轿车扁平化液力变矩器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合浙江省科技厅重大科技专项项目“轿车扁平化液力变矩器研制”(2008C01036-4),基于三维流动理论及计算流体动力学(CFD)对轿车扁平化液力变矩器相关问题进行深入研究,在研究过程中定义更能反应整个循环圆形状变化的扁平率,设计环量变化更为合理的叶轮叶片,计算扁平变矩器性能,分析扁平率对扁平变矩器性能影响规律,提出扁平变矩器性能优化方法,目的是设计出性能优良、更好的满足车辆性能要求的扁平化液力变矩器。主要研究内容如下。
     1.提出新的扁平率定义和基于椭圆的扁平率循环圆设计方法,设计过流面积变化更为合理的不同扁平率的液力变矩器循环圆。针对不同叶轮叶片采用不同的二次函数环量分配规律进行设计,以得到叶形更为合理的不同扁平率的变矩器叶片。
     2.研究多流动区域耦合算法,主要有多运动参考系法、混合平面法和滑动网格法。针对液力变矩器多叶轮共同工作的特点,选择滑动网格法对轿车扁平液力变矩器瞬态复杂流场进行数值模拟。研究基于变矩器内流场数值解预测其性能的计算方法,并对变矩器进行台架实验,将计算得到的原始特性与实验结果进行了对比分析。
     3.深入分析不同扁平率液力变矩器内部流动结构及流场特性,研究不同扁平率下流场变化情况,对其流动结构和一些流动现象的成因进行分析。
     4.计算不同扁平率液力变矩器外特性和原始特性,分析不同扁平率下原始特性变化情况,总结扁平率变化对性能的影响规律。通过将泵轮叶片沿旋转方向由内环向外环倾斜的方法优化扁平液力变矩器性能,设计出性能满足车辆燃油经济性与动力性要求的扁平液力变矩器。
The hydrodynamic torque converter is a kind of turbo machine which is widely used in today's automatic transmissions for passenger cars. Its functions include damping of engine torque fluctuation, damping of noise and vibration in the drive line, and automatic amplification of torque according to the difference in rotational speed between the input and output shafts without requiring any external control. It also has great impact on the dynamical and fuel economy of passenger cars. Although the torque converter has existed for a century, there have been tremendous changes in the most recent decade. It has undergone continuous refinement through the years that have paralleled the development of the automobile, and these improvements continue. Most passenger cars with small and medium displacement engines have adopted a front-wheel-drive layout in recent years. Torque converters accordingly have been designed with an increasingly narrower profile for the purpose of achieving a smaller axial size, which also translates into weight savings. The research on the flat torque converter for the passenger car has been carried out early in abroad, but related research is in the blank in domestic. In this paper, the modern design method of the flat torque converter has been carried out for the purpose of developing better performance flat torque converter which could meet or exceed similar foreign products.
     1. Design of the flat torque converter
     The shell is first determined in tradition design method of circulatory circle, and then, core and middle flow line are found out by means of flow section area. Using tradition design method often need modify several times to obtain satisfactory results. Tradition flatness ratio of the circulatory circle is defined as the ratio of the width to effective diameter that causes the change of the flatness ratio can’t completely reflect the change of the whole circulatory circle. To dissolve above two problems, considering the development of the CNC machining technology, the bran-new flat circulatory circle design method is put forward, and the shape is ellipse. Flatness ratio is defined as the ratio of short axial to length axial. So the better flat circulatory circle can be designed. By compared result of the new method with actual result, both of them have close magnitude and well agreement with. It shows that the new method is more correct and effective. The new method can be used in design of the flat circulatory circle. The three circulatory circles with different flatness ratio are designed by using new method.
     The blades of the torque converter are designed by momentum distribution method. The rules of momentum distribution decide blade shape, finally influence the performances of the torque converter. To find out the reasonable rule of the momentum distribution and get good blades, how the distribution affects the performances of torque converter is researched. The design method of the flat torque converter blade based on quadratic function distribution of momentum is put forward. Quadratic functions for each impeller are different to design better blades.
