大功率多元液力调速系统性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风机、水泵等旋转类机械是广泛应用与冶金、矿山、电力等行业的动力设备,其电能消耗占据我国工业用电的很大比重。风机、水泵只要变速调节运行就能够节能,因此开展变速调节技术的研究对能源的高效率利用具有重要意义。目前,工业生产中的动力机向大功率、大容量方向发展,风机水泵的运行功率也上升至几千到几万千瓦,但是已有的调速技术难以实现大功率、大容量传递功率情况下传动系统的宽调速范围、高效率传动。在这样的背景下本文针对大功率风机水泵的变速调节开展研究,探索新的技术解决方案,对于我国电力生产中使用的大型旋转机械的节能降耗、提高设备运行的安全性和可靠性具有重要的意义。本文受到吉林大学基本科研业务费项目“大功率多元复合液力调速系统研究”的资助,论文研究了一种恒速输入、无级变速输出的传动装置——大功率多元液力调速系统,该系统适用于大功率泵与风机的变速调节运行。多元液力调速系统基于功率分流传动原理,具有传递功率大、调速范围宽、传动效率高的特点。论文围绕传动系统模型、调速系统的功率分析、导叶可调式液力变矩器以及系统的输出特性等关键问题所做的研究工作和得出的结论如下:
     (1)分析了两种基于功率分流传动原理的传动系统方案,即双电机并联驱动的传动模式和单电机驱动的传动模式,分析了两种模式各自的特点。提出了基于功率分流传动原理的多元液力调速系统传动模型,对多元液力调速系统的不同工作阶段做了简要分析。采用行星轮系功率流分析的节点法对两排行星轮系和导叶可调式变矩器组成的液力调速系统进行了功率流向的分析。得出了固定行星轮系和旋转行星轮系的转速、转矩以及功率的关系式,同时得出了导叶可调式变矩器的泵轮和涡轮上的转速、转矩以及功率关系式,给出了调速系统的效率计算公式。
     (2)运用相似法设计了调速系统中的关键液力元件——导叶可调式液力变矩器。完成了变矩器循环圆和叶片等关键环节的设计,得到了D=710mm可调式变矩器的模型。并对设计的导叶可调式变矩器建立了流场计算模型,用CFD方法对不同开度不同工况的可调式变矩器内流场进行了数值仿真,预测了其内部流场特性和外部转矩特性。同时采用数值仿真的方法对调速型液力偶合器与液力减速器的性能进行了研究,分析了不同充液率下调速型液力偶合器的原始特性和液力减速器的制动特性。
     (3)在完成液力偶合器的原始特性计算基础上,预测了不同充液率下低速段调速系统的输出特性;在完成了可调式变矩器特性计算的基础上对高速段液力调速系统的输出特性做出了预测。将调速系统与离心式风机匹配,研究了导叶开度与系统输出特性的关系,随着导叶开度的增大,调速系统的输出转速和转矩都增大,进入变矩器的功率和液力功率占输入功率的比值都增大。同时研究了调速过程中导叶可调式变矩器特性参数随开度的变化规律。分析了固定行星齿轮特性参数对液力调速系统高效区间范围的影响,当增大固定行星齿轮特性参数时,调速系统的高效区间向低转速区间移动。改变特性参数后的调速系统相比原设计的调速系统在调速范围内有更高的运行效率。最后比较了运用调速系统和液力偶合器对离心式风机负载调速的效率曲线,使用液力调速系统调速能够在更宽的调速范围内实现高效率的传动,具有更显著的节能优势。
The rotating machinery such as fan, pumps et al. is widely used in powerequipment of metallurgy, mining and electricity et al. in the process of industrialproduction in China. Its power consumption accounts for a large proportion ofindustrial electricity in China. However, the variable-speed regulation of fan andpumps can save a lot of electricity. It has important significance in the efficient useof energy. At present, the power machine of industrial production is toward to thehigh-power and large-capacity. The operating power of fan and pumps is increasedto thousands of kilowatts to ten thousands of kilowatts. However, the existingtechnology of speed regulation is difficult to achieve wide speed range andhigh-efficiency transmission in the case of high power and high-capacitytransmission power. For this purpose, variable-speed regulation for high-power fanand pump has been studied to explore new technology solutions. It has importantsignificance in saving energy of large rotating machinery, improving the safety andthe reliability of equipment operation.The paper is supported by fundamentalscientific research expenses project in Jilin university, whose name is”study onmulticomponent hydrodynamic variable-speed system with high power”. In thispaper, a gearing of constant speed input and infinitely variable speed output that ismultiple hydrodynamic speed regulation system with large capacity is studied. Thesystem is based on the principle of power split transmission. It has large transmissionpower, wide speed range and high transmission efficiency. The study which involvedthe key issues such as transmission system model, the power analysis of speedregulation system, guide vanes adjustable torque converter and the outputcharacteristics of the system et al. can be summarized as follows:
     (1)The paper describes two programs of transmission system that is the transmission mode of dual-motor parallel and single-motor drivability based on theprinciple of power split. The characteristics of the two modes are analyzed. Thetransmission model based on the principle of power split transmission of multi-speedregulation system is proposed. The different phases of the multiple hydrodynamicspeed regulation system are briefly analyzed.
