自组装环技术应用于抗菌药检测及药物与蛋白质相互作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于抗菌药物分析检测的重要意义和自组装环荧光显微成像技术的特点及其在药物分析中的应用,建立了甲苯磺酸妥舒沙星(TSFX)、左氧氟沙星(LVFX)和洛美沙星(LMX)的分析方法,并应用于鸡血清、鸡肉、肝脏、粪便;兔子血清、兔肉、肝脏和肾脏;药片、胶囊、注射液中药物含量的检测。此外,本文还应用荧光光谱法、紫外-可见吸收光谱法、傅里叶变换红外光谱法和分子模拟的方法研究了甲苯磺酸妥舒沙星TSFX.酒石酸乙酰异戊酰泰乐菌素(ATLL)与牛血清白蛋白(BSA),呋喃西林(NF)与人血清白蛋白(HSA)的相互作用。
     在pH10.50的NH3-NH4C1缓冲溶液和PVA-124存在下,Mn2+和CTMAB作为敏化剂,甲苯磺酸妥舒沙星(TSFX)在疏水性玻璃表面上形成自组装环。当点样体积为0.2μtL时,线性范围为4.05×10-14~4.28×10-13mol-ring-1(2.02x10-7~2.14×10-6mol·L-1),检出限为4.05×10-15mol·ring-1(2.02×10-8mol·L-1)。实测了甲苯磺酸妥舒沙星片剂中TSFX的含量和兔子灌喂甲苯磺酸妥舒沙星片剂后不同时间血清中TSFX的浓度,平均回收率在90.0~105.0%,相对标准偏差(RSDs)小于3.3%。
     在pH9.30的NH3-NH4Cl缓冲溶液中,Mn2+和CTMAB作为敏化剂,PVA-124作为辅助成环剂,建立了检测左氧氟沙星(LVFX)的方法,并实测了盐酸左氧氟沙星胶囊、片剂,鸡血清、鸡肉、鸡肝和鸡粪便中LVFX的浓度。当点样体积为0.2μL时,线性范围为5.66×10-14~1.00×10-13mol-ring-1,检出限为5.66x10-15mol-ring-1。该方法应用于鸡血清、鸡肉、鸡肝、鸡粪便和药物制剂(药片、胶囊)中LVFX的测定时回收率为90.0~105.0%,RSDs在0.8~4.0%。
     在pH9.60的NH3-NH4Cl缓冲溶液和PVA-124存在下,A13+和CTMAB作为敏化剂,洛美沙星(LMX)在二氯二甲基硅烷处理的疏水性固载表面上形成自组装环,据此建立了检测LMX的方法。当点样体积为0.2μL时,线性范围为9.87x10-14~1.47x10-12mol-ring-1检出限为9.87×10-15mol-ring-1(4.93×10-8mol·L-1)。实测了盐酸洛美沙星胶囊、片剂、注射液,兔血液、兔肉、肝脏、肾脏中LMX的浓度,加标回收率为90.6~106.3%,RSDs小于4.2%。
     模拟生理条件下,应用荧光光谱法、紫外-可见吸收光谱法、傅里叶变换红外光谱法研究了TSFX与BSA的相互作用。实验结果表明,TSFX与BSA的作用属于静态猝灭过程,结合常数Kα为2.58×104L·mol-1(298K),结合位点数n≈1,作用力类型主要为静电作用力。根据Foster能量转移理论求得TSFX与BSA第212位色氨酸残基间的距离r=3.42nm。同步荧光光谱和三维荧光光谱数据显示TSFX能够改变BSA的构象,色氨酸残基所处微环境疏水性降低。采用FT-IR对BSA与TSFX作用前后BSA二级结构的变化进行了定量分析,在298K当TSFX:BSA从0∶1变化到10∶1时,α-螺旋从48.5%降低到38.6%,β-折叠从23.3%降低到18.3%,而β-转角从15.3%增加到24.1%,无规卷曲从12.9%增加到19.0%,TSFX与BSA的作用使得BSA的二级结构变得松散。
     应用荧光光谱法、傅里叶变换红外光谱法和紫外-可见吸收光谱法研究了ATLL与BSA相互作用及Zn2+、Cu2+对ATLL与BSA相互作用的影响。实验表明有无Zn2+、Cu2+存在时ATLL与BSA的作用都是静态猝灭机制。Zn2+使结合作用的有效猝灭常数降低,ATLL的药效增加,而Cu2+增大了有效猝灭常数,使ATLL在血液中的储备时间延长。热力学参数表明氢键和疏水作用力在反应中起主要作用,Zn2+、Cu2+对作用力类型没有影响。根据Foster能量转移理论求出了BSA第212位色氨酸残基与ATLL司的平均距离。应用同步荧光和三维荧光对ATLL对BSA构象的影响进行了研究,表明ATLL改变了色氨酸和酪氨酸残基微环境的极性。红外光谱结果显示ATLL引起了BSA二级结构由α-螺旋和β-折叠结构向β-转角和无规卷曲转变,BSA分子结构的松散程度增加。紫外光谱表明Zn2+对ATLL与BSA相互作用的影响可能是通过Zn2+与ATLL竞争结BSA,而Cu2+可能是形成Cu2+-ATLL复合物,通过离子架桥作用影响BSA与ATLL的作用。
     应用荧光光谱法、紫外-可见吸收光谱法、傅里叶变换红外光谱法和分子模拟的方法研究了NF与HSA的相互作用。实验结果表明NF对HSA荧光猝灭是一个静态猝灭过程,氢键和范德华力在维持复合物稳定中起主要作用。根据Foster非辐射能量转移理论求出了能量给体(Trp-214)和能量受体(NF)之间的距离r,表明在NF与HSA的相互作用中存在非辐射能量转移。取代实验表明NF在HSA上有一个结合位点位于site I。分子模拟进一步确定了NF在HSA上的具体结合信息,如NF主要是通过NF的N11与Lue283;NF的N14与Lue283、Ser287;NF的O7与Ser287的氢键起作用等。三维荧光光谱显示NF与HSA作用后HSA构象发生改变,色氨酸残基微环境的极性降低。红外光谱结果表明NF与HSA的作用引起HSA二级结构由α-螺旋和β-折叠向β-转角和无规卷曲结构的转变,α-螺旋从54.2%降低到45.8%,β-折叠从18.5%降低到15.7%,β-转角从21.7%增加到23.8%,无规卷曲结构从5.6%增加到14.7%。
Based on the significance of determination of antimicrobial, the characteristic and application of self-ordered ring (SOR) fluorescent microscopic imaging technique, in this paper we developed the methods for the determination of tosufloxacin tosylate (TSFX), levofloxacin (LVFX) and lomefloxacin (LMX), and employed the developed methods to detect the content of above drugs in tablet, capsule and injecta, the content of TSFX in rabbit serum, LVFX in chiken serum, muscle, liver, manure and LMX in rabbit serum, muscle, liver and kidney after dosing, respectively. Besides, The interactions of TSFX and BSA, ATLL and BSA, NF and HSA were studied by fluorescence spectra, UV-vis absorption spectra and FT-IR spectra and molecular modeling methods.
