人乳脂替代品的制备及质量评价的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人乳脂是人乳中主要的营养物质之一,其棕榈酸主要分布在甘油三酯sn2位,这种特殊结构利于婴儿吸收脂肪酸和矿物质。由于各种因素制约,存在母乳喂养不足或缺乏喂养条件,据世界卫生组织统计结果显示,2005年我国6个月纯母乳喂养率尚不足50%。因此,在提倡母乳喂养的同时,需配方奶粉辅助喂养以满足婴儿的生长发育的需要。然而,传统婴儿配方奶粉中脂肪主要是以牛乳脂肪和植物油调配而成,其脂肪酸组成与人乳脂的相近,而其脂肪结构与人乳脂存在明显差异,这种差异对婴儿脂肪酸和矿质元素的吸收产生了一些负面影响。高品质婴儿配方奶粉日益增长的市场需求与其合格产品供给缺乏的矛盾情况下,开发与人乳脂结构相似的人乳脂替代品在中国具有重要的学术研究前景和市场应用潜力。目前,可提供人乳脂替代品产品的仅有荷兰Unilever公司和以色列AAK公司,其中最具有代表性的是由Unilever公司生产的产品BetapolTM。在2008年,中国卫生部批准OPO型人乳脂替代品添加于婴儿配方奶粉。随着食品安全法的深入贯彻和实施以及新的婴儿配方食品国家标准的执行,未来对OPO型人乳脂替代品的市场需求将不断增大。
     本课题首先对广州初乳和成熟乳脂的脂肪酸组成及其位置分布进行了测定,并在此基础上率先建立了一种评分模型。结果表明,成熟乳脂中油酸和棕榈酸的含量分别为36.96%和20.22%,人乳脂的主要结构为1,3二不饱和脂肪酸2棕榈酸甘油酯。以人乳脂的脂肪酸含量为基础数据,基于“扣分”原则建立了评分模型,并通过评价15种不同样品验证所建立的评分模型的有效性和可靠性。4个不同地域的人乳脂得分G≥98.69,5种配方奶粉中脂肪得分为49.28–78.18,大豆油和玉米油分数分别为26.20和30.01。脂肪样品分数越接近满分(100分),则其与人乳脂的脂肪酸组成及其位置分布情况就越相似。该模型可简单、快速直观地评价不同地域人乳脂之间、人乳脂与配方奶粉脂肪之间的相似度。
     在比较11例猪4个不同部位猪脂的脂肪酸组成及其位置分布的基础上,选用中国大宗资源猪板油为初始原料,对猪板油进行干法分提得到熔点较低的34L猪油,然后以sn1,3专一性脂肪酶Lipozyme RM IM为催化剂,与油茶籽油脂肪酸进行酸解反应制备OPO型人乳脂替代品。通过单因素试验,确定最优条件为:温度45℃,脂肪酸与34L猪油摩尔为4:1,反应时间6h,加酶量6%,34L猪油中油酸插入率达到了50%,棕榈酸的酰基转移水平较低(~1.25%)。在GC分析脂肪酸组成的基础上,建立了以“扣分”原则基础的评分模型,以评价或反映OPO人乳脂替代品的质量,样品分数越高说明油脂中含有OPO的含量就越高;采用几种具有代表性的样品应用到该模型中,并运用HPLC ELSD分析酸解产物中OPO含量,进一步验证了该模型的合理性及可行性。
     在OPO型人乳脂替代品制备的工艺优化基础上,考察了酶的重复使用稳定性。Lipozyme RM IM可使用至少14次,并进行40倍放大实验证明了本工艺适于产业化应用。采用分子蒸馏法对OPO型人乳脂替代品进行分离精制,研究了蒸馏温度对脱酸后OPO型人乳脂替代品纯度的影响。结果表明,在蒸馏温度180℃,可获得合格的OPO型人乳脂替代品,其纯度为91.39%,酸值和过氧化值均未检出,罗维朋色度为8.8(黄色值)和6.0(红色值)。精制的OPO型人乳脂替代品储存稳定性研究表明添加天然抗氧化剂VE能提高其氧化稳定性。
     为理性设计制备与人乳脂高相似度的人乳脂替代品,以酶法酸解三棕榈酸甘油酯与等摩尔混合脂肪酸为反应模型,研究了5种脂肪酶对不同碳链脂肪酸的选择性,并探讨了反应温度、底物摩尔比和反应时间对各个脂肪酸插入率的影响。结果表明,Novozym435对C12:0和C14:0具有最高的选择性。PPL对C8:0、C10:0和C12:0的偏好性高于C14:0、C18:1n9、C18:2n6和C18:3n3。Lipozyme TL IM和Lipozyme RM IM对C12:0、C14:0、C18:1n9和C18:2n6的插入率大于其他脂肪酸。Lipase PS IM对C10:0–C18:2n6具有较高的选择性。在研究的酸解条件下不同脂肪酶对各种脂肪酸呈现的酰基转移水平的大小依此为:Lipase PS IM      研制适于早产儿的特殊人乳脂替代品——1,3位中链脂肪酸2位长链不饱和脂肪酸甘油酯(MLM型甘油三酯),对提供早产儿配方奶粉的营养价值具有重要的作用。本研究以新型脂肪酶(CBD T1脂肪酶)为催化剂,首次研究了其底物特异性并探讨其催化大豆油和辛酸合成MLM型甘油酯的效果。结果表明CBD T1粗酶对C8:0的偏好性(α=1.0)最好,其次为C10:0(α=0.89),而其对C18:1n9的选择性(α=0.23)最弱。构建了T1脂肪酶结构模型,简要地探讨酶与底物之间的相互作用,进一步阐明了CBD T1酶的底物特异性。正己烷体系中在优化后的反应条件下(酶加量20%,C8:0和大豆油摩尔比3:1,初始加水量7.5%,反应温度50℃)酸解反应48h,C8:0插入率达到29.59%,酸解产物MML和MLL的百分含量为70.51%,表明了在油脂改性中采用该酶为催化剂是可行的。
Human milk fat (HMF) is one of the important nutrients in human milk. The uniquestructure of HMF, i.e., palmitic acid is mainly located at the sn2position of thetriacylglycerol backbone, is important for the absorption of fats and some minerals in infants.However, there is an inadequacy of breastfeeding or lack of feeding conditions greatly due tothe personal, domestic and social factors. According to World Health Organization statistics in2005, the rate of exclusive breastfeeding is less than50%for infants within6months in China.Thus, at the proposal of breastfeeding, increase of infant formula for diet is a good choice tomeet the growth and development needs of infants. Fatty acid composition of fat in thetraditional infant formula is close to that of human milk fat, but the fat structure issignificantly different from HMF’s, fatty acids and the absorption of mineral elements had anegative impact, which played negative roles in the absorption of fats and some minerals.With the contradiction of the demand and supply of the growing high quality infant formula,human milk fat substitutes (HMFS) as an important ingredient in the preparation of infantformula will be salable in China. Until now,Netherlands Unilever and Israel AAK are theonly two companies to provide human milk fat substitute products, and one of the mosttypical products is BetapolTMfrom Unilever. In2008, OPO type HMFS is allowed to add toinfant formula, which is approved by the Chinese Ministry of Health. With the deepimplementation of the Food Safety Law and relevant national standards of infant formula,market demand of HMFS will be increased in future.
