-lysine solutions with different pH and concentrations on the preparation of silica nanomaterials with various morphologies has been systematically examined. And by using circular dichroism to analyse the secondary structures of poly-L-lysine under different conditions, the relationship between the structure changes of poly-L-lysine and the different morphologies of silica nanomaterials has been further explored. The results showed that silica nanomaterials could be prepared into spherical, rod-like and the tube-shaped structures, respectively, by using the same template material poly-L-lysine. In addition, with Hela cells as the representative cell line, we initially examined whether the prepared silica nanomaterials with different morphologies could be taken up by cells. And the preliminary results showed that, after a 24h-incubation with Hela cells, all the three silica nanomaterials with different morphologies could get into the cells, and randomly distributed in the cytoplasm.
     2. Fluorescent nanoparticles and SYBR Green I based two-color flow cytometry (FSiNP@SG-FCM) for detection of E. coli. O157:H7
     A method using an improved two-color flow cytometric analysis by a combination of fluorescent silica nanoparticles and SYBR Green I has been developed for the rapid detection of E. coli O157:H7. Firstly, antibody of E. coli. O157:H7 was conjugated with RuBpy-doped silica nanoparticles. Then, E. coli. O157:H7 was specially labeled with antibody-conjugated RuBpy-doped silica nanoparticles, and subsequently stained with a nucleic acid dye SYBR Green I, followed by multiparameter determination with flow cytometry. This assay allowed for detection of as low as 2.8×10~3 cfu/ml E. coli. O157:H7 in buffer, which was decuple lower than the detection limit of the FITC-based conventional flow cytometry. This proposed FSiNP@SG-FCM method will be promising for rapid detection of E. coli. O157:H7 in water and food.
引文
[1]王琦,张宏芳,骆凯,郑建斌.纳米金、碳纳米管和纳米线及其在电化学生物传感器研究中的应用[J].化学研究与应用, 2008, 20(10): 1247-1253
    [2] Wu Y, Cui Y, Huynh L, et a1. Controlled growth and structures of molecular-scale silicon nanowires [J]. Nano. Lett. 2004, 4(3): 433-436
    [3] Yasseri A A, Sharma S, KaminsT I, et a1. Growth and use of metal nanocystal assemblieson high-density silicon nanowires formed by chemical vapo deposition[J]. Appl. Phys. A, 2006, 82(4): 659-664
    [4] Abed H, Chattier A, Dallaporta H, et a1. Directed growth of horizontal silicon nanowires by laser induced decomposition of silane [J]. J. Vac. Sci. Technol. B, 2006, 24(3): 1248-1253
    [5] Endo M. The production and structure of pyrolytic carbon nanotubes[J]. J. Phys. Chem. Solida, 1993, 54(6): 1841-1845
    [6] Jose-Yacaman M, Miki-Yoshida M, Rendon L, et al. Catalytic growth of carbon microtubules with fullerene structure [J]. Appl. Phys. Lett., 1993, 62(6): 657-659
    [7] Wang Y, wei F, Lao G H, et a1. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor[J]. Chem. Phys. Lett., 2002, 364(23): 568?572.
    [8] Choi, H.; Park, S. H. Novel fabrication process of patterns composing by gold Nanoparticle thin films on silicon wafer[J]. J. Am. Chem. Soc., 2004, 126(12): 6248-6249.
    [9] Wang J. H., Yang T. H., Wu W. W., et al. Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics[J]. J. Nanotechnology, 2006, 17(3): 719-723
    [10] Liu Z. P., Yang Y., Liang J. B., et al. Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process[J]. J. Phys. Chem. B, 2003, 107(13): 12658-12661
    [11] Chang Y., Lye M. L., Zeng H. C. et al. Large-scale synthesis of high-quality ultralong copper nanowires[J]. Langmuir, 2005, 21(4): 3746-3750
    [12] Shi Y., Li H., Chen L. Q. et al. Electron mobility enhancement using ultrathin pure ge on Si substrate [J]. Adv. Mat., 2005, 6(5): 761-763
    [13] Wang Z., Liu J., Chen X., et al. The simulation of powders with liquid bridges in a 2D vibration bed [J]. Chem. Eur. J. 2005, 11(6): 160-167
    [14] Xu J., Hu J., Peng C. et al. [J]. J. Colloid Interf. Sci. 2006, 298, 689.