     In the pH10.50NH3-NH4C1buffer solution and poly(vinyl alcohol)-124(PVA-124), with Mn2+and cetyltrimethyl ammonium bromide (CTMAB) as sensitizer, a highly sensitive and simple method is developed for the determination of TSFX by the SOR fluorescent microscopic imaging technique. When the droplet volume is0.2μL, TSFX in the range of4.05x10-14-4.28x10-13mol/ring (2.02x10-7-2.14x10-6mol/L) can be detected, and the limit of detection (LOD) can reach4.05x10-15mol/ring (2.02x10" mol/L). This developed methods was applied to determine the content of TSFX in the tablet and in the rabbit serum of different time after dosing. The recovery is90.0-105.0%and relative standard deviations (RSDs) are less than3.3%.
     Based on the SOR fluorescent microscopic imaging technique on a hydrophobic glass slide with Mn2+and CTMAB as sensitizer, PVA-124and NH3-NH4Cl buffer (pH9.30) as the medium, a method has been developed for determining LVFX residues in chicken muscle, chicken liver, chicken manure, the concentrations in chicken serum and the content of LVFX in tablet and capsule. When the droplet volume is0.2μL, LVFX in the range of5.66xl0-14-1.00x10-13mol/ring can be detected, and the limit of detection (LOD) can reach5.66x10-15mol/ring (2.83x10-8mol/L). It is a viable method for the determination of LVFX in these samples with the recoveries of90.0-105.0%and RSDs0.8-4.0%. The results indicate that the method applied to chicken tissue, manure and serum is reliable and applicable.
     With Al3+and CTMAB as sensitizer, PVA-124and NH3-NH4Cl (pH9.60) as the medium, a simple and sensitive SOR technique was successfully developed to determination LMX. When the droplet volume is0.2μL, LMX in the range of9.87x10-14-1.47x10-12mol/ring can be detected, and the detection limit can reach9.87x10-15mol/ring (4.93x10-8mol/L). This developed methods was applied to determination LMX content in pharmaceutic preparation(tablet, capsule and injecta), concentrations in rabbit serum and residues in rabbit tissue, urine. It was proved to be a viable method for analysis of LMX in those samples with the recoveries90.6-106.3%and RSDs less than4.2%.
     The interaction of tosufloxacin tosylate (TSFX) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, UV-vis spectroscopy and FT-IR spectroscopy. The results indicated that the intrinsic fluorescence of BSA was quenched by TSFX through a static quenching mechanism, and the effective binding constants (Kα) were obtained to be2.58x104L/mol (298K) by means of the modified Stern-Volmer equation. Thermodynamic parameters showed that electrostatic interaction was mostly responsible for the binding of TSFX to BSA. The binding distance (r) between TSFX and Trp-212was determined to be3.90nm according to Foster non-radiative energy transfer theory. BSA had a single class of binding site at Sudlow'sites I in subdomain IIA for TSFX. The effects of TSFX on the conformation of BSA were analyzed by synchronous fluorescence spectra and three-dimensional fluorescence spectra, and the results exhibited that the hydrophobicity of tryptophan microenvironment was decreased. In FT-IR spectra, Fourier self-deconvolution, secondary derivative and the curve-fitting process were carried out to obtain the components of BSA secondary structure. At298K when the molar ratio of TSFX to BSA changed from0:1to10:1, the a-helix decreased from48.5%to38.6%, β-sheet changed from23.3%to18.3%, while β-turn had an increase from15.3%to24.1%, random structure increased from12.9%to 19.0%. This indicated that TSFX induced unfolding of the polypeptides of BSA.
     The interaction of acetylisovaleryltylosin tartrate (ATLL) and bovine serum albumin (BSA) without or with Zn2+and Cu2+has been studied by fluorescence spectroscopy, FT-IR spectroscopy and UV-vis spectroscopy. The fluorescence of BSA was quenched by ATLL through a static quenching mechanism. The effective quenching constant (Ka) of ATLL to BSA decreased with Zn2+and increased with Cu2+. Thermodynamic parameters revealed that hydrogen bonds and hydrophobic forces played significant roles in the binding of ATLL to BSA. The polarity of tryptophan and tyrosine residues changed on addition of ATLL regardless with or without Zn2+and Cu2+. FT-IR spectra showed that ATLL changed a-helix and β-sheet of BSA into β-turn and random structure. And the adding of Zn2+and Cu2+further loosen the polypeptides of BSA. The UV-vis spectra indicated that the effects of Zn2+on ATLL binding to BSA may through a competition binding, and Cu2+possibly formed Cu2+-ATLL complex via metal ion bridge.
     The interaction of nitrofurazone (NF) and human serum albumin (HSA) has been studied by fluorescence spectroscopy, UV-vis spectroscopy, FT-IR spectroscopy and molecular modeling methods. The results showed that the fluorescence of HSA was quenched by NF in a static quenching mechanism. Thermodynamic parameters revealed that hydrogen bonds and van der Waals force played the major role during the interaction. The calculated binding distance (r) indicated that the non-radioactive energy transfer coming into being in the interaction between NF and Trp-214of HSA. HSA had a single class of binding site at Sudlow'sites I in subdomain IIA for NF, which was verified by the displacement experiment. The molecular modeling study further confirmed the specific binding sites of NF on HSA, such as the interaction between N11and Lue283; N14and Lue283, Ser287;07and Ser287; predominately through hydrogen bonds. Three-dimensional fluorescence spectra indicated that the polarity around the tryptophan residues decreased and the conformation of HSA changed after adding NF. FT-IR spectra showed that NF could induce the polypeptides of HSA unfolding because it changed α-helix and β-sheet into β-turn and random structure of HAS with the content of α-helix reducing froom54.2%to45.8%, β-sheet reducing froml8.5%to15.7%,β-turn increasing from21.7%to23.8%and random structure from5.6%to14.7%.