     2. Numerical simulation of the flow field and performances prediction
     With the development of computer technology and Computational Fluid Dynamic (CFD) theory, numerical simulation of the torque converter flow field has been used in engineering practice. So the internal flow performances of the flat torque converters are investigated by numerical analysis using CFD software. Based on the numerical solution, the performances of the flat torque converter are predicted. As soon as figuring out the performances, the prediction results can be analyzed and compared with the test results. Then the correctness of numerical simulation of the flow field and performances prediction can be testify.
     Coupling algorithms for the multi-flow regions, which mainly include Multi Rotating Reference Frames model, Mixing Planes model, and Sliding Meshes model, its specific application in the hydrodynamic components are discussed. Sliding Meshes model is used in the numerical simulation of the unsteady flow field and which is transient method. Published available literature at home and abroad show that the transient calculation of unsteady flow field appears is first time.
     The control equations of the fluid mechanics are explained. For the incompressible viscous flow, the continuity equation and momentum equation are called as Navier-Stokes equations, short for N-S equations. Many turbulence models are established to make the equations closed. Among them, the RNG k ?εtwo-equation model is more precise, and the control equations include N-S equations and RNG k ?εturbulent equations. After comparison to different methods, such as, Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), FVM is chosen to solve the equation. Up wind method is the way to accomplish the space discretion. SIMPLE method is used for coupling the pressure between continuity equation and momentum equation. The boundary conditions are such as‘grid interfaces’for interactive faces and‘wall’for others. The rotational velocity of each impeller is defined as same as the test to facilitate the performances comparison. The performances prediction method based on the numerical solution is also find out .The torque in each impeller of the torque converter D245 is figured out, then the performances is predicted. The results of performances prediction are analyzed and compared with the experimental results, both of them have close magnitude and well agreement. Then it comes to the conclusion the numerical simulation method and performances prediction for the flow field of the flat torque converter is correct and effective.
     3. Analysis of the transient flow field
     The transient flow field of the flat torque converters which have different flatness ratio under speed ratio 0 and 0.81 conditions is investigated and analyzed for the purpose of learning the distribution rules of the pressure and velocity. The character of the flow field in pump, turbine and stator is analyzed in detail. At the same time, some statistical parameters are studied in depth. Through the analysis, several valuable conclusions are educed.
     4. Research on influence of the flatness ratio of the torque converter on hydrodynamic performance
     Based on the analysis of internal flow field and numerical solution, the performances of the flat torque converters which are designed by both new and traditional torus design method are predicted. Then firstly, by comparing with the performances of the same flatness ratio torque converters designed by both new and traditional torus design method, it comes to the conclusion former is better. Next, by comparing with the performances of different flatness ratio torque converters designed by same method, the influence of the flatness ratio of torque converter on hydrodynamic performance is found out. Finally, the performances of the flat torque converter are advanced by changing the structure parameters, the results of characteristics prediction are compared with that of original torque converter. It shows that the performances of optimization torque converter are significantly improved.
引文
[1]毕龙.自动变速器技术中液力变矩器的发展探讨[J].科技资讯,2007(34):47-48.
    [2]卞兆喜.液力变矩器在汽车传动中的应用[J].中国新技术新产品,2008(9):107-108.
    [3]金辉,葛安林,陈惠言.汽车自动变速技术的新发展[J].汽车技术,2007(2):1-4.
    [4]方杰.液力变矩器三维流动的研究[D].长春:吉林大学机械科学与工程学院,2003.
    [5]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [6]过学迅,郑慕侨.液力变矩器流场研究的方法和进展[J].汽车工程,1995(3): 145-151
    [7]陈大瀛.Navior-stokes方程在模拟径流叶轮中的应用[J].传动技术,1994(1):1-15.
    [8]刘文同.一种绘制二维流动设计的液力变矩器叶型的方法[J].吉林工业大学学报, 1990(2) .
    [9]山田正俊.自動車用トルクコンバ—タの内部流れ解析[J].タ—ポ機械,1993(3) .