    [15] Sun X. M., Li Y. D. Cylindrical silver nanowires: preparation, structure, and optical properties[J]. Adv Mater., 2005, 17(21): 2626-2630
    [16] Caswell K. K., Bender C. M., Murphy C. J. Seedless, surfactantless wet chemical synthesis of silver nanowires[J]. Nano Lett, 2003, 3(5): 667-669
    [17]陈锴,马丁等.利用Ostwald熟化作用制备空心碳纳米材料[J].高等学校化学学报, 2008, 29(8): 1501-1504
    [18] Liu F K, Huang P W, Chang Y C, et a1. Formation of silver nanorods by microwave heating in the presence of gold seeds[J]. Cryst Growth, 2005, 273(3-4): 439-443
    [19] Sun Y G, Gates B, Mayers B, et a1. Crystalline silver nanowires by soft solution processing[J]. Nano Lett, 2002, 2(2): 165-168
    [20] Sun Y G, Gates B, Mayers B, et a1. Stacking faults in formation of silver nanodisks[J]. Chem Mater, 2002, 14(11): 4736-4739
    [21] Matsumoto K, Miyamae N, et a1. The aryl chlorine-halide Ion synthon and its role in the control of the crystal structures of tetrahalocuprate(II) Ions[J]. Cryst Growth Des, 2007, 7(2): 311-315
    [22]邹凯,张晓宏,吴世康,等.光化学法制备银纳米线及其形成机理的研究[J].化学学报, 2004, 62(18): 1771-1773
    [23] Zhang J. L., Han B. X., Liu M. H. et a1. Fabrication of silver nanowires using self-assembled reverse micelle template at controlled low temperature[J]. J Phys Chem B, 2003, 107(16): 3679-3682
    [24]宋旭春,岳林海,徐铸德,等.水热法制备掺杂铁离子的小管径TiO2纳米管[J].无机化学学报, 2003, 19(8): 899-901
    [25]张青红,高濂,郑珊,等.制备均一形貌的长二氧化钛纳米管[J].化学学报, 2002, 60(8): l439-l444
    [26]李伟,王晓冬,杨建军,等.高比面积TiO2纳米管的制备与表征[J].化学研究, 2002, 13(3): 12-14
    [27]郭立俊,魏红彬.银纳米粒子的制备及溴离子对其表面性质的影响[J].河南大学学报, 2000, 30(3): 20-23
    [28]张庆敏,李彦等.聚氧乙烯类表面活性剂体系中银纳米颗粒的制备[J].物理化学学报, 2001, 17(6): 537-541
    [29]陈庆春.铜纳米棒和纳米线水热还原制备的条件选择[J].精细化工,2005,22(6): 417-419
    [30]盘荣俊,孙春桃,何宝林等.溶剂稳定的铜纳米颗粒的制备[J].化学与生物工程, 2006, 23(11): 13-15
    [31] Sun Y G, Xia Y N., Electrochemical crystallization of cuprous oxide with systematic shape evolution[J]. Adv Mater,2004, 16(3): 265-268
    [32] Yu Y., Xu X., Ge X., et al. Preparation and characterization of Polyacrylamide-silver nanocomposites [J]. Radiation Physics and Chemistry, 1998, 53(8): 567-570.