引文
[1]尤启冬.药物化学[M],第二版.北京:化学工业出版社,2008,335~429.
    [2]张苗苗.国内外兽用抗菌药耐药性管理研究[D].湖北:华中农业大学,2008.
    [3]方晓明,丁卓平.动物源食品兽药残留分析[M].北京:化学工业出版社,2008,1~10.
    [4]王东辉.抗菌药临床不合理应用分析[D].山东:山东大学,2008.
    [5]张庭征,徐立春,任秀苹.我国农产品国际竞争力现状分析[J].生态经济,2007,5:206~208.
    [6]周启星,王美娥,范飞.人工合成麝香的环境污染、生态行为与毒理效应研究进展[J].环境科学学报,2008,28:1~11.
    [7]段丽丽.磺胺二甲嘧啶及其主要代谢产物在砂质壤土中转归的研究[D].北京:中国农业大学,2005.
    [8]C.Y. Luo, X.L. Zou, Y.Q. Li, et al. Determination of flavonoids in propolis-rich functional foods by reversed phase high performance liquid chromatography with diode array detection[J]. Food Chem.,2011,127:314~320.
    [9]K.Z. Xie, L.F. Jia, Y.L. Yao, et al. Simultaneous determination of thiamphenicol, florfenicol and florfenicol amine in eggs by reversed-phase high-performance liquid chromatography with fluorescence detection[J]. J. Chromatogr. B,2011,879:2351-2354.
    [10]Y.B. Li, Z.J. Zhang, J.S. Li, et al. Simple, stable and sensitive electrogenerated chemiluminescence detector for high-performance liquid chromatography and its application in direct determination of multiple fluoroquinolone residues in milk[J]. Talanta,2011,84:690-695.
    [11]Y.Q. Zheng, Y.H. Liu, H.B. Guo, et al. Molecularly imprinted solid-phase extraction for determination of tilmicosin in feed using high performance liquid chromatography [J]. Anal. Chim. Acta,2011,690:269-274.
    [12]C.J. Liu, H. Wang, Y.B. Jiang, et al. Rapid and simultaneous determination of amoxicillin, penicillin G, and their major metabolites in bovine milk by ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. B,2011,879:533-540.
    [13]R.P. Lopes, R.C. Reyes, R. Romero-Gonzalez, et al. Development and validation of a multiclass method for the determination of veterinary drug residues in chicken by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Talanta,2012,89: 201-208.
    [14]M.M. Aguilera-Luiz, J.L. Martinez Vidal, R. Romero-Gonzalez, et al. Multiclass method for fast determination of veterinary drug residues in baby food by ultra-high-performance liquid chromatography-tandem mass spectrometry[J]. Food Chem.,2012,132:2171~2180.
    [15]T. Hu, T. Peng, X.J. Li, et al. Simultaneous determination of thirty non-steroidal anti-inflammatory drug residues in swine muscle by ultra-high-performance liquid chromatography with tandem mass spectrometry [J]. J. Chromatogr. A,2012,1219: 104-113.
    [16]R. Fernandez-Torres, M.A.B. Lopez, M.O. Consentino, et al. Enzymatic-microwave assisted extraction and high-performance liquid chromatography-mass spectrometry for the determination of selected veterinary antibiotics in fish and mussel samples[J]. J. Pharmaceut. Biomed. Anal., 2011,54: 1146~1156.
    [17]M. J. Gaugain, J.P. Abjean. Screening of quinolone resvidues in pig muscle by planar chromatography[J]. Chromatographia,1998,47:101~104.
    [18]W.H. Gao, G.P. Chen, Y.W. Chen, et al. Application of single drop liquid-liquid-liquid microextraction for the determination of fluoroquinolones in human urine by capillary electrophoresis[J]. J. Chromatogr. B,2011,879:291~295.
    [19]I.S. Ibarra, J.A. Rodriguez, J. M. Miranda, et al. Magnetic solid phase extraction based on phenyl silica adsorbent for the determination of tetracyclines in milk samples by capillary electrophoresis[J]. J. Chromatogr. A,2011,1218:2196~2202.
    [20]X.Z. Hu, M.L. Chen, Q. Gao, et al. Determination of benzimidazole residues in animal tissue samples by combination of magnetic solid-phase extraction with capillary zone electrophoresis[J]. Talanta,2012,89:335~341.
    [21]M.C.V. Mamani, J.A. Farfan, F.G.R. Reyes, et al. Use of experimental design and effective mobility calculations to develop a method for the determination of antimicrobials by capillary electrophoresis[J]. Talanta,2008,76: 1006~1014.
    [22]W. Sheng, X. Xia, K.Y. Wei, et al. Determination of marbofloxacin residues in beef and pork with an enzyme-linked immunosorbent assay[J]. J. Agric. Food Chem.,2009,57:5971~5975.
    [23]C.B. Zhao, W. Liu, H.L. Ling, et al. Preparation of anti-gatifloxacin antibody and development of an indirect competitive enzyme-linked immunosorbent assay for the detection of gatifloxacin residue in milk[J]. J. Agric. Food Chem.,2007,55:6879~6884.
    [24]S.X. Lu, Y.L. Zhang, J.T. Liu, et al. Preparation of anti-pefloxacin antibody and development of an indirect competitive enzyme-linked immunosorbent assay for detection of pefloxacin residue in chicken liver[J]. J. Agric. Food Chem.,2006,54:6995-7000.
    [25]A.C. Huet, C. Charlier, S.A. Tittlemier, et al. Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA)[J]. J. Agric. Food Chem.,2006,54: 2822~2827.
    [26]K. Vediappan, C. W. Lee. Electrochemical approaches for the determination of ranitidine drug reaction mechanism[J]. Curr. Appl. Phys.,2011,11:995~1000.
    [27]T.L. Lu, Y.C. Tsai. Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode[J]. Sensor. Actual. B,2011,153:439-444.
    [28]P.C, Damiani, A.J, Nepote, M, Bearzotti. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses:fluorescence determination of ciprofloxacin in human urine [J]. Anal Chem.,2004,76:2798~2806.
    [29]周丽霞,何定庚,何晓晓,等.基于二氧化硅荧光纳米颗粒与核酸染料SYBR Green I的双色显微成像技术用于E. coli O157:H7的检测[J].高等学校化学学报,2011,10:2274~2279.