     The study firstly fatty acid composition and distribution of HMF, from mothers overdifferent lactating periods in Guangzhou, China, were analyzed. The results showed that thecontent of oleic and palmitic acids in mature milk are36.96%and20.22%, respectively. Themain structure of HMF is1,3dioleoyl2palmitylglycerol. Based on the composition of thetotal and sn2fatty acids of mature milk fat, an efficient evaluation model was innovativelyestablished by adopting the “deducting score” principle. The model showed good agreementbetween the scores and the degree of similarity by assessing15samples from differentsources. Four samples of HMF got the highest score (G≥98.69), which referred to the highest degree of similarity, five samples of Infant formula had a lower degree of similarity (G=49.28–78.18).While corn oil and soybean oil had the least parallel with HMFS compared withother samples (G=26.20and30.01, respectively). The established evaluation model is simpleto evaluate the similarity of samples from different region and samples between HMF andHMFS.
     On the basis of the study of fatty acid composition and distribution of fat (n=11) fromfour different parts of pigs, inexpensive leaf lard was selected as raw material.34L leaf lardwith a low melting point obtained by dry fractionation of leaf lard was used as substrate foracidolysis catalyzed by Lipozyme RM IM. The OPO type human milk fat substitutes weresuccessfully produced under the optimal conditions: a substrate molar ratio of4:1(camelliaoil fatty acids/34L lard),6%(w/w) of enzyme loading, and6h of reaction time at45oC.Under the optimal parameters mentioned above, the incorporation of oleic acid was up to50%and the level of acyl migration was low (~1.25%). On the basis of gas chromatographydetermination and “deducting score” principle, a model was properly established forcharacterizing the quality of triacylglycerols enriched with1,3dioleoyl2palmitoylglycerol(OPO). This approach would be a valuable contribution in structured lipids industries becauseonly gas chromatography determination was involved.
     The reusability of Lipozyme RM IM was investigated, and the results showed that14batches were tested under the optimal conditions for the production of OPO type human milkfat substitutes. The scale up experiment, about40folds, of producing OPO type human milkfat substitutes were performed to verify the feasibility of the whole process at a larger scale.Furthermore, molecular distillation was employed for purification of OPO type human milkfat substitutes. The effect of evaporation temperature was investigated on the purity and theLovibond color of OPO type human milk fat substitutes. The optimal evaporation temperaturewas achieved at180oC. Purified OPO type human milk fat substitutes with a purity of91.39%and a Lovobond color of yellow and red values of8.8and6.0were acquired. Theacid value and peroxide value were not detected. The study of storage stability of purifiedOPO type human milk fat substitutes was carried out, and the results showed that the stabilityof the product was improved by adding natural antioxidant VE.