    [33]曹林有,刁鹏.刘忠范电化学沉积法制备金(核)-铜(壳)纳米粒子阵列[J].物理化学学报2002, 18(12): 646-648
    [34]赖跃坤,孙岚,左娟,等.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004, 20(9): l063-l066
    [35] Gteen S., Cortes A., Riveros G., et a1. Structural and physical properties of optimized-doped La-Ca-Na-Mn-O system[J]. Solid state physics, 2007, 4(2): 340-345
    [36] Liu S. W., Wehmschulte R. J., Lian G. D. et a1. Room temperature synthesis of silver nanowires from tabular silver bromide crystals in the presence of gelatin[J]. J. Solid State Chem., 2006, 179(3): 696-698
    [37] Adhyapaka P. V., Karandikarb P., Vijayamohananb K. et a1. Synthesis of silver nanowires inside mesoporous MCM-41 host[J]. Mater. Lett., 2004, 58(7-8): 1168-1171
    [38] Jana N. R., Earheart L., Murphy C. J., Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chem. Commun., 2001(7): 617-619
    [39] Murphy C. J., Jana N. R., Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Adv. Mater., 2002, 14(1): 80-83
    [40] Jana N. R., Gearheart L., Murphy C. J., Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. J. Phys. Chem. B, 2001, 105(19): 4065-4068
    [41] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Adv. Mater., 2001, 13(18): 1389-1392
    [42] Sun Y. G., Mayers B., Herricks T., et a1. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence[J]. Nano. Lett. 2003, 3(7): 955-961
    [43] Gao Y., Jiang P., Liu D. F., et a1. Synthesis, characterization and self-assemblyof silver nanowires[J]. Chem. Phys. Lett., 2003, 380(12): 146-148
    [44] Sun Y. G., Xia Y. N., Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process[J]. Adv. Mater., 2002, 14(11): 833-837
    [45] Lew K. K., Redwing J. M., Growth Characteristics of silicon nanowires synthesized by vapor-liquid-solid growth in nanoporous alumina templates [J]. J. Cryst. Growth, 2003, 25(4): 14-22
    [46] Li C. P., Sun X. H., Wong N. B. et al. Ultrafine and uniform silicon nanowires grown with zeolites [J]. Chem. Phys. Lett., 2002, 36(5): 22-26
    [47] Christiansen S., Schneider R., Scholz R., et al. Vapor-liquid-solid growth of silicon nanowires by chemical vapor deposition on implanted templates [J]. J. Appl. Phys. 2006, 100(8): 23-34
    [48] Sha H., Niu I., Ma X. Y. et a1. Silicon nanotube[J]. Adv. Mater., 2002, 14(17): 1219-1221
    [49] Jeong S. Y., Kim I. Y., Yang H. D. et a1. Synthesis of silicon nanotubes porous alumina using molecular beam epiaxy [J]. Adv. Mater, 2003, 15(14): 1172-1176
    [50] Michailowsk A, Cheng G. et a1. Highly regular anatase nanotubule arrays fabricated in porous anodic templates[J]. Chemical Physics Letters, 2001, 349: l-5
    [51] Jong H. J., Hideki K., Kjei D. et a1. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organo-gel template[J]. Chem. Mater., 2002, 14(4): l445-l447
    [52] Anjan N., Hamidreza Ghandehari. Cellular uptake and cytotoxicity of silica nanotubes[J]. Nano Lett, 2008, 8(8), 2150-2154
    [53] Han Y., Jiang J., Lee S. S. et al. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles[J]. Langmuir, 2008, 24(11): 5842-5848
    [54] Huang Y., Duan X. Y., Cui L. L. et al. Logic gates and computation from assembled nanowire building blocks[J]. Science, 2001, 294(45): 1313-1317.
    [55] Che S., Liu Z., Synthesis and characterization of chiral mesoporous silica[J]. Nature, 2004, 429(20): 281-284.
    [56] Che S., Tatsumi T., A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure[J]. Nat. Mater., 2003, 2(11), 801-805
    [57] Harada M., Adachi M., Surfactant-mediated fabrication of silica nanotubes[J]. Adv. Mater. 2000, 12(11): 839-841
    [58] Bart R. P., Leermakers A. M., Martien A. et al. Self-consistent field modelingof non-ionic surfactants at the silica-water interface: incorporating molecular detail[J]. Langmuir 2008, 24(8): 3960-3969
    [59] Hu S. H., Liu D. M., Tung W. L. et al. Surfactant-free, self-assembled PVA-iron oxide/silica core-shell nanocarriers for highly sensitive, magnetically controlled drug release and ultrahigh cancer cell uptake efficiency[J]. 2008,18(19): 2940-2955
    [60] Tan G., Ford C., Surfactant solubilization and the direct encapsulation of interfacially active phenols in mesoporous silicas[J]. Langmuir, 2008, 24(3), 1031-1036
    [61] Yuan J., Water-soluble organo-silica hybrid nanowires[J]. Nat. Mater, 2008, 7(12), 718-722.