    [10]马文星,张斌,罗邦杰.液力变矩器三维粘性流动的计算[J].吉林工业大学学报,1992(03):57-62.
    [11]马文星,罗邦杰,吴淑荣.液力变矩器叶片设计和特性计算的通用程序及其应用[J].汽车技术,1989(12): 1-4.
    [12]马文星.液力变矩器三维流动计算―流线曲率法[J].建筑机械. 1991(1): 28-32.
    [13]齐学义,翟小兵,张凤羽.液力变矩器三元流场计算的一种近似方法[J].水动力学研究与进展,2004(1): 104-107.
    [14] B. V. Marathe,B. Lakshminarayana,Y. Dong.Experimental and Numerical Investigation of Stator Exit Flow Field of an Automotive Torque Converter[J].ASME 94-GT-32.
    [15] B. V. Marathe,B. Lakshminarayana,D. G. Maddock.Experimental Investigation of Steady and Unsteady Flow Field Downstream of Automotive Torque Converter Turbine and Inside the Stator PartⅠ: Flow at the Exit of Turbine[J].ASME 95-GT-231.
    [16] B. V. Marathe,B. Lakshminarayana,D. G. Maddock.Experimental Investigation of Steady and Unsteady Flow Field Downstream of Automotive Torque Converter Turbine and Inside the Stator PartⅡ: Unsteady Pressure on the Stator Blade Surface[J].ASME 95-GT-232.
    [17] R. R. By,B. Lakshminarayana.Measurement and Analysis of Static PressureField in a Torque Converter Pump[J].ASME Journal of Fluids Engineering.1995,117:109-115.
    [18] R. R. By,R. Kunz,B. Lakshminarayana.Navier-Stokes Analysis of the Pump Flow Field of an Automotive Torque Converter[J].ASME Journal of Fluids Engineering,1995,117,116-122.
    [19] Liu Yongfu. An experimental investigation on fluid dynamics and performance of an automotive torque converter[D]. Central County: Pennsylvania State University,2001.
    [20] Dong Yu,Vamshi Korivi,Pradeep Attibele,et al.Torque Converter CFD Engineering PartⅠ: Torque Ratio and K Factor Improvement through Stator Modifications [C]//SAE Paper 2002-01-0883.
    [21] Dong Yu,Vamshi Korivi,Pradeep Attibele,Yiqing Yuan.Torque Converter CFD Engineering PartⅡ: Performance Improvement through Core Leakage Flow and Caviation Control[C]// SAE Paper 2002-01-0884.
    [22] Flack R,Brun K.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump——PartⅠ:Model and Flow in a Rotating Passage[J] .ASME Journal of Fluids Engineering,2005, 127:66-74.
    [23] Flack R,Brun K.Fundamental Analysis of the Secondary Flows and Jet-Wake in a Torque Converter Pump——PartⅡ:Flow in a Curved Stationary Passage and Combined Flows[J].ASME Journal of Fluids Engineering,2005, 127:75-82.
    [24] Kraus S O,Flack R,Habsieger A,et al.Periodic Velocity Measurements in a Wide and Large Radius Ratio Automotive Torque Converter at the Pump /Turbine Interface[J].ASME Journal of Fluids Engineering,2005, 127:308-316.
    [25] Leonard D. Whitehead,Ronald D. Flack.Velocity Measurements in an Automotive Torque Converter PartⅠ—Average Pump Measurements[J] .Tribology Transactions.1999,42:687-696.
    [26] Ronald D. Flack,Leonard D. Whitehead.Velocity Measurements in an Automotive Torque Converter PartⅡ—Average Turbine and Stator Measurements[J].Tribology Transactions.1999,42:697-706.
    [27] Shieh T,Perng C,Chu D,et al.Torque Converter Analytical Program for Blade Design Process[C]//SAE Paper 2000-01-1145.