     To provide useful information for studies on the synthesis of human milk fat substitutes by lipase catalyzed acidolysis. Tripalmitin enriched triacylglycerols were reacted with amixture of equimolar quantities of fatty acids (C8:0C18:3n3). The chain length selectivityof five lipases was determined. The effects of the molar ratio, temperature and time onincorporation were also investigated. Novozym435acted strongly on C12:0and C14:0. ForPPL catalyzed acidolysis, incorporation degrees for C8:0, C10:0, and C12:0were foundmarkedly higher. For Lipozyme TL IM and Lipozyme RM IM, incorporation degrees forC12:0, C14:0, C18:1n9and C18:2n6were found higher. Lipase PS IM catalyzed weakly onC8:0and C18:3n3. On the basis of significantly different levels of acyl migration to the sn2position, lipases were in the order of lipase PS IM      MLM type triacylglycerols are very important ingredients for premature infant growthand mature of their brain. The typoselectivity of crude CBD T1lipase was firstly studied in amulti competitive acidolysis reaction. Besides, the possibility of using the lipase to synthesizeMLM type structure lipids was investigated. The crude CBD T1lipase discriminated stronglyagainst C18:1n9(α=0.23) and showed the highest preference for C8:0(α=1), followed byC10:0(α=0.83). A structural model was constructed to briefly explore interactions betweenthe lipase and its substrate. The optimum conditions were a molar ratio of3:1(C8:0/soybeanoil) in3mL hexane at a temperature of50°C, and a reaction time of48h in the presence ofcrude CBD T1lipase (20%, w/w substrates) and water content (7.5%, w/w enzyme). Underthese conditions, the incorporation of C8:0was29.59%, and the purity of MML and MLL inacidolysis products was70.51%, indicating that the use of the lipase in the modification offats and oils was possible.
引文
[1] Jensen R.G. The lipids in human milk [J]. Progress in Lipid Research,1996,35(1):53–92
    [2] Hamosh M., Bitman J., Wood D.L., et al. Lipids in milk and the first steps in theirdigestion [J]. Pediatrics,1984,75(1):146–150
    [3] Jensen R.G. Lipids in Human Milk [J]. Lipids,1999,34(12):1243–1271
    [4] López-López a., López-Sabater m.c., Campoy-Folgoso C., et al. Fatty acid and sn-2fattyacid composition in human milk from Granada (Spain) and in infant formulas [J].European Journal of Clinical Nutrition,2002,56(12):1242–1254
    [5] Wang Y.H., Mai Q.Y., Qin X.L., et al. Establishment of an evaluation model for humanmilk fat substitutes [J]. Journal of Agricultural and Food Chemistry,2010,58(1):642–649
    [6] Innis S.M., Dyer R. Nelson C.M. Evidence that palmitic acid is absorbed as sn-2monoacylglycerol from human milk by breast-fed infants [J]. Lipids,1994,29(8):541–545
    [7] Filer L.J.; Mattson F.H., Fomon, S.J. Triglyceride configuration and fat absorption by thehuman infant [J]. The Journal of Nutrition,1969,99(3):293–298
    [8] Thomson A.B.W., Keelan M., Garg M.L, et al. Intestinal aspects of lipid absorption:in review [J]. Canadian Journal of Physiology and Pharmacology,1989,67(3):179–191
    [9] Jensen R.G., Ferris A.M, Lammi-Keefe C.J. Lipids in human milk and infant formulas[J]. Annual Review of Nutrition,1992,12:417–441
    [10] Brink E.J., Haddeman E., de Fouw N.J., et al. Positional distribution of stearic acid andoleic acid in a triacylglycerol and dietary calcium concentration determines the apparentabsorption of these fatty acids in rats [J]. The Journal of Nutrition,1995,125(9):2379–2387
    [11]余章斌,韩树萍,朱春,等.配方奶添加棕榈油对婴儿营养吸收和排便影响的Meta分析[J].中华儿科杂志,2009,47(12):904–910
    [12] Businco L., Loppi M.,, Morse N.L., et al. Breast milk from mothers of children withnewly developed atopic eczema has low levels of long chain polyunsaturated fatty acids[J]. Journal of Allergy and Clinical Immunology,1993,91(6):1134–1139
    [13] Nelson C.M., Innis S.M. Plasma lipoprotein fatty acids are altered by the positionaldistribution of fatty acids in infant formula triacylglycerols and human milk [J]. TheAmerican Journal of Clinical Nutrition,1999,70(1):62–69