    [62] Zollfrank C., Scheel. H., Regioselective manufacturing of silica nanotubes by molecular templating[J]. Adv. Mater, 2007, 19(13), 984-987
    [63] Virany M. Yuwono, Peptide amphiphile nanofibers template and catalyze silica nanotube formation[J]. Langmuir, 2007, 23(9):5033-5038
    [64] Krysmann M. J., Castelletto, J. E., Self-assembly of peptide nanotubes in an organic solvent[J]. Langmuir, 2008, 24(15):8158-8162.
    [65] Stewart C. H., Patrick J., S. King, et al. Templating silica nanostructures on rationally designed self-assembled peptide fibers[J]. Langmuir, 2008, 24(20):11778-11783.
    [66] Koh K., Ohno K., Tsujii Y. et al. Precision synthesis of organic/inorganic hybrid nanocapsules with a silanol-functionalized micelle template[J]. Angew. Chem. Int. Ed., 2003, 42: 4194-4197
    [67] Cheng L., Zhang G., Zhu L. et al. Nanoscale tubular and sheetlike superstructures from hierarchical self-assembly of polymeric Janus particles[J]. Angew. Chem. Int. Ed. 2008, 47(52): 10171-10174
    [68] Li M., Mann S., Emergent hybrid nanostructures based on non-equilibrium block copolymer self-assembly[J]. Angew. Chem. Int. Ed. 2008, 47: 1-5
    [69] Kim W. J., Yang S. M., Helical mesostructured tubules from taylor vortex-assisted surfactant templates[J]. Adv. Mater. 2001, 13(15): 1191-1195
    [70] Meegan J. E., Aggeli A.,Boden N. et al. Designed self-assembledβ-sheet peptide fibrils as templates for silica nanotubes[J]. Adv. Funct. Mater. 2004, 14(1): 31-37
    [71]王晓冬,董鹏,陈胜利等.乳液种子生长法制备亚微米单分散聚苯乙烯微球第六届全国颗粒测试学术会议中国粉体技术
    [72]潘碧峰,崔大祥,徐萍等.种子生长法制备长径比为2-5的金纳米棒J材料科学与工程学报, 2007, 13(3): 333-335
    [73]王玉坤,钟浩波.微乳液法制备条件对纳米粒子形貌和粒径分布的影响精细化工, 2002, 19(8): 466-468
    [74] Pileni M. P., Ninham B. W., Gulik-Krzywicki T. et al. The chemistry of conducting polythiophenes[J]. Adv. Mater. 1999, 11(18): 1358-1359
    [75]李晓红,张校刚,力虎林. TiO2纳米管的模板法制备及表征[J].高等学校化学学报, 2001, 22(1): 130-132
    [76] Yang P., Zhao D., Margolese D. I. et al. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396(6):152-155
    [77] Fanlk W. P., Taylor G. M., An immunocolloid method for the electron micmscope[J]. Immunochemistry, 1971, 8(11): 1081-1083
    [78]丁艳君,王桦,继山,纳米金蛋白A介导抗体定向固定的压电传感及电化学特性研究[J].高等化学学报, 2005, 26(2): 222-226
    [79] Liang R. Q., Tan C. Y., Ruan K. C., Colorimetric detection of protein microarrays based on nanogold probe coupled with silver enhancement[J]. J Immunol Methods, 2004, 285(2): 157-163
    [80] Kohler A., Lanrltzen B., Signa lamp1ification in immunohistochemistry at the light microscopic level using biotinylated tyramide and nanogold-silver staining[J]. J Histochem Cytochem 2000, 48(7): 933-941
    [81] Patolsky F., Ranjit K. T., Lichtenstein A., et al. Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles[J]. Chem Commun,2000,(12): 1025-1026
    [82] Marinakos S. M., Chen S. H., Chilkoti A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor.[J] Anal Chem, 2007, 79(14): 5278-5283
    [83] Yu C. X., Irudayaraj J., Multiplex biosensor using gold nanorods.[J] Anal Chem, 2007, 79(2): 572-579
    [84] Oyelere A. K., Chen P. C., Huang X. H. et al. Peptide-conjugated gold nanorods for nuclear targeting.[J] Bioconjugate Chem, 2007, 18 (5): 1490-1497
    [85] Durr N. J., Larson T., Smith D. K. et al. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods.[J] Nano Lett, 2007, 7(4): 941-945