    [28] Sehyun Shin,Hyukjae Chang,Mahesh Athavale.Numerical Investigation of the Pump Flow in an Automotive Torque Converter[C]//SAE Paper 1999-01-1056
    [29] Sehyun Shin,Hyukjae Chang,et al.Effect of Scroll Angle on Performance of Automotive Torque Conveter[C]//SAE Paper 2000-01-1158.
    [30] Sehyun Shin,Kyung.Joon Kim,Dong.Jin Kim,et al.The Effect of Reactor Blade Geometry on the Performance of an Automotive Torque Converter[C]//SAE Paper 2002-01-0885.
    [31] Yang Seunghan,Shin Sehyun,Bae Incheol,et al.A Computer-Integrated Design Strategy for Torque Converters using Virtual Modeling and Computational Flow Analysis [C]//SAE Paper 1999-01-1046.
    [32] Masatoshi Yamada,Kenji Imai,Takashi Iwaki.Numerical Analysis of the Torque Converter Stator Blade by the Boudary Element Method[C]//SAE Paper 921692.
    [33] Hisashi Watanabe , Kazunori Yoshida , Masatoshi Yamada , et al . Flow Visualization and Measurement in the Stator of a Torque Converter[C]//JSAE 9541263:25-30.
    [34] Hisashi Watanabe,Tetsuo Kurahashi,Masahiro Kojima.Flow Visualization and Measurement of Torque Converter Stator Blades Using a Laser Sheet Lighting Method and a Laser Doppler Velocimeter[C]//SAE Paper 970680.
    [35]久保賢明,江尻英治.LDVトルクコンバ—タの内部流れ計測[C].日本機械学会論文集(B編)64卷626号,1998.
    [36]安部浩也,名井信雄.トルヮコンバータに於けるステータ翼列流出角修正による簡易性能予测法[C]//自動車技術会学術講演会前刷集,1995:121-124.
    [37] Yasunori Kunisaki,Toshio Kobayashi,Tetsuo Saga,et al.PIV Measurement on the Flow Field Around a Stator Cascade of Automotive Torque Converter[C]//SAE Paper 2001-01-0868.
    [38] Yasunori Kunisaki,Toshio Kobayashi,Tetsuo Saga,et al.A Study on Internal Flow Field of Automotive Torque Converter—Three.dimensional Flow Analysis around a Stator Cascade of Automotive Torque Converter by Using PIV and CT Techniques[C]// JSAE20014511:559-564.
    [39] H. Schulz,R. Greim,W. Volgmann.Calculation of Three-dimensional Viscous Flow in Hydrodynamic Torque Converter[J].ASME 94-GT-208.
    [40]马文星,何延东,刘春宝.液力传动研究现状分析及展望[J].农业机械学报,2008(07):51-55.
    [41]才委,马文星,刘春宝,等.基于三维流场计算的液力变矩器特性预测方法[J].哈尔滨工程大学学报,2007,28(3):316-319.
    [42]褚亚旭,马文星,方杰,等.液力变矩器三维流动的计算[J].农业机械学报,2005,36(8):107-110.
    [43]才委,马文星,褚亚旭,等.液力变矩器导轮流场数值模拟与试验[J].农业机械学报,2007,38(8):11-14.
    [44]刘春宝,马文星,褚亚旭.多流动区域耦合算法在液力元件中的应用[J].吉林大学学报(工学版),2008,38(6):1342-1347.
    [45]刘伟辉,刘春宝,汪清波,等.基于二次函数环量分配的液力变矩器叶片设计方法[J].农业机械学报,2008,39(8):145-148.
    [46]刘悦,马文星,刘春宝.综合式液力变矩器内特性的计算与分析[J].吉林大学学报(工学版),2008,38(1):70-74.
    [47] Liu Yue,Pan Yuxue,Liu Chunbao. Numerical analysis on three.dimensional flow field of turbine in torque converter[J].Chinese Journal of Mechanical Engineering (English Edition),2007,20(2).
    [48] Ma Wenxing, Liu Chunbao, Wu Kaifu. Numerical Simulation and Analysis on the Control of Flow Separation in Hydrodynamic Coupling[C]. Conference Proceedings of 5th International Symposium on Fluid Power Transmission and Control ,2007.