    [14] Innis S.M., Dyer R., Quiinlan P., et al. Palmitic acid is absorbed as sn-2monopalmitinfrom milk and formula with rearranged triacylglycerols and results in increased plasmatriglyceridesn-2and cholesteryl ester palmitate in piglets [J]. The Journal of Nutrition,1995,125:73–81
    [15]郑健仙.功能性食品(第三卷)[M].北京:中国轻工出版社,1999
    [16] Putnam J.C., Carlson S.E., Devoe P.W., eet al. The effect of variations in dietary fattyacids on the fatty acid composition of erythrocyte phosphatidylcholine andphosphatidylethanolamine in human infants [J]. The American Journal of ClinicalNutrition,1982,36(1):106–114
    [17] Boersma E.R., Offringa P.J., Muskiet F.A.J., et al. Vitamin E, lipid fractions, and fattyacid composition of colostrum, transitional milk, and mature milk: an internationalcomparative study [J]. The American Journal of Clinical Nutrition,1991,53(5):1197–1204
    [18]戚秋芬,吴圣楣.人乳中脂肪酸成分的研究[J].上海市儿科医学研究所,1997,13(2):103–105
    [19]戚秋芬.长链多价不饱和脂肪酸与婴儿营养(综述)[J].临床儿科杂志,1996,14(2):132–134
    [20] Neuringer M., Connor W.E. n-3Fatty acids in the brain and retina: evidence for theiressentiality [J]. Nutrition Reviews,2009,44(9):285–294
    [21] Makrides M., Simmer K., Goggin M., et al. Erythrocyte docosahexaenoic acid correlateswith the visual response of healthy, term infants [J]. Pediatric Research,1993,33:425–427
    [22]吴克刚,杨连生,柴向华.母乳中的多不饱和脂肪酸[J].中国乳品工业,2000,28(4):22–24
    [23] Simopoulos A.P. Human requirement for n-3polyunsaturated fatty acids [J]. PoultScience,2000,79(7):961–970
    [24] Straarup E.M., Lotte L., Faerk, J., et al. The stereospecific triacylglycerol structures andfatty acid profiles of human milk and infant formulas [J]. Journal of PediatricGastroenterology Nutrrition,2006,42(3):293–299
    [25] Carnielli V.P., Luijendijjjk I.H.T., Van Goudoever J.B., et al. Structural position andamount of palmitic acid in infant formulas effects on fat, fatty acid, and mineral balance[J]. Journal of Pediatric Gastroenterology Nutrition,1996,23(5):553–560
    [26] Lien E.L., Boyle F.G., Yuhas R., et al. The effect of triglyceride positional distributionon fatty acid absorption in rats [J]. Journal of Pediatric Gastroenterology Nutrition,1997,25(2):167–174
    [27] Quinlan P.T., Lockton S., Irwin J.; et al. The relationship between stool hardness andstool composition in breast-and formula-fed infants [J]. Journal of PediatricGastroenterology Nutrition,1995,20(1):81–90
    [28] Brady L., Brzozowski A.M., Derewenda Z.S, et al. A serine protease triad forms thecatalytic centre of a triacylglycerol lipase [J]. Nature,1990,343:767–770
    [29] Sahin N., Akoh C.C., Karaali A. Lipase-catalyzed acidolysis of tripalmitin with hazelnutoil fatty acids and stearic acid to produce human milk fat substitutes [J]. Journal ofAgricultural and Food Chemistry,2005,53(14):5779–5783
    [30] Sahin N., Akoh C.C., Karaali A. Enzymatic production of human milk fat substitutescontaining γ-linolenic acid: optimization of reactions by response surface methodology[J]. Journal of the American Oil Chemists Society,2005,82(8):549–557
    [31] Guncheva M., Zhiryakova D., Radchenkova N., et al. Properties of immobilized lipasefrom Bacillus stearothermophilus MC7. acidolysis of triolein with caprylic acid [J].world Journal of Microbiology and Biotechnology,2009,25(4):727–731
    [32] Robles A., Jiménz M.J., Esteban L, et al. Enzymatic production of human milk fatsubstitutes containing palmitic and docosahexaenoic acids at sn-2position and oleic acidat sn-1,3positions [J]. LWT-Food Science and Technology,2011,44(10):1986–1992
    [33] Yang T., Xu X., He C., et al. Lipase-catalyzed modification of lard to produce humanmilk fat substitutes [J]. Food Chemistry,2003,80(4):473–481
    [34]朱启思,唐家毅,周瑢,等.猪油酸解制备人乳脂替代品的研究[J].中国油脂,2009,34(2):39–42
    [35] Lee J.H., Son J.M., Akoh C.C., et al. Optimized synthesis of1,3-dioleoyl-2-palmitoylglycerol-rich triacylglycerol via interesterification catalyzed by alipase from Thermomyces lanuginosus [J]. New biotechnology,2010,27(1):38–45
    [36] Srivastava A., Akoh C.C., Chang S.W., et al. Candida rugosa lipase LIP1-catalyzedtransesterification to produce human milk fat substitute [J]. Journal of Agricultural andFood Chemistry,2006,54(14):5175–5181