    [86]杨光明,白慧萍等.基于胱胺自组装金纳米线的第三代过氧化氢生物传感器的研制[J].化学传感器2007, 27(4): 36-38
    [87] Aravamudhan S., Ramgir N. S., Bhansali S., Characterization of surface plasmon resonance wavelength by changes of protein concentration on protein chips[J]. Sensors and Actuators B, 2007,127(5): 29-35
    [88] Wang Q., Li H., Chen L. Q., et a1. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39(14): 2211-2214
    [89] Yao J. F.,Wang H. T., Liu J., et a1. Preparation of colloidal microporous carbon spheres from furfuryl alcohol[J]. Carbon, 2005, 43(8): 1709-1715
    [90] Sun X. M., Li Y. D., Colloidal carbon spheres and their Core/shell structures with noble metal nanoparticles[J]. Angew. Chem. Int. Ed., 2004, 43(5): 597-601
    [91] Li J., Cassell A., Delzeit L. et a1. Novel three-dimensional electrodes:electrochemical properties of carbon nanotube ensembles [J]. J. Phys. Chem. B, 2002, 106(36): 9299-9305
    [92] Poh W. C., Loh K. P., Biosensing properties of diamond and carbon nanotubes[J]. Langmuir, 2004, 20(13): 5484-5492
    [93] Moore R. R., Banks C. E., Compton R. G.., Basal plane pyrolytic graphite modified electrodes:comparison of carbon nanotubes and graphite powder as electrocatalysts[J]. Anal. Chem. 2004, 76(10): 2677-2682
    [94] Zhang M., Gong K., Zhang H. et a1. Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid [J]. Biosensors and Bioelectronics, 2005, 20(7): 1270-1276
    [95] Gong K., Zhang M., Yan Y. et a1. Sol-Gel derived ceramic carbon nanotube nanocompesite electrodes : tunable electrode dimension and potential electrochemical applications[J]. Anal. Chem. 2004, 76(21): 6500-6505
    [96] Gong K., Dong Y., Xiong S. et a1. Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes[J]. Biosensors and Bioelectronics, 2004, 20(2): 253-259
    [97] Wang J., Liu G., Rasul J. M, et a1. Electrochemicaldetection of DNA hybridization based on carbon nanotubes loaded with CdS tags[J]. Electrochem. Commun, 2003, 5(16): 1000-1004
    [98] Wang J., Liu G., Rasul J. M., Ultrasensitive electrical biosensing of proteins and DNA:carbon.nanotube derived amplification of the recognition and transduction events[J]. J. Am. Chem. Soc. 2004, 126(10): 3010-3011
    [99] Musameh M., Wang J., Merkoci A. et a1. Gold nanorods: electrochemicalsynthesis and optical properties[J]. Electrochem. Cornmun. 2002, 4(7): 743-748
    [100] Zhao Y. D., Chen H., Direct electrochemistry of homemdish peroxidase at carbon nanotube powder mieroelectrode[J]. Sensors and Actuators B 2002, 87(1): 168-172
    [101] Wang S. G., Wang R., Novel multi-walled carbon nanotule based biosensor for glucose detecfion[J]. Biochemical and Biophysical Research Corrrmunieations 2003, 311(2): 572-576
    [102] Collins P. G., Bradlley K., Ishicami M. et a1. Exteme oxygen sensitivityofelectronic properties of carbon nanotubes[J]. Science, 2000, 287(5459): 1801-1804
    [103] Kong J., Franklin N. R., Chapline M. C. et a1. Nanotube molecular wires as chemical sensors[J]. Science, 2000, 287(5453): 622-625
    [104] Cavicchi R. E., Coulomb suppression of tunneling rate from small metal particles[J]. Phys. Rev. Lett, 1984, 52(29): 1453
    [105] Ball P., Garwin L., Science at the atomic scale[J]. Nature, 1992, 355(6363): 761-763.