    [49] Ma Wengxing, Liu Chunbao, Xu Rui, et al. Calculation Method of Axial Force in Hydrodynamic Torque Converter Based on Numerical Solution of Three-Dimensional Flow Field[C].Conference Proceedings of 5th International Symposium on Fluid Power Transmission and Control ,2007.
    [50]刘伟辉,刘春宝,汪清波,等. YJ350液力变矩器性能改进研究[J].工程机械,2008,39(7):60-63.
    [51]才委,刘春宝.发动机与液力变矩器匹配软件的应用[J].工程机械, 2006(11) .
    [52]刘春宝.基于W305液力变矩器系列化设计[D] .长春:吉林大学机械科学与工程学院,2006.
    [53]吴晓栋,谢硕.轿车液力变矩器的改进设计方法研究[J].汽车研究与开发,2002(6):19-23.
    [54]严鹏,吴光强.液力变矩器性能分析[J].同济大学学报自然科学版,2004,32(11):1504-1507.
    [55]严鹏.基于CAD/CFD的轿车液力变矩器现代设计分析集成系统的研究[D].上海:同济大学汽车学院,2005.
    [56]陆忠东,吴光强.液力变矩器流场分析与设计的研究现状及展望[J].船舶工程,2008 (4):1-5.
    [57]项昌乐,肖荣,阎清东,等.牵引.制动型液力变矩器流场分析[J].工程机械,2005(5):43-46.
    [58]闫清东,项昌乐.液力变矩器循环圆和叶片的计算机辅助设计[J].兵工学报.1995(1),25-34 .
    [59]闫清东,魏巍,彭静.液力变矩器宽度比敏感性数值研究[J].北京理工大学学报.2006(5),413-416.
    [60]彭靖,闫清东,魏巍.基于OpenGL的液力变矩器叶片可视化设计[J].机电产品开发与创新,2006(3):74-76 .
    [61] Wei Wei, Yan Qingdong.Study on Hydrodynamic Torque Converter Parameter Integrated Optimization Design System Based on Tri.Dimensional Flow Field Theory[C]//SAE 2008-01-1525.
    [62] Xubin Song, Jason Liu, Daniel Smedley.Simulation Study of Dual Clutch Transmission for Medium Duty Truck Applications[C]//SAE 2005-01-3590.
    [63] Jong.Sun Oh, Jun.Eui Kwon, Jin.Soo Lee, et al.Development of 4 Speed Electronically Controlled New Automatic[C]. Seoul 2000 FISITA World Automotive Congress June 12.15, 2000.
    [64] P. O. Sweger, C. L. Anderson, J. R. Blough. Measurements of Strain on 310 mm Torque Converter Turbine Blades[J]. International Journal of Rotating Machinery, 2004(10): 55–63 .
    [65] Dennis W. Florkowski , Tracey E. King,Anthony P. Skrobul,et al.Development and Introduction of Chrysler’s New Automatic Transmission Fluid[C]//SAE Paper 982674.
    [66] S COUTURIER.Design of a Torque Converter for a Luxury Motor Car Using MathCAD[D]. Bedfordshire:CRANFIELD UNIVERSITY,2007.
    [67] Hiroshi Kuroiwa,Naoyuki Ozaki,Takashi Okada,Masaru Yamasaki.Next-generation Fuel - efficient Automated ManualTransmission[J].Hitachi Review, 2004,53 (4):205-209.
    [68] Hideki Miyata, Yasuo Hojo , Atsushi Tabata,et al.Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars[C]//SAE Paper 980820.
    [69] Kazutoshi Nozaki, Yuuji Kashihara, Nobuaki Takahashi ,et al.Toyota’s New Five-Speed Automatic Transmission A750E/A750F for RWD Vehicles[C]//SAE Paper 2003-01-0595.
    [70] Naoji Katou,Takao Taniguchi, Kazumasa Tsukamoto,et al.AISIN AW New Six-Speed AutomaticTransmission for FWD Vehicles[C]//SAE Paper 2004-01-0651.