    [37] Maduko C.O., Akoh C.C., Park Y.W. Enzymatic interesterification of tripalmitin withvegetable oil blends for formulation of caprine milk infant formula analogs [J]. Journalof Dairy Science,2007,90(2):594–601
    [38] Sharma R., Chisti Y., Banerjee U.C. Production, purification, characterization, andapplications of lipases [J]. Biotechnology Advances,2001,19(8):627–662
    [39] Gupta R., Gupta N., Rathi P. Bacterial lipases: an overview of production, purificationand biochemical properties [J]. Applied Microbiology and Biotechnology,2004,64(6):763–781
    [40] Snellman E.A., Colwell R.R. Acinetobacter lipases: molecular biology, biochemicalproperties and biotechnological potential [J]. Journal of Industrial Microbiology&Biotechnology,2004,31(9):391–400
    [41] Ollis D.L., Cheah E., Cygler M., et al. The alpha/beta hydrolase fold [J]. ProteinEngineering,1992,5(3):197–211
    [42] van Pouderoyen G., Eggert T., Jaeger K.-E., et al. The crystal structure of Bacillus subtililipase: a minimal α/β hydrolase fold enzyme [J]. Journal of Molecular Biology,2001,309(1):215–226
    [43] Pleiss J., Fischer M., Schmid R.D. Anatomy of lipase binding sites: the scissile fatty acidbinding site [J]. Chemistry and Physics of Lipids,1998,93(1-2):67–80
    [44] Mendes A.A., Oliverira P.C., de Castro H.F. Properties and biotechnological applicationsof porcine pancreatic lipase [J]. Journal of Molecular Catalysis B: Enzymatic,2012,78:119–134
    [45] Hamam F., Shahidi F. Acidolysis of tristearin with selected long-chain fatty acids [J].Journal of Agricultural and Food Chemistry,2007,55(5):1955–1960
    [46] Karabulut I., Durmaz G., Hayaloglu A.A. C18unsaturated fatty acid selectivity of lipasesduring the acidolysis reaction between tripalmitin and oleic, linoleic, and linolenic acids[J]. Journal of the American Oil Chemists' Society,2010,87(11):1301–1307
    [47] Small D.M. The effects of glyceride structure on absorption and metabolism [J]. AnnualReview of Nutrition,1991,11:413–434
    [48] Schmi R., Verger R.. Lipases: interfacial enzymes with attractiv e applications [J].Angewandte Chemie-international Edition,1998,37(12):1608–1633
    [49] Vallikivi I., Lille ü., Lookene A., et al. Lipase action on some non-triglyceride substrates[J]. Journal of Molecular Catalysis B: Enzymatic,2003,22(5-6):279–298
    [50] Dossat V., Combes D., Marty A. Efficient lipase catalysed production of a lubricant andsurfactant formulation using a continuous solvent-free process [J]. Journal ofBiotechnology,2002,97(2):117–124
    [51] Saxena R.K., Ghosh P.K., Gupta R., et al. Microbial lipases: potential biocatalysts for thefuture industry [J]. Current Science,1999,77(1):101–15
    [52] Rosu R., Yasui M., Iwasaki Y., et al. Enzymatic synthesis of symmetrical1,3-diacylglycerols by direct esterification of glycerol in solvent-free system [J]. Journalof the American Oil Chemists' Society,1999,76(7):839–843
    [53] Berger M., Laumen K., Schneider M.P. Enzymatic esterification of glycerol I.Lipase-catalyzed synthesis of regioisomerically pure1,3-sn-diacylglycerols [J]. Journalof the American Oil Chemists’ Society,1992,69(10):955–960
    [54] Clark R.M., Hundrieser K.E. A lack of correlation among fatty acids associated withdifferent lipid classes in human milk [J]. Lipids,1993,28(2):157–159
    [55]刘军海,任慧兰.食用油脱酸新方法研究进展[J].粮油与油脂,2008,(2):1–6
    [56] Rees G.J. Medium vacuum centrifugal molecular distillation in the isolation ofhigh-boiling and heat-sensitive compounds—I. Siloxanes [J]. Vacuum,1973,23(1):5–8
    [57]矫彩山,李凯峰.分子蒸馏技术及其在工业上的应用[J].应用科技,2002,29(10):56–59
    [58]李红,王爱辉,刘延奇.分子蒸馏在油脂工业中的应用[J].中国油脂,2008,33(10):57–60
    [59]曾凡逵,王永华,杨博,等.操作条件对分子蒸馏纯化不饱和单甘酯的影响[J].华南理工大学学报,2010,38(4):61–64
    [60]杨宏杰,冯风琴.分子蒸馏单月桂酸甘油脂的研制[J].食品工业科技,2004,5):110–112
    [61] Fregolente P.B.L, Pinto G.M.F., Wolf-Maria R.M., et al. Monoglyceride and diglycerideproduction through lipase-catalyzed glycerolysis and molecular distillation [J]. AppliedBiochemistry and Biotechnology,2010,80(7):1879–1887