    [30]J.F. Fernandez-Sanchez, A.S. Carretero, C. Cruces-Blanco, et al. The development of solid-surface fluorescence characterization of polycyclic aromatic hydrocarbons for potential screening tests in environmental samples [J]. Talanta,2003,60:287~293.
    [31]J.F. Li, J.Q. Li, S.M. Shuang, et al. Study of the luminescence behavior of seven quinolones on a paper substrate [J]. Anal. Chim. Acta.,2005,548:134~142.
    [32]X.Y. Sun, H. Chen, H. Gao, et al. Screening of tetracycline residues in fish muscles by CCD camera-based solid-surface fluorescence [J]. J. Agric. Food Chem.,2006,54:9687~9695.
    [33]Y. Fujiwara, Y. Amao. An oxygen sensor based on the fluorescence quenching of pyrene chemisorbed layer onto alumina plates [J]. Sensor. Actuat. B,2003,89:187~191.
    [34]X.L. Li, G.W. Yang. Growth mechanisms of quantum ring self-assembly upon droplet epitaxy [J]. J. Phys. Chem. C.,2008,112:7693~7697.
    [35]M.C. Lensen, K. Takazawa, A.A. Johannes, et al. Aided self-assembly of porphyrin nanoaggregates into ring-shaped architectures [J]. Chem.Eur. J.,2004,10:831~839.
    [36]R.D. Deegan, O. Bakajin, T.F. Dupont, et al. Capillary flow as the cause of ring stains from dried liquid drops [J]. Nature,1997,389: 827~829.
    [37]G.M. Whitesides, B. Grzybowski. Self-assembly at all scales[J]. Science,2002,295:2418~2421.
    [38]S. Motavas, B. Omrane, C. Papadopoulos. Large-area patterning of carbon nanotube ring arrays[J]. Langmuir,2009,25:4655~4658.
    [39]S. Fujii, K. Kanaizuka, S. Toyabe, et al. Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface[J]. Langmuir,2011,27: 8605-8610.
    [40]L. Shmuylovich, A. Q. Shen, H. A. Stone. Surface morphology of drying latex films:multiple ring formation[J]. Langmuir,2002,18:3441~3445.
    [41]H. M. Gorr, J. M. Zueger, J. A. Barnard. Lysozyme pattern formation in evaporating drops[J]. Langmuir,2012,28:4039-4042.
    [42]C.H. Chon, S. Paik, J.B. Tipton, et al. Effect of nanoparticle sizes and number densities on the evaporation and dryout characteristics for strongly pinned nanofluid droplets[J]. Langmuir,2007, 23:2953~2960.
    [43]I.S. Choi, N. Bowden. Macroscopic, hierarchical, two-dimensional self-assembly [J]. Angew. Chem. Int. Ed.,1999,38:3078~3081.
    [44]J. Yin, Q. Guo, R.E. Palmer, et al. Supramolecular monolayer of zinc porphyrin trimmers on graphite [J]. J. Phys. Chem. B,2003,107:209~216.
    [45]A.P.H.J. Schenning, F.B.G Benneker, H.P.M. Geurts, et al. Porphyrin wheels [J]. J. Am. Chem. Soc.,1996,118:8549~8552.
    [46]R.D. Deegan. Pattern formation in drying dropsp[J]. Phys. Rev. E,2000,61:475~485.
    [47]A. Martin, A. Buguin, F.B. Wyart. Dewetting nucleation centers at soft interfaces [J]. Langmuir, 2001,17:6553~6559.
    [48]H. Hu, R.G. Larson.. Evaporation of a sessile droplet on a substrate [J]. J. Phys. Chem. B,2002, 106:1334~1344.
    [49]P. Mayer, H. J.V. Wouter, L.M Hermens. Absorption of hydrophobic compounds into the poly (dimethylsiloxane) coating of solid-phase microextraction fibers: High partion coefficients and fluorescence microscopy images [J]. Anal. Chem.,2000,72:459~464.
    [50]林丹樱,孙云旭,马万云,等.基于ICCD的快速荧光显微成像技术及在活细胞研究中的初步应用[J].光谱学与光谱分析,2006,26:917~921.
    [51]K. Yoon, S. Jeong, G Kwak. Three-dimensional fluorescence image patterning of network aliphatic polyester via microtransfer molding and thermal treatment [J]. Macromol. Rapid Commun.,2007,28:1231~1236.
    [52]A.R. Eric, N. Cavelier, D.W. Hollomon. Microscopic analysis of the effect of azoxystrobin treatment on mycosphaerella graminicola infection using green fluorescent protein (GFP)-expressing transformant [J]. Pest Manage. Sci.,2001,57:1017~1022.
    [53]K. Hirokazu, I. Naoko, C. Daniel, et al. Design and synthesis of highly sensitive and selective fluorescein-derived magnesium fluorescent probes and application to intracellular 3D Mg2+ imaging[J]. J. Am. Chem. Soc.,2004,126:16353-16360.
    [54]戴维德,王雷,刘凡光,等.超高灵敏度荧光显微成像技术对光敏剂细胞内分布的初步研究[J].激光生物学报,2003,12:435~439.
    [55]P.M. Nupam, L. Katrina, B. Gail. Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer[J]. Nat Biotechnol.,1998,16: 547-552.
    [56]王健,邹英华,佟小强,等.栓塞剂作用下肝微循环荧光显微成像及相关动物模型的建立[J].北京大学学报(医学版),2006,38:314~317.
    [57]顾瑛,戴维檐,刘凡光,等.应用超高灵敏度荧光显微成像及共聚焦显微成像观察光敏剂细胞内分布的对比研究[J].中国临床康复,2004,8:2773.
    [58]Y. Liu, C.Z. Huang, Y.F. Li. Fluorescence assay based on preconcentration by a self-ordered ring using berberine as a model analyte [J]. Anal.Chem.,2002,74:5564-5568.
    [59]刘颖.固载表面毛细流定向组装成环技术及其在生化药物分析中的应用研究[D].重庆:西南师范大学,2004.
    [60]张洪渊,万海清.生物化学[M],第二版.北京:化学工业出版社,2006.
    [61]S.Y. Bi, D.Q. Song, Y. Tian, et al. Molecular spectroscopic study on the interaction of tetracyclines with serum albumins[J]. Spectrochim. Acta A,2005,61:629-636.