    [71] R. P. G. Heath , A. J. Child.Zeroshift Automated Manual Transmission (AMT) [C]//SAE Paper 2007-26-061.
    [72] Mitsugi Tazawa, Wataru Ishimaru ,Takashi Bekki.Development of a Very Compact 4-Speed Automatic Transmission for 0.66L Mini-car Applications [C]//SAE Paper 2000-01-1148.
    [73] Yoshihisa Yamamoto, Masaaki Nishida, Kenji Suzuki,et al.New Five-Speed Automatic Transmission for FWD Vehicles[C]//SAE Paper 2001-01-0871.
    [74] Masaaki Kubo,Eiji Ejiri.A Loss Analysis Design Approach to Improving Torque Converter Performance[C]//SAE Paper 981100.
    [75] E. Ejiri,M. Kubo.Performance Analysis of Automotive Torque Converter Elements[J].ASME Journal of Fluids Engineering,1999, 121:266-275.
    [76] E. Ejiri,M. Kubo.Influence of the Flatness Ratio of an Automotive Torque Converter on Hydrodynamic Performance[J] . ASME Journal of Fluids Engineering,1999,121:614-620.
    [77] Masato Watanabe, Kazumichi Sasaki,Koichi Miyamoto,et al. Toyota’s New Six-Speed Automatic Transmission AB60E for RWD Vehicles[C]//SAE Paper 2007-01-1098.
    [78] Yoshinobu Nozaki , Yoshikazu Tanaka , Hideo.Toyota’s New Six-Speed Automatic Transmission A761E for RWD Vehicles[[C]//SAE Paper 2004-01-0650.
    [79] Toru Ochi, Hiroaki Takeuchi, Hiromichi Kimura ,et al.Development of a Super-Flat Torque Converter for the New Toyota FWD 6-Speed Automatic Transaxle[C]//SAE Paper 2006-01-0149.
    [80] Heribert Scherer.ZF 6 - Speed Automatic Transmission for Passenger Cars[[C]//SAE Paper 2003-01-0596.
    [81] Tomasz Kietlinski ,Michael Fingerman. 248mm Elliptical Torque Converter from DaimlerChrysler Corporation[C]//SAE Paper 2007-01-0241.
    [82]李忠禄,刘冀察.一种新的液力变矩器循环圆构想及其设计方法[J].工程机械,2005(1): 48-49.
    [83]王彦,王玉鹏,马文星.液力变矩器循环圆的综合描述及导数修正法[J].吉林大学学报(工学版),2002(1):79-82.
    [84]刘悦,潘毓学.液力变矩器循环圆的修正[J].工程设计学报,2005(2):52-54 .
    [85]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1999.
    [86]田华.液力变矩器现代设计理论的研究[D].长春:吉林大学汽车工程学院,2005.
    [87]包雨云,高正明,施力田.多相流搅拌反应器研究进展[J].化工进展,2005 ,24 (10).
    [88]杨军虎、张炜、王春龙,等.潜水轴流泵全流道三维湍流数值模拟及性能预估[J].排灌机械, 2006,24(4).
    [89]周莉,席光,邱凯,等.搅拌器内动/静叶相干非定常流场的数值分析[J].西安交通大学学报,2002,36(9).
    [90]唐辉,何枫.离心泵内流场数值模拟[J].水泵技术,2002(3):3-7.
    [91] Lee Chinwon,Jang Wookjin,Lee Jang Moo,et al.Three Dimensional Flow FieldSimulation to Estimate Performance of a Torque Converter[C]//SAE Paper 2000-01-1146.
    [92] Kyoung Song, Kyusup Kim, JaeIn Park, et al.Development of the Integrated Process for Torque Converter Design and Analysis[C]//SAE Paper 2008-01-0785.
    [93] Kowalski Darin,Anderson Carl,Blough Jason.Cavitation Prediction in Automotive Torque Converters[C]//SAE Paper 2005-01-2557.