    [62] Yamane T., Suzuki T., Sahashi Y., et al. Production of n-3polyunsaturated fattyacid-enriched fish oil by lipase-catalyzed acidolysis without solvent [J]. Journal of theAmerican Oil Chemists’ Society,1992,69(11):1104–1107
    [63]肖斌,朱雪莲.菜籽油馏出物中维生素E的分子蒸馏工艺研究[J].广州化工,2010,38(6):133–135
    [64] Nielsen N.S., Yang T., Xu X, et al. Production and oxidative stability of a human milkfat substitute produced from lard by enzyme technology in a pilot packed-bed reactor [J].Food Chemistry,2006,94(1):53–60
    [65] Xu X., Skands A., Adler-Nissen J. Purification of specific structured lipids bydistillation: effects on acyl migration [J]. Journal of the American Oil Chemists' Society,2001,78(7):715–718
    [66]耿莉.母乳喂养中的健康教育[J].中国自然医学杂志,2004,6(2):118–119
    [67]姜峥,王丽珍.婴儿配方奶粉[J].食品与药品,2006,8(10):72–76
    [68] O'Shea M., Gerritsen J. Clinical benefits of a structured lipid (BetapolTM) in infantformula in Handbook of functional lipids [M]. New York: CRC Press.2006:261–278
    [69]何川,杨天奎.酶法猪油改性制人乳脂替代品的研究[J].中国油脂,2003,28(1):41–43
    [70] Pons S.M., Bargalló C.A.I., Sabater L.M.C. Analysis of human milk triacylglycerols byhigh-performance liquid chromatography with light-scattering detection [J]. JChromatography,1998,823(1-2):475–482
    [71] ISO5509:2000(E) I. Animal and vegetable fats and oils—Preparation of methyl esters offatty acids [S]. Switzerland,2000
    [72] Hunter J.E. Studies on effects of dietary fatty acids as related to their position ontriglycerides [J]. Lipids,2001,36(7):655–668
    [73] Barbas C., Herrera E. Lipid composition and vitamin E content in human colostrum andmature milk [J]. Journal of Physiology and Biochemistry,1998,54(3):167–174
    [74] Hen Z.Y., Kwan K.Y., Tong K.K., et al. Breast milk fatty acid composition: acomparative study between hong kong and chongqing chinese [J]. Lipids,1997,32(10):1061–1067
    [75] Silva M.H.L., Silva M.T.C., Brand o S.C.C., et al. Fatty acid composition of maturebreast milk in Brazilian women [J]. Food Chemistry,2005,93(2):297–303
    [76] Rueda R., Ramírez M., García-Salmeíon J.L., et al. Gestational age and origin of humanmilk influence total lipid and fatty acid contents [J]. Annals of Nutrition and Metabolism,1998,42(1):12–22
    [77] Genzel-Boroviczény O., Wahle J., Koletzko B. Fatty acid composition of human milkduring the1st month after term and preterm delivery [J]. European Journal of Pediatrics,1997,156(2):142–147
    [78] Li J., Fan Y., Zhang Z., et al. Evaluating the trans fatty acid, CLA, PUFA and erucic aciddiversity in human milk from five regions in China [J]. Lipids,2009,44(3):257–271
    [79] Sala-Vila A., Castellote A.I., Rodriguez-Palmero M., et al. Lipid composition in humanbreast milk from Granada (Spain): changes during lactation [J]. Nutrition,2005,21(4):467–473
    [80] Tautorus C.L., Mccurdy A.R. Effect of randomization on oxidative stability of vegetableoils at two different temperatures [J]. Journal of the American Oil Chemists' Society,1990,67(8):525–530
    [81] Renaud S.C., Ruf J.C., Petithory D. The positional distribution of fatty acids in palm oiland lard influences their biologic effects in rats [J]. The Journal of Nutrition1995,125(2):229–237
    [82]吴苏喜,季敏,吴文民.棕榈油与猪油在组成结构和功能特性上的比较[J].中国油脂,2009,34(12):39–44
    [83]王志成,胡芳,韦富香,等.猪板油直接萃取制备生物柴油的研究[J].应用化工,2009,38(3):345–348
    [84] Wanasundara U.N., Shahidi F. Concentration of omega3-polyunsaturated fatty acids ofseal blubber oil by urea complexation: optimization of reaction conditions [J]. FoodChemistry,1999,65(1):41–49
    [85] Yankah V.V., Akoh C.C. Lipase-catalyzed acidolysis of tristearin with oleic or caprylicacids to produce structured lipids [J]. Journal of the American Oil Chemists' Society,2000,77(5):495–500
    [86] Karabulut I., Durmaz G., Hayaloglu A.A. Fatty acid selectivity of lipases duringacidolysis reaction between oleic acid and monoacid triacylglycerols [J]. Journal ofAgricultural and Food Chemistry,2009,57(21):10466–1047
    [87] Mu H., Kurvinen J.-P., Kallio H., et al. Quantitation of acyl migration duringlipase-catalyzed acidolysis, and of the regioisomers of structured triacylglycerols formed[J]. Journal of the American Oil Chemists' Society,2001,78(9):959–964