    [62]S.Y. Bi, L.L. Yan, B.B. Wang, et al. Spectroscopic and voltammetric characterizations of the interaction of two local anesthetics with bovine serum albumin[J]. J. Lumin.,2011,131: 866-873.
    [63]唐江宏.有机小分子与人血清白蛋白的相互作用研究[D].兰州:兰州大学,2006.
    [64]A.S. Bani-Yaseen. Spectrofluorimetric study on the interaction between antimicrobial drug sulfamethazine and bovine serum albumin[J]. J. Lumin.,2011,131:1042-1047.
    [65]W.Y. He, H.J. Chen, F.L. Sheng, et al. Molecular modeling and spectroscopic studies on binding of 2,6-bis[4-(4-amino-2-trifluoromethylphenoxy)benzoyl] pyridine to human serum albumin[J]. Spectrochim. Acta A,2009,74:427~433.
    [66]F. Ding, J.L. Huang, J. Lin, et al. A study of the binding of C.I. mordant red 3 with bovine serum albumin using fluorescence spectroscopy[J]. Dyes Pigments,2009,82:65~70.
    [67]D. Ajloo, A.A. Moosavi-Movahedi, GH. Hakimelahi, et al. The effect of dodeeyl trimethytammoninm bromide on the formation of methemogtobins and hemichrome[J]. Colloid. Surface B,2002,26:185~196.
    [68]Y.C. Liu, W.X. He, W.H. Gao, et al. Binding of wogonin to human gammaglobulin[J]. Int. J. Biol. Macromol.,2005,37:1~11.
    [69]Y.M. Guo, Q.Y. Yue, B.Y. Gao, et al. Spectroscopic studies on the interaction between disperse blue SBL and bovine serum albumin[J]. J. Lumin.,2010,130:1384-1389.
    [70]X.R. Wang, X.Y. Xie, C.L. Ren, et al. Application of molecular modelling and spectroscopic approaches for investigating binding of vanillin to human serum albumin[J]. Food Chem.,2011, 127:705-710.
    [71]F.L. Cui, L.X. Qin, GS. Zhang, et al. Binding of daunorubicin to human serum albumin using molecular modeling and its analytical application[J]. Int. J. Biol. Macromol.,2008,42:221~228.
    [72]GK. Wang, D.C. Wang, X. Li, et al. Exploring the binding mechanism of dihydropyrimidinones to human serum albumin:Spectroscopic and molecular modeling techniques[J]. Colloid. Surface B,2011,84:272-279.
    [73]D.J. Li, B.M. Ji, H.R. Sun. Probing the binding of 8-Acetyl-7-hydroxycoumarin to human serum albumin by spectroscopic methods and molecular modeling[J]. Spectrochim. Acta A,2009,73: 35-40.
    [74]Q. Wang, Y.H. Zhang, H.J. Sun, et al. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method[J], J. Lumin., 2011,131:206~211.
    [75]F.L. Cui, X.D. Kong, L.X. Qin, et al. Specific interaction of 4-O-(a-1-cladinosyl) daunorubicin with human serum albumin:The binding site II on HSA molecular using spectroscopy and modeling[J]. J. Photoch. Photobio. B,2009,95:162-169.
    [76]J.H. Li, C.L. Ren, Y.H. Zhang, et al. Human serum albumin interaction with honokiol studied using optical spectroscopy and molecular modeling methods[J]. J. Mol. Struct.,2008,881: 90-96.
    [77]Y.Y. Yue, X.G Chen, J. Qin, et al. Characterization of interaction between C.I. Acid Green 1 and human serum albumin:Spectroscopic and molecular modeling method[J]. Dyes Pigments,2009, 83:148-154.
    [78]X.X. Zhou, Q. Yang, X.Y. Xie, et al. NMR, multi-spectroscopic and molecular modeling approach to investigate the complexes between C.I. Acid Orange 7 and human serum albumin in vitro[J]. Dyes Pigments,2012,92:1100~1107.
    [79]A. Martinez, J. Suarez, T. Shand, et al. Interactions of arene-Ru(II)-chloroquine complexes of known antimalarial and antitumor activity with human serum albumin (HSA) and transferrin[J]. J. Inorg. Biochem.,2011,105:39~45.
    [80]E. A. Enyedy, E. Farkas, O. Domotor, et al. Interaction of folic acid and some matrix metalloproteinase (MMP) inhibitor folate-γ-hydroxamate derivatives with Zn(II) and human serum albumin[J]. J. Inorg. Biochem.,2011,105:444-453.
    [81]S.H. Cao a, X.Y. Jiang, J.W. Chen. Effect of Zinc (II) on the interactions of bovine serum albumin with flavonols bearing different number of hydroxyl substituent on B-ring[J]. J. Inorg. Biochem., 2010,104:146-152.
    [82]刘敏,孙德志,林瑞森,等.人血清白蛋白与季铵盐双子表面活性剂的相互作用[J].化学学报,2007,65:123~128.
    [83]王靖,郭晨,梁向峰,等.傅里叶变换红外光谱对阴离子表面活性剂SDS与牛血清白蛋白相互作用的研究[J].2006,26:1598~1600.
    [84]胡晓环,童威,邵爽,等.等温滴定量热法研究牛血清白蛋白与十二烷基二羟乙基甲基溴化铵的相互作用[J].2011,38:525~529.
    [85]Z.L. Yu, D.J. Li, B.M. Ji, et al. Characterization of the binding of nevadensin to bovine serum albumin by optical spectroscopic technique[J]. J. Mol. Struct.,2008,889:422~428.
    [86]X.J. Guo, X.W. Han, J. Tong, et al. The investigation of the interaction between piracetam and bovine serum albumin by spectroscopic methods[J]. J. Mol. Struct.,2010,966:129-135.
    [87]Y.P. Zhang, S.Y. Shi, K.L. Huang, et al. Effect of Cu2+ and Fe3+ for drugdelivery:Decreased binding affinity of ilaprazole to bovine serum albumin[J]. J. Lumin.,2011,131:1927-1931.
    [88]D.J. Li, M. Zhu, C. Xu, et al. Characterization of the baicaleinebovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches [J]. Eur. J. Med. Chem.,2011,46: 588~599.
    [89]D.J. Li, M. Zhu, Chen Xu, et al. The effect of Cu2+ or Fe3+ on the noncovalent binding of rutin with bovine serum albumin by spectroscopic analysis[J]. Spectrochim. Acta A,2011,78:74~79.