    [94] Norihiko Watanabe, Shinya Miyamoto, Masayuki Kuba,et al.The CFD Application for Efficient Designing in the Automotive Engineering[C]//SAE Paper 2003-01-1335.
    [95] Pohl Brad.Transient Torque Converter Performance, Testing, Simulation and Reverse Engineering[C]//SAE Paper 2003-01-0249.
    [96] Tetsuya Kubota,Toshio Kobayashi,Tetsuo Saga,et al.Application Study of PIV Measurement of Flow Flied around Lock.up Clutch of Automotive Torque Converter[C]//JSAE20034528:42-430.
    [97] Shin Sehyun,Lee Byung.Cheol,Hong Jong.Hae,et al.Performance Improvement Using a Slotted Stator of an Automotive Torque Converter[C]//SAE Paper 2003-01-0247.
    [98] R. C. Dean,Y. Senoo.Rotating Wakes in Vaneless Diffusers[J].Journal of Basic Engineering,1960(9):563-570.
    [99] D. Eckardt . Detailed Investigations within a High Speed Centrifugal Compressor Impeller[J].Journal of Fluid Engineering.1976,98:390-402.
    [100] M. W. Johnson,J. Moore.The Development of Wake Flow in a Centrifugal Impeller[J].Journal of Engineering for Power,1980,102:382-390.
    [101]曹建国,秦大同,胡建军.液力变矩器在机械无级变速传统系统中的应用[J].重庆大学学报(自然科学版),2002,25(5): 5-9.
    [102]许睿,李淑萍,于征平.现代设计方法在液力变矩器叶型设计中的应用研究[J].液压气动与密封,2008 (5 ):27-29.
    [103]刘振军,秦大同,胡建军,等.轿车用液力变矩器性能实验分析[J].重庆大学学报(自然科学版),2002(2):103-105.
    [104]常思勤.三维流动数值模拟中网格划分方法的研究[J].武汉汽车工业大学学报,1998(2):1-5.
    [105]杜巧连.液力变矩器的特性分析及其应用研究[J].汽车研究与开发,2000(1):21-23.
    [106]张凤羽,翟小兵,齐学义.样条函数在液力变矩器三元流场计算中的应用[J].甘肃工业大学学报,2000(2):39-44.
    [107]孙旭光,韩德才.液力变矩器广义方程组及仿真计算[J].机械工程学报,2000(5):23-26.
    [108]过学迅,郑慕桥.液力变矩器流场计算的压力修正法[J].汽车工程,1996,18(2):89-93.
    [109]王守义,叶仲新.液力变矩器混流叶轮叶片曲面的几何计算[J].湖北汽车工业学院学报,2001(3):1-12.
    [110]李雪松.车辆液力减速器三维流场分析与特性计算[D].长春:吉林大学机械科学与工程学院,2006.
    [111]过学迅,吴涛.汽车自动变速器在中国的发展现状及前景[J].汽车研究与开发,1996(6):7-10.
    [112]张惠民.叶轮机械中的三元流理论及其应用[M].北京:机械工业出版社,1984.
    [113]罗邦杰.工程机械液力传动[M].北京:机械工业出版社,1991.
    [114]吴玉林.流体机械及工程[M].北京:中国环境科学出版社,2003.
    [115]赵兴艳,苏莫明,张楚华等.CFD方法在流体机械设计中的应用[J].流体机械,2000,28(3):22-25.
    [116]王福军.计算流体动力学分析—CFD软件的理论与应用[M].北京:清华大学出版社,2004.
    [117]张也影.流体力学[M].北京:高等教育出版社,1999.
    [118]田华,葛安林,马文星,等.液力变矩器流场损失的分析[J].吉林大学学报(工学版),2004 (4):559-563.
    [119]赵志新.液力变矩器流场数值分析[D].长春:吉林大学汽车工程学院,2003.
    [120]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.
    [121]褚亚旭.基于CFD的液力变矩器设计方法的理论与实验研究[D].长春:吉林大学机械科学与工程学院,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700