    [88] Neff W.E., Byrdwell W.C. Soybean oil triacylglycerol analysis by reversed-phasehigh-performance liquid chromatography coupled with atmospheric pressure chemicalionization mass spectrometry [J]. Journal of the American Oil Chemists' Society,1995,72(10):1185–1191
    [89] Opiteck G.J., Ramirez S.M., Jorgenson J.W., et al. Comprehensive two-dimensionalhigh-performance liquid chromatography for the isolation of overexpressed proteins andproteome mapping [J]. Analytical Biochemistry,1998,258(2):349–361
    [90] Chen M.-L., Vali S.R., Lin J.-Y., et al. Synthesis of the structured lipid1,3-dioleoyl-2-palmitoylglycerol from palm oil [J]. Journal of the American Oil Chemists'Society,2004,81(6):525–532
    [91]李巧玲.分子蒸馏技术及在食品工业中的应用[J].中国食品添加剂,2004,4:94–97
    [92]卢炜亮.固定化脂肪酶促酯交换反应制备低能量可可脂的研究[D].广州:华南理工大学,2012
    [93] AOCS. Cd19-90.2-Thiobarbituric Acid Value [S]. Champaingn: The American OilChemists' Society,2009
    [94] Kim H.S., Kim H.Y., Kwak H.S. Cholesterol removal from lard with crosslinkedbeta-cyclodextrin [J]. Asian-Australasian Journal of Animal Sciences,2007,20(9):1468–1472
    [95] Cvengro J., Micov M., Luti an J. Modelling of fractionation in a molecular evaporatorwith divided condenser [J]. Chemical Engineering and Processing: ProcessIntensification,2000,39(3):191–199
    [96] Kawala Z., Dakiniewicz P. Influence of evaporation space geometry on rate ofdistillation in high-vacuum evaporator [J]. Separation Science and Technology,2002,37(8):1877–1895
    [97] Martinello M., Hecker G., Pramparo M.D.C. Grape seed oil deacidification by moleculardistillation: analysis of operative variables influence using the response surfacemethodology [J]. Journal Food Engineering,2007,81(1):60–64
    [98]王建中.分子蒸馏技术在游离TDI分离上的应用[J].中国涂料,2003,(5):42–44
    [99]卢艳杰.油脂检测技术[M].北京:化工工业出版社,2003:138–140
    [100]王淑霞.如何提高母乳喂养率[J].中国医药论坛,2005,3(8):64–65
    [101] Isaacs E.B., Fischl B.R., Quinn B.T., et al. Impact of breast milk on intelligencequotient, brain size, and white matter development [J]. Pediatric Research,2010,67(4):357–362
    [102] Harit D., Faridi M.M.a., Aggarwal A., et al. Lipid profile of term infants on exclusivebreastfeeding and mixed feeding: a comparative study [J]. European Journal of ClinicalNutrition,2008,62(2):203–209
    [103] Lanzani A., Bondioli P., Mariani C., et al. A new short-path distillation system appliedto the reduction of cholesterol in butter and lard [J]. Journal of the American OilChemists’ Society,1994,71(6):609–614
    [104] Nagao T., Shimada Y., Sugihara A., et al. Use of thermostable Fusarium heterosporumlipase for production of structured lipid containing oleic and palmitic acids in organicsolvent-free system [J]. Journal of the American Oil Chemists' Society,2001,78(2):167–172
    [105] Yang J.G., Wang Y.H, Yang B., et al. Degumming of vegetable oil by a new microbiallipase [J]. Food Technology and Biotechnology,2006,44(1):101–104
    [106] Son J.M., Lee K.T., Akoh C.C., et al. Optimisation of tripalmitin-rich fractionationfrom palm stearin by response surface methodology [J]. Journal of the Science of Foodand Agriculture,2010,90(9):1520–1526
    [107] Sandoval G., Marty A. Screening methods for synthetic activity of lipases [J]. Enzymeand Microbial Technology,2007,40(3):390–393
    [108] Wu X.Y., J skel inen S., Linko Y.-Y. An investigation of crude lipases for hydrolysis,esterification, and transesterification [J]. Enzyme and Microbial Technology,1996,19(3):226–231
    [109] Hamam F., Shahidi F. Incorporation of selected long-chain fatty acids into trilinoleinand trilinolenin [J]. Food Chemistry,2008,106(1):33–39
    [110] Vaysse L., Ly A., Moulin G., et al. Chain-length selectivity of various lipases duringhydrolysis, esterification and alcoholysis in biphasic aqueous medium [J]. EnzymeMicrobial Technology,2002,31(5):648–655
    [111] Kim I.H., Yoon C.-S., Cho S.-H., et al. Lipase-catalyzed incorporation of conjugatedlinoleic acid into tricaprylin [J]. Journal of the American Oil Chemists' Society,2001,78(5):547–551
    [112] Xu X., Skands A.R.H., H y C.-E., et al. Production of specific-structured lipids byenzymatic interesterification: elucidation of acyl migration by response surface design[J]. Journal of the American Oil Chemists' Society,1998,75(12):1179–1186