    [90]J.H. Tang, N. Lian, X.H. He, et al. Investigation of the interaction between sophoricoside and human serum albumin by optical spectroscopy and molecular modeling methods[J]. J. Mol. Struct.,2008,889:408-414.
    [91]P. Bourassa, S. Dubeau, G.M. Maharvi, et al. Binding of antitumor tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen to human serum albumin[J]. Biochimie,2011,93: 1089~1101.
    [92]X.M. Zhou, Y.Y. Yue, Q.Yang, et al. Complexes between C.I. Acid Orange 6 and human serum albumin, a multi-spectroscopic approach to investigate the binding behavior[J]. J. Lumin.,2011, 131:1222~1228.
    [93]P. Bourassa, I. Hasni, H.A. Tajmir-Riahi, et al. Folic acid complexes with human and bovine serum albumins[J]. Food Chem.,2011,129:1148-1155.
    [94]P. Bourassa, S. Dubeau, GM. Maharvi, et al. Locating the binding sites of anticancer tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen on bovine serum albumin[J]. Eur. J. Med. Chem.,2011,46:4344~4353.
    [95]B. Sandhya, A.H. Hegde, S.S. Kalanur, et al. Interaction of triprolidine hydrochloride with serum albumins:Thermodynamic and binding characteristics, and influence of site probes [J]. J. Pharmaceut. Biomed. Anal.,2011,54:1180~1186.
    [96]余瑞元.生物化学[M].北京:北京大学出版社,2007.
    [97]D. Wu, Q. Wei, Y. Li, et al. Quenching of the intrinsic fluorescence of bovine serum albumin by phenylfluorone-Mo(VI) complex as a probe[J]. Int. J. Biol. Macromol.,2005,37:69~72.
    [98]P.N. Naik, S.A. Chimatadar, S.T. Nandibewoor. Interaction between a potent corticosteroid drug-dexamethasone with bovine serum albumin and human serum albumin: A fluorescence quenching and fourier transformation infrared spectroscopy study[J]. J. Photoch. Photobio. B, 2010,100:147~159.
    [99]A. Samanta, B. K.r Paul, N. Guchhait. Spectroscopic probe analysis for exploring probe-rotein interaction: A mapping of native, unfolding and refolding of protein bovine serum albumin by extrinsic fluorescence probe[J]. Biophys. Chem.,2011,156:128~139.
    [100]G.W. Zhang, A.P. Wang, T. Jiang, et al. Interaction of the irisflorentin with bovine serum albumin: A fluorescence quenching study[J]. J. Mol. Struct.,2008,891:93~97.
    [101]许金钩,王尊本.荧光分析法[M],第三版.北京:科学出版社,2006.
    [102]张晓威,赵凤林,李克安.环丙沙星与牛血清白蛋白相互作用的研究[J].高等学校化学学报,1999,20:1063~1067.
    [103]T.H. Wang, Z.M. Zhao, B.Z. Wei, et al. Spectroscopic investigations on the binding of dibazol to bovine serum albumin[J]. J. Mol. Struct.,2010,970:128-133.
    [104]Y.J. Hu, Y. Liu, X.H. Xiao. Investigation of the interaction between berberine and human serum albumin[J]. Biomacromolecules,2009,10:517~521.
    [105]F.F. Tian, F.L. Jiang, X.L. Han, et al. Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods[J]. J. Phys. Chem. B,2010,114:14842-14853.
    [106]黄锐,夏之宁,龚萍.血清白蛋白与小分子化合物相互作用的荧光光谱研究[J].光谱学与光谱分析,2008,28:161~164.
    [107]谭韬,黄锐,夏之宁.改进荧光光谱法研究药物与血清白蛋白的相互作用[J].分析化学,2007,35:1415~1420.
    [108]李东辉,彭兴跃,叶东,等.荧光各向异性法研究酸度对四磺基铝酞菁与牛血清白蛋白相互作用的影响[J].高等学校化学学报,1999,20:1218~1220.
    [109]D.J. Li, Y. Wang, J.J. Chen, et al. Characterization of the interaction between farrerol and bovine serum albumin by fluorescence and circular dichroism[J]. Spectrochim. Acta A,2011,79: 680~686.
    [110]Y.Z. Zhang, B. Zhou, X.P. Zhang, et al. Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods[J]. J. Hazard. Mater.,2009,163:1345-1352.
    [111]X.C. Zhao, R.T. Liu, Y. Teng, et al. The interaction between Ag+ and bovine serum albumin:A spectroscopic investigation[J]. Sci. Total Environ.,2011,409:892-897.
    [112]Z.Y. Li, D. Abramavicius, W. Zhuang, et al. Two-dimensional electronic correlation spectroscopy of the n-π* and π-π* protein backbone transitions: a simulation study[J]. Chem. Phys.,2007,341:29~36.
    [113]X.J. Guo, L. Zhang, X.D. Sun, et al. Spectroscopic studies on the interaction between sodium ozagrel and bovine serum albumin[J]. J. Mol. Struct.,2009,928:114~120.
    [114]迟燕华,庄稼,李娜,等.锌试剂与牛血清白蛋白作用机理的研究[J].高等学校化学学报,1999,20:1697~1702.
    [115]J.N. Tian, J.Q. Liu, W.Y. He. Probing the binding of scutellarin to human serum albumin by circular dichroism, fluorescence spectroscopy, FTIR, and molecular modeling method[J]. Biomacromolecules,2004,5:1956~1961.
    [116]S. Dubeau, P. Bourassa, T.J. Thomas. Biogenic and synthetic polyamines bind bovine serum albumin[J]. Biomacromolecules,2010,11:1507~1515.
    [117]刘媛,谢孟峡,康娟.三七总皂甙对牛血清白蛋白溶液构象的影响[J].化学学报,2003,61:1305~1310.
    [118]谢孟峡,徐晓云,王英典,等.4’,5,7-三羟基二氢黄酮与入血清白蛋白相互作用的光谱学研究[J].化学学报,2005,63:2055~2062.
    [119]M. Bardhan, J. Chowdhury, T. Ganguly. Investigations on the interactions of aurintricarboxylic acid with bovine serum albumin: Steady state/time resolved spectroscopic and docking studies[J]. J. Photoch. Photobio. B,2011,102:11~19.
    [120]Y.Y. Yue, X.G., Chen, J. Qin, et al. A study of the binding of C.I. direct yellow 9 to human serum albumin using optical spectroscopy and molecular modeling[J]. Dyes Pigments,2008,79: 176-182.