     The power flow of the two-ranked star wheel is analyzed using the node method.The power flow of the hydrodynamic speed regulation system which consists oftwo-ranked star wheel and adjustable torque converter is analyzed using the samemethod. The results are as follows: the formula between the speed, torque and powerof fixed planetary gear train and rotating planetary gear train, the formula betweenthe speed, torque and power of pump wheel and turbine wheel of guide vanesadjustable torque converter and the efficiency formula of the speed regulationsystem.
     (2)The hydrodynamic component of speed regulation system that is guidevanes adjustable torque converter is designed using a similar method. The loopround and blade of the torque converter is completely designed. The adjustabletorque converter of710mm diameter is obtained. The calculation model of flow fieldof the designed converter is established. The CFD numerical simulations ofadjustable torque converter with different openings and different working conditionsare done. The internal flow characteristics and the external torque characteristics ofthe torque converter are predicted.At the same time, the velocity modulatedhydrodynamic coupler and hydrodynamic retarder are studied by means of numericalsimulation.The original characteristic of hydrodynamic coupler with differentcharging ratio is analysed and the braking characteristic of hydrodynamic retarder isobtained.
     (3)On the basis of the characteristics calculation of hydrodynamic couplerwith different charging ratio and the adjustable torque converter with differentopenings, the output characteristic of hydrodynamic speed regulation system in low speed range and high are predicted respectively. To match the speed regulationsystem and centrifugal fans, the relationship of guide vane opening and the systemoutput characteristics is studied. The output speed and torque of the speed regulationsystem increase with the increase of the guide vane opening. The power of torqueconverter and the accounted ratio of the hydrodynamic power also increase. Thevariation regular of characteristic parameters of guide vanes adjustable torqueconverter is also studied. The impact of parameters of fixed planetary gear on theefficient interval range of hydrodynamic speed regulation system is analyzed. Theefficient interval range of speed regulation system with the increase of thecharacteristic parameters of the fixed planetary gear moves to the low speed range.In the speed range, the speed regulation system of the transformation has higheroperating efficiency than the original. Finally, the efficiency curve of load speed ofcentrifugal fan is compared between the speed regulation system and thehydrodynamic coupling. The hydrodynamic speed regulation system can achievemore efficient transmission in a wide speed range and has more significantenergy-saving advantages.
引文
[1]马文星.液力传动理论与设计[M].北京:化学工业出版社,2004.
    [2]中国液压气动密封件工业协会编.中国液压液力气动密封工业年鉴[J].北京:化学工业出版社,2010.1.
    [3]刘应诚,杨乃乔.液力调速与变频调速的技术经济分析[J].重庆工业高等专科学校学报,1999,14(3-4):165-168.
    [4]杨乃乔.风机、水泵的调速节能[C].面向21世纪的热电联产论文集.中国电机工程学会热电专业委员会,2000.
    [5]安金辉.调速型液力偶合器在煤矿中的应用[J].中国新技术新产品,2010,(5):136..