    [106] Mayo M. J., Mechanical properties of nanophase TiO2 as determined by nanoindentation[J]. J .Mater. Res, 1990, 5(5):1073-1082.
    [107] Sinclair B., To bead or not to bead: applications of magnetic bead technology[J]. Scientist, 1998, 12(5): 17-23
    [108]李军,王柯敏,何晓晓,唐志文等.纳米尺度和单分子水平上的化学生物学研究[J].大学化学, 2004,19(1):10-15.
    [109] Zhao Y., Trewyn B. G., Slowing I. I. et al. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP[J]. J. Am. Chem. Soc. 2009, 131(24): 8398–8400
    [110]何晓晓,王柯敏,谭蔚泓等.超顺磁性DNA纳米富集器应用于痕量寡聚核苷酸的富集[J].高等学校化学学报, 2003, 24(3): 40-42
    [111] Chen C. C., Liu Y. C., Wu C. H. et al. Preparation of fluorescent silica nanotubes and their application in gene delivery[J]. adv. Mater. 2005, 17(4): 404-407
    [112] Bae D. R., Lee S. J., Woo S. et al. Au-doped magnetic silica nanotube for binding of cysteine-containing proteins[J]. Chem. Mater. 2008, 20(12): 3809–3813
    [113]张菊花,邢建民,江洋洋等. pH响应的包覆超顺磁性纳米颗粒的γ-聚谷氨酸二级结构研究[J].光谱学与光谱分析, 2009, (8): 2141-2158
    [114]李军,王柯敏,何晓晓等.纳米尺度和单分子水平上的化学生物学研究[J].大学化学, 2004,19(1): 10-15
    [115]段菁华,王柯敏,何晓晓等.基于核壳荧光纳米颗粒的一种新型纳米pH传感器[J].湖南大学学报, 2003, 30(2): 1-5
    [116] Istorney F., Trewyn B., Lin V. S., Wang K., Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nat. Nanotechnol. 2007, 2: 295-300
    [117] Sozzani P., Bracco S., Complete shape retention in the transformation of silica to polymer micro-objects [J]. Nat. Mater. 2006, 5(3): 545-551
    [118] Xie C., Liu B., Wang Z. et al. Molecular imprinting at walls of silica nanotubes for TNT recognition[J]. Anal. Chem. 2008, 80(2): 437-443
    [119] Kang M., Trofin L., Mota M. O. et al. Protein capture in silica nanotube membrane 3-D microwell arrays[J]. Anal. Chem. 2005, 77(19): 6243-6249
    [120] Tsung C-K., Hong W., Shi Q. et al. Shape- and orientation-controlled gold nanoparticles formed within mesoporous silica nanofibers [J]. Adv. Funct. Mater. 2006, 16(13): 2225-2230
    [121] Zheng F., Liang L., Gao Y. et al. Carbon nanotube synthesis using mesoporous silica templates[J]. Nano. Lett., 2002, 7(2): 729-732
    [122] Crowley T. A., Ziegler K. J., Lyons D. M. et al. Nanotube arrays within a mesoporous silica template[J]. Chem. Mater. 2003, 15(18): 3518-3522
    [123] Ivan G., Matsuura N., Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles[J]. Nano Lett., 2008, 8 (1): 369-373
    [124] Kosuge K., Sato T., Kikukawa N. et al. One-step preparation of porous silica spheres from sodium silicate using triblock copolymer templating[J]. Chem. Mater. 2004, 16(5): 899-905
    [125] Fujikawa S., Muto E., Kunitake T., Embedding of individual ferritin molecules in large, self-supporting silica nanofilms[J]. Langmuir 2007, 23(8): 4629-4633
    [126] Yang S. M., Sokolov I., Coombs N. et al. Formation of hollow helicoids in mesoporous silica: supramolecular origami[J]. Adv. Mater., 1999, 11(17): 1427-1430
    [127] Yuan J., Xu Y., Andreas et al. Water-soluble organo-silica hybrid nanowires[J]. Nat. Mater., 2008, 7(2): 718-722
    [128] Nan A., Bai X., Son S. J. et al. Hamidreza Ghandehar Cellular Uptake andCytotoxicity of Silica Nanotubes[J]. Nano Lett., 2008, 8(8): 2150-2154