    [121]X.Y. Xie, Z.W. Wang, XM. Zhou, et al. Study on the interaction of phthalate esters to human serum albumin by steady-state and time-resolved fluorescence and circular dichroism spectroscopy[J]. J. Hazard. Mater.,2011,192:1291~1298.
    [122]黄谨,袁余洲,梁宏.荧光光谱及平衡透析研究磷钨杂多酸与HSA或BSA的结合平衡[J].中国科学(B辑),2001,31:530~534.
    [123]王芳斌,彭勇,范美意,等.谷胱甘肽-二茂铁的合成及其与牛血清白蛋白的相互作用[J].物理化学学报,2009,25(6):1125~1130.
    [124]A. Erol, D. Osman. Binding of fluoride, bromide and iodide to bovine serum albumin, studied with ion-selective electrodes[J]. Food Chem.,2004,84:539~543.
    [125]谢明一,郭振朋,陈义.纳米金与牛血清白蛋白作用的毛细管电泳研究[J].高等学校化学学报,2010,31:2162~2166.
    [126]张黎伟,张新祥.亲和毛细管电泳法和荧光法研究氟喹诺酮类药物与牛血清白蛋白的相互作用[J].高等学校化学学报,2008,29:694~699.
    [127]Y.H. Chu, J.K. Chen, G.M. Whltesides. Affinity electrophoresis in multisectional polyaerylamide slab gels is a useful and convenient technique for measuring binding constants of aryl sulfonamides to bovine carbonic anhydrase B[J]. Anal. Chem.,1993,65: 1314~1322.
    [128]Y.F. Cui, GY. Bai, C.G Li, et al. Analysis of competitive binding of ligands to human serum albumin using NMR relaxation measurements[J]. J. Pharm. Biomed. Anal.,2004,34:247~254.
    [129]M. Fasano, S. Baroni. Determination of ferric heme-human serum albumin by 1H NMR relaxometry[J], J. Inorg. Biochem.,2003,95:64~67.
    [130]E.L. Gelamo, M. Tabak. Spectroscopic studies of the interaction of bovine (BSA) and human (HSA)serum albumins with ionic surfactants [J]. Spectrochim. Acta A,2000,56: 2255~2271.
    [131]J. Shobini, A.K. Mishra, K. Sandhya, et al. Interaction of coumarin derivatives with human serum albumin:investigation by fluorescence spectroscopic technique and modeling studies [J]. Spectrochim. Acta A,2001,57:1133~1147.
    [132]P. Miskovsky, J. Hritz, S.S. Cortes, et al. Interaction of hypericin with serum albumins: sulface-enhanced raman spectroscopy, resonance raman spectroscopy and molecular modeling study[J]. J. Photoch. Photobiol.,2001,74:172~183.
    [133]Z.X. Chi, R.T. Liu, Y. Teng, et al. Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations [J]. J. Agric. Food Chem.,2010,58: 10262~10269.
    [134]M. Salvalaglio, I. Muscionico, C. Cavallotti. Determination of energies and sites of binding of PFOA and PFOS to human serum albumin[J]. J. Phys. Chem. B,2010,114:14860~14874.
    [135]G.K. Wang, X. Li, X.L. Ding, et al. Exploring the mechanism of interaction between 5-(ethoxycarbonyl)-6-methyl-4-(4-methoxyphenyl)-3,4-dihydropyrimi din-2(1 H)-one and human serum albumin:Spectroscopic, calorimetric and molecular modeling studies[J]. J. Pharmaceut. Biomed. Anal.,2011,55:1223~1226.
    [136]赵玉姣,丁劲松,周彦彬,等.人血浆中甲苯磺酸妥舒沙星的HPLC-荧光法测定及相对生物利用度[J].中国医药工业杂志,2010,41:444~446.
    [137]门日利.HPLC对甲苯磺酸妥舒沙星片含量的测定分析[J].中国现代药物应用,2009,3:161~162.
    [138]I.S. Nava-Junior, R.Q. Aucelio. Sequential determination of norfloxaxin and levofloxacin in the presence of other fluorquinolones using synchronous scanning room-temperature phosphorimetry and Th (IV) as the selective signal inducer[J]. Spectrochim. Acta A,2009,72: 429-435.
    [139]M.M. Santoro, N.M. Kassab, A.K. Singh, et al. Quantitative determination of gatifloxacin, levofloxacin, lomefloxacin and pefloxacin fluoroquinolonic antibiotics in pharmaceutical preparations by high performance liquid chromatography[J]. J. Pharmaceut. Biomed. Anal., 2006,40:179~184.
    [140]D.H. Bao, T.T. Truong, P. J. Renick, et al. Simultaneous determination of rifampicin and levofloxacin concentrations in catheter segments from a mouse model of a device-related infection by liquid chromatography/electrospray ionization tandem mass spectrometry[J]. J. Pharmaceut. Biomed. Anal.,2008,46:723~727.
    [141]A.A. Salem, H.A. Mossa, B.N. Barsoum, et al. Quantitative determinations of levofloxacin and rifampicin in pharmaceutical and urine samples using nuclear magnetic resonance spectroscopy [J]. Spectrochim. Acta A,2005,62:466~472.
    [142]S.T. Ulu. Rapid and sensitive spectrofluorimetric determination of enrofloxacin, levofloxacin and ofloxacin with 2,3,5,6-tetrachloro-p-benzoquinone[J]. Spectrochim. Acta A,2009,72: 1038~1042.
    [143]董学芝,胡卫平,张蕾.紫外光谱和同原射线计量分析法测定加替沙星和左氧氟沙星[J].分析化学,2009,37:146.
    [144]刘二包,卫洪清,韩素琴,等.化学发光法测定左氧氟沙星[J].光谱学与光谱学分析,2004,24:399~401.
    [145]W. Wei, H.J. Wang, C.Q. Jiang. Spectrofluorimetric determination of trace heparin using lomefloxacin-terbium probe[J]. Spectrochim. Acta A,2006,63:241~246.
    [146]S.L. Wei, J.S. Lin, H.F. Li, et al. Separation of seven fluoroquinolones by microemulsion electrokinetic chromatography and application to ciprofloxacin, lomefloxacin determination in urine[J]. J. Chromatogr. A,2007,1163:333~336.
    [147]范华均,翟海云,陈缵光,等.毛细管电泳法快速测定洛美沙星[J].中山大学学报(自然科学版),2005,44:49~52.