    [6]孙国琴.发电厂风机、水泵变频调速与液力偶合器调速运行比较[J].上海应用技术学院学报,2007,7(2):128-131.
    [7]徐甫荣.高压变频调速技术应用实践[M].北京:中国电力出版社,2007.
    [8]刘应诚.液力偶合器实用手册[M].北京:化学工业出版社,2008.
    [9]何延东.基于CFD的大功率调速型液力偶合器设计[D].吉林:吉林大学,2009.
    [10]孙波.大功率调速型液力偶合器轴向力研究[D].吉林:吉林大学,2011.
    [11] Roberto Camoirano,Giuseppe Dellepiane.Variable frequency drive for MSF desalinationplant and associated pumping stations [J].Science Direct Desalination.2009,34(2):450-455.
    [12] John Everhart,Karen Sanchez. Sensing significant savings with VFD systems.WorldPumps[J].2004,450:18-21.
    [13] Meir Teitel,Asher Levi,Yun Zhao,etal.Energy saving in agricultural buildings throughfanmotor by variable frequency drives[J].Energy and Buildings,2008,40(6):953-960.
    [14] R.Saidur,S.Mekhilef,M.B.Ali,etal. Applications of variable speed drive (VSD)in electrical motors energy savings[J].Renewable and Sustainable Energy Reviews,2012,16(1):543-550.
    [15] Ralph H fert.Variable speed turbo couplings uesed as pump drive in desalinationplants[J]. Desalination,1999,125(1-3),181-189.
    [16]李宝山.输油泵采用变速与节流调节效率的探讨[J].油气运输,1995,14(2):55-60.
    [17]李秀卿,崔实.泵与风机交流调速节能技术方案的优化选择及其应用[J].中国能源,1999,7:32-34.
    [18]欧阳建国.液粘调速离合器的节能分析与计算[J].通用机械,2003,10:41-45.
    [19] P.Adamis,etal.Challenges Facing Future Transmission Systems[J].Drive systemTechnique.1996,6:56-60.
    [20] Voith Turbo GmbH&Co. KG. Hydrodynamic Multi-Stage Variable-SpeedDrive[R].http://www.voithturbo.de/variable-speed_publications.php3.
    [21] Voith Turbo GmbH&Co.KG.Multi-Stage Variable Speed Drive-a hydrodynamic planetarygear unit with high efficiency[R].http://www.voithturbo.de/variable-speed_publications.php3.
    [22] Nilabh Srivastava,Imtiaz Haque.A review on belt and chain continuously variabletransmission(CVT):Dynamic and Control [J]. Mechanism and Machine Theory,2009,44(1):19-41.
    [23] P.Linares,V.Mendez,H.Catalan.Design parameters for continuously variable power-splittransmissions using planetaries with3active shafts[J].Journal of Terramechanics,2010,47(5):323-335.
    [24] Alarico Macor, Antonio Rossetti. Optimization of hydro-mechanical power splittransmissions[J].Mechanism and Machine Theory,2011,46(12):1901-1919.
    [25] J.R.Goma Ayats,J.Vivancos Calvet,J.Minguella Canela,etal.Power transmitted through aparticular branch in mechanisms comprising planetary gear trains and other fixed orvariable transmissiongs [J]. Mechanism and Machine Theory,2011,46(11):1744-1754.
    [26] Thoma,J.Hydrostatic power split drive[J].Hydraulic Pneumatic Power,1970,16(188):464-468.
    [27] Savaresi,S.M.,Taroni,F.,etal.On the design and tuning of the controllers in a power-splitcontinuously variable transmission for agriculture tractors [J].Proceedings of the Institutionof Mechanical Engineers,Part D:Journal of Automobile Engineering,2003,217(8):745-759.
    [28] Seeger,J.Split power transmission in tractors [J].Oelhydraulik and Pneumatik,2005,49(3):138-45.
    [29] Voith Turbo Gmbh&Co.KG. Improvement of Efficiency of Hydrodynamic Variable-SpeedCoupling Multi-Stage Variable-Speed Drive—A New Development[R].http://www.voithturbo.de/variable-speed_publications.php3.