    [129] Jang J. S., Yoon H., Novel fabrication of siza-tunable silica nanotube using a microemulsion-mediated sol-gel method[J]. Adv. Mater. 2004, 16(4): 799-802
    [130] Hawkins K. M., Ford D. M. Shantz D. F., Poly-l-Lysine templated silicas: using polypeptide secondary structure to control oxide pore architectures[J]. J. Am. Chem. Soc. 2004, 126 (29): 9112-9119
    [131] Peter A. M., Jennifer L. S., The structure and dynamics of poly(L-lysine) in templated silica nanocomposites[J]. Chem. Mater. 2008, 20(6): 2218-2223
    [132] Ganesh S., Prasad L. P., Concentration- and dehydration-dependent structural transitions in poly-L-lysine[J]. Journal of Molecular Structure, 2008, 890(1-3): 144-149
    [133] Ross N. C., Gianluca D., Paramjit S. A., A highly stable shortα-helix constrained by a main-chain hydrogen-bond surrogate [J]. J. Am. Chem. Soc. 2004, 126(39): 12252-12253
    [134] Wang Y., Chang Y. C., Synthesis and conformational transition of surface-tethered polypeptide: Poly(L-lysine)[J]. Macromolecules 2003, 36(17): 6511-6518
    [135] Ariane B., Anne A. P., Pascale L. P. et al., The control of dendritic cell maturation by pH-sensitive polyion complex micelles[J]. Biomaterials 2009, 30(29): 233–241
    [136]史惠,余钗.控制大肠杆菌O157:H7对食品、水源等的污染[J].福建畜牧兽医2007, 29(6): 63-64
    [137]宋宏新,李宏,肠出血性大肠杆菌O157:H7的检测方法进展[J]. 2007, 28(11):607-610
    [138]葛萃萃,钟青萍,张旺等.双抗夹心ELISA检测食品中大肠杆菌O157:H7方法研究[J].食品科学, 2007, 28(1): 171-175
    [139] Ho J. A., Hsu H. W., Procedures for preparing escherichia coli O157:H7 immunoliposome and its application in liposome immunoassay[J]. Anal. Chem., 2003, 75 (16): 4330–4334
    [140] Maria M., Patrizia S., Massimo G. et al. A rapid multiplexed chemiluminescent immunoassay for the detection of escherichia coli O157:H7, Yersinia enterocolitica, Salmonellatyphimurium, and Listeria monocytogenes pathogen bacteria[J]. J. Agric. Food Chem., 2007, 55 (13): 4933–4939
    [141]王丽江,吴春生,王平,大肠杆菌O157:H7压电免疫传感器研究及表征[J].微纳电子技术, 2007,8(8): 358-359
    [142]史智扬,刘和平,汪华,寡核苷酸阵列芯片快速鉴定大肠杆菌O157:H7初步研究[J]. 2006,6(12):2117-2119
    [143]许如苏,林彩华,蔡颖,沙门氏菌和大肠杆菌O157:H7双重荧光PCR检测方法的研究[J].中国动物检疫, 2008, 25(3): 20-23
    [144] Hibi K., Ushio H., Fukuda H. et al. Immunomagnetic separation using carbonyl iron powder and flow cytometry for rapid detection of Flavobacterium psychrophilum. Analytical and Bioanalytical Chemistry, 2008, 391(4): 1147-1152
    [145]高春华.纳米材料的基本效应及其应用[J].江苏理工大学学报(自然科学版), 2001, 22(6): 45-49
    [146]逄键涛,文思远,王升启.金纳米颗粒聚集以及金纳米探针-微阵列技术研究进展[J].分析化学,2006, 34(6): 884-888
    [147] Megan A. H., Peter C. K., Todd D. K., Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots[J]. Anal. Chem., 2008, 80 (3): 864-872
    [148] Qin D. L., He X. X., Wang K. M. et al. Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium Tuberculosis avoiding false positives[J]. Biosensors & Bioelectronics, 2008, 24(4): 626-631
    [149] He X. X., Wang K. M., Tan W. H. et al. A novel fluorescent label based on biological fluorescent NPs and its application in cell recognition. Chinese Science Bulletin, 2001, 46(23): 1962-1965

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700