    [148]王裕宏.双波长分光光度法测定盐酸洛美沙星滴眼液的含量[J].医学信息(下旬刊),2009,1:242~243.
    [149]曾泳淮,高红艳.洛美沙星的示波极谱法测定及其电化学行为[J].分析测试学报,2001,20:38~41.
    [150]刘二保,卫洪清,韩素琴,等.化学发光法测定药物中的洛美沙星[J].分析化学,2004,32:902~904.
    [151]Y. Ito, K. Ishige, M. Aizawa, et al. Characterization of quinolone antibacterial-induced convulsions and increases in nuclear AP-1 DNA and CRE-binding activities in mouse brain[J]. Neuropharmacology,1999,38:717~723.
    [152]B.P. Kamat. Study of the interaction between fluoroquinolones and bovine serum albumin[J]. J. Pharmaceut. Biomed. Anal.,2005,39:1046~1050.
    [153]M. Xu, F.J. Chen, L. Huang, et al. Binding of rare earth metal complexes with an ofloxacin derivative to bovine serum albumin and its effect on the conformation of protein [J]. J. Lumin., 2011,131:1557~1565.
    [154]F. Tan, M. Guo, Q.S. Yu. Studies on interaction between gatifloxacin and human serum albumin as well as effect of copper(II) on the reaction[J]. Spectrochim. Acta A,2005,61:3006~3012.
    [155]R.F. Steiner, L. Weinry. Excited State of Protein and Nucleic Acid. Plenum Press, New York, 1971.
    [156]D.P. Ross, S. Subramanian. Thermodynamics of protein association reactions: forces contributing to stability[J]. Biochemistry,1981,20:3096~3102.
    [157]X.Y. Yu, R.H. Liu, F.X. Yang, et al. Study on the interaction between dihydromyricetin and bovine serum albumin by spectroscopic techniques[J]. J. Mol. Struct.,2011,985:407~412.
    [158]X.J. Guo, K. Jing, C. Guo, et al. The investigation of the interaction between oxybutynin hydrochloride and bovine serum albumin by spectroscopic methods[J]. J. Lumin.,2010,130: 2281~2287.
    [159]J.Q. Xi, L. Fan. Study on the binding of puerarin to bovine serum albumin by isothermal titration calorimetry and spectroscopic approaches [J]. J. Therm. Anal. Calorim.,2010,102: 217~223.
    [160]R. Cerda, M.A. Petruccelli, M. Piscopo, et al. Effect of the grapefruit juice on the oral absorption of acetylisovaleryltylosin tartrate(AIV)in 2 weeks old chickens[J]. J. vet. Pharmacol. Therap.,2006,27:277~278.
    [161]马德慧,徐兵,王平.大环内酯类抗生素-爱乐新研究综述[J].养殖与饲料,2003,10:35~37.
    [162]汪明,周建明,王轶难,等.乙酰异戊酰泰乐菌素酒石酸盐可溶性粉对鸡毒支原体的防治试验[J].中国兽医杂志,2003,1:11~13.
    [163]R.O. Cerda, G.I. Giaeoboni, J.A. Xavier, et al. In vitro antibiotic susceptibility of field isolates of mycoplasma synoviae in Argentina[J]. Avian Dis.,2002,46:215~218.
    [164]C. Kowalski, Z. Rolinski, R. Zan, et al. Pharmacokinetics of tylosin in broiler Chickens[J]. Pol. J. Vet. Sci.,2002,44:127~130.
    [165]杨克敌.微量元素与健康[M].北京:科学出版社,2003.
    [166]U. Katrahalli, S. Jaldappagari, S. Kalanur. Study of the interaction between fluoxetine hydrochloride and bovine serum albumin in the imitated physiological conditions by multi-spectroscopic methods [J]. J. Lumin.,2010,130:211~216.
    [167]Y. Qin, Y.X. Zhang, S.L. Yan, et al. A comparison study on the interaction of hyperoside and bovine serum albumin with tachiya model and Stern-Volmer equation[J]. Spectrochim. Acta A, 2010,75:1506~1510.
    [168]M.D. Lucaa, S. Masb, G.Ioele. Kinetic studies of nitrofurazone photodegradation by multivariate curve resolution applied to UV-spectral data[J]. Int. J. Pharm.,2010,386:99~107.
    [169]Y. Hiraku, A. Sekine, H. Nabeshi. Mechanism of carcinogenesis induced by a veterinary antimicrobial drug, nitrofurazone, via oxidative DNA damage and cell proliferation[J]. Int. J. Pharm.,2004,215:141~150.
    [170]K. Takegawa, K. Mitsumori, K. Yasuhara, et al. A mechanistic study of ovarian carcinogenesis induced by nitrofurazone using rasH2 mice[J]. Toxicol. Pathol.,2000,28:649-655.
    [171]E. Verdon, P. Couedor, P. Sanders. Multi-residue monitoring for the simultaneous determination of five nitrofurans (furazolidone, furaltadone, nitrofurazone, nitrofurantoine, nifursol) in poultry muscle tissue through the detection of their five major metabolites (AOZ, AMOZ, SEM, AHD, DNSAH) by liquid chromatography coupled to electrospray tandem mass spectrometry[J]. Anal. Chim. Acta,2007,586: 336-347.
    [172]J.V. Samsonova, A.J. Douglas, K.M. Cooper. The identification of potential alternative biomarkers of nitrofurazone abuse in animal derived food products[J]. Food Chem. Toxicol., 2008,46:1548~1554.
    [173]K. Itoa, S. Kajikawaa, A. Nii. Nitrofurazone-induced gene expressions in rat hepatocytes and their modification by N-acetylcysteine[J]. Exp. Toxicol. Pathol.,2005,56:333-339.
    [174]L. Zhou, J.Q. Li, X.F. Lin. Use of RAPD to detect DNA damage induced by nitrofurazone in marine ciliate, euplotes vannus (Protozoa, Ciliophora)[J]. Aquat. Toxicol.,2011,103:225-232.
    [175]Z.X. Chi, R.T. Liu. Phenotypic characterization of the binding of tetracycline to human serum albumin[J]. Biomacromolecules,2011,12:203~209.
    [176]R. Punith, U. Katrahalli, S. S. Kalanur. Mechanistic and conformational studies on the interaction of anti-inflammatory drugs, isoxicam and tenoxicam with bovine serum albumin[J]. J. Lumin.,2010,130:2052~2058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700