    [113] Xu X., Mu H., Skands A.R.H., et al. Parameters affecting diacylglycerol formationduring the production of specific-structured lipids by lipase-catalyzed interesterification[J]. Journal of the American Oil Chemists' Society,1999,76(2):175–181
    [114] Singhal A., Cole T.J., Lucas A. Early nutrition in preterm infants and later bloodpressure: two cohorts after randomised trials [J]. The Lancet,2001,357(9254):413–419
    [115]王丹华.早产儿喂养[J].中国新生儿科杂志,2006,21(5):317–319
    [116] Roy C.C., Marie M.S., Chartrand L., et al. Correction of the malabsorption of thepreterm infant with a medium-chain triglyceride formula [J]. The Journal of Pediatrics,1975,86(3):446–450
    [117] Pettei M.J., Daftary S., Levine J.J. Essential fatty acid deficiency associated with theuse of a medium-chain-triglyceride infant formula in pediatric hepatobiliary disease [J].American Journal of Clinical Nutrition,1991,53(5):1217–1221
    [118] Iwasaki Y., Yamane T. Enzymatic synthesis of structured lipids [J]. Journal ofMolecular Catalysis B: Enzymatic,2000,10(1-3):129–140
    [119] Lan D., Tai Y., Shen Y., et al. Efficient purification of native recombinant proteinsusing proteases immobilized on cellulose [J]. Journal of Bioscience and Bioengineering,2012,113(4):542–544
    [120] Yang J.-G., W Y.-H., Yang B., et al. Degumming of vegetable oil by a new microbiallipase [J]. Food Technol Biotechnol,2006,44(1):101–104
    [121] Rangheard M.S., Langrand G., Triantaphylides C., et al. Multi-competitive enzymaticreactions in organic media: a simple test for the determination of lipase fatty acidspecificity [J]. Biochimica et Biophysica Acta,1989,1004(1):20–28
    [122] Carrasco-López C., Godoy C., De Las Rivas B., et al. Activation of bacterialthermoalkalophilic lipases is spurred by dramatic structural rearrangements [J]. Journalof Biological Chemistry,2009,284(7):4365–4372
    [123] Hussack G., Grohs B.M., Almquist K.C., et al. Purification of plant-derived antibodiesthrough direct immobilization of affinity ligands on cellulose [J]. Journal of Agriculturaland Food Chemistry,2010,58(6):3451–3459
    [124] Lu L., Xu S., Zhao R., et al. Synthesis of galactooligosaccharides by CBD fusionbeta-galactosidase immobilized on cellulose [J]. Bioresourource Technology,2012,116:327–333
    [125] Fu X., Parkin K.L. Selectivity of fatty acid incorporation into acylglycerols inesterification reactions using Rhizomucor miehei and Burkholderia cepacia lipases [J].Food Research International,2004,37(7):651–657
    [126] Qin X.L., Yang B., Huang H.H., et al. Lipase-catalyzed incorporation of different Fattyacids into tripalmitin-enriched triacylglycerols: effect of reaction parameters [J]. Journalof Agricultural and Food Chemistry,2012,60(9):2377–2384
    [127] Matsumura H., Yamamoto T., Leow T.C., et al. Novel cation-π interaction revealed bycrystal structure of thermoalkalophilic lipase [J]. Proteins,2008,70(2):592–598
    [128] Lawson D.M., Brzozowski A.M., Rety S,, et al. Probing the nature of substrate bindingin Humicola lanuginosa lipase through X-ray crystallography and intuitive modelling [J].Protein Engineering,1994,7(4):543–550
    [129] Xu Y., Guo S., Wang W., et al. Enzymatic hydrolysis of palm stearin to producediacylglycerol with a highly thermostable lipase [J]. European Journal of Lipid Scienceand Technology,2013,115(5):564–570
    [130] Turan S., Karabulut I., Vural H. Effects of reaction parameters on the incorporation ofcaprylic acid into soybean oil for production of structured lipids [J]. Journal of FoodLipids,2006,13(3):306–317
    [131] Kim I.H., Kim H., Lee K.T., et al. Lipase-catalyzed acidolysis of perilla oil withcaprylic acid to produce structured lipids [J]. Journal of the American Oil Chemists'Society,2002,79(4):363–367
    [132] Nunes P.A., Pires-Cabral P., Ferreira-Dias S. Production of olive oil enriched withmedium chain fatty acids catalysed by commercial immobilised lipases [J]. FoodChemistry,2011,127(3):993–999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700