    [30] Voith Turbo Gmbh&Co.KG.50MW Power Transmission for variable speed with VariablePlanetary Gear [R].http://www.voithturbo.de/variable-speed_publications.php3.
    [31] Voith Turbo Wind Gmbh&Co.KG.The Windrive-An Innovative Drive Train Concept forWind Turbines[R].www.voithturbo.com/wind-technology.
    [32] Eize de Vries.Drive and innovation:The Dewind D8.2with Voith Windrive[R].http://www.renewable-energy-world.com/articles/article_display.cfm/ARTI.CLE_ID=288204&p=121.
    [33] H.MüLLER,M.P?LLER,A.BASTECK, M.TILSCHER,J.PFISTER,GridCompatibility of Variable Speed Wind Turbines with Directly Coupled SynchronousGenerator and Hydro-Dynamically Controlled Gearbox [J]. Sixth Int’l Workshop onLarge-Scale Integration of Wind Power and Transmission Networks for Offshore WindFarms,2006:307-315.
    [34]董泳,闫国军.多级液力变速传动装置的工作原理与特性[C].第五届全国流体传动与控制学术会议暨2008年中国航空学会液压与气动学术会议,2005:394-397.
    [35]杨乃乔,蒋丽英.液力调速与节能[M].国防工业出版社,2000.
    [36]王芝荃.一种新型的压缩机调速驱动系统——调速型行星齿轮Vorecon[J].风机技术,2005(5):38-40.
    [37]王晓辉,王芝荃.高效液力调速产品在核电厂给水泵中的应用[J].通用机械,2011(6):36-39.
    [38]李林.基于分功率传动原理的旋转机械调速技术与装置研究[D].北京:华北电力大学,2010.
    [39]饶鸿才,陶曾鲁,蔡建勇.4m3抓斗挖泥机用可调式液力变矩器[J].起重运输机械,1993.
    [40]陶曾鲁,徐成云,饶鸿才.大能容高宽效可调变矩器设计实验研究[J].工程机械,1994(10):27-31.
    [41]孙旭光,李有义,刘广华,陆肇达.导叶可调式液力变矩器特性计算方法[J].液压与液力,1996(2):27-29.
    [42]闫国军,董泳,陆肇达.导叶可调式液力变矩器数学模型的建立[J].哈尔滨工业大学学报,2001,33(2):200-202.
    [43]闫国军,董泳,张辉,陆肇达.液力变矩器及其控制系统动态特性研究[J].机械工程学报,2002,38(2):65-68.
    [44]杜魏魏.风力发电可变导叶液力变矩器调速装置研究[D].吉林:吉林大学,2011.
    [45]周绪强.液力变速与传动技术在风力发电系统中的应用研究[D].哈尔滨:哈尔滨工业大学,2009.
    [46]邵金华,何玉林,金鑫,杨兴满.新型变速风力发电传动系统的研究[J].现代制造工程.2007,(6):20-22.
    [47]黎明,何玉玲,李成武,李丽丽,李奇敏.风电机组新型传动系统协同控制仿真研究与分析[J].机械设计,2008,25(3):36-39.
    [48]李丽丽,何玉林,李成武,黎明.导叶可调式液力变矩器在大型风电机组传动系统中的动态仿真研究[J].机械制造,2007,45(512):17-19.
    [49]董泳,闫国军,周绪强.多级液力变速传动装置的工作特性与功率分流原理分析[J].机床与液压:2008,36(10):63-66.
    [50]刘学厚,黎巨泉.行星传动设计[M].北京:北京工业学院出版社,1988.
    [51]孔江生,吴炳胜,王建民.行星传动封闭功率流分析法[J].农业机械学报,2005,36(6):,92-93.
    [52]卢存光,段钦华,杨实如.封闭式行星传动功率流分析与啮合效率的计算[J].机械传动,2002,26(2):36-38.
    [53]黄宗益.现代轿车自动变速器原理和设计[M]上海:同济大学出版社,2006.
    [54]李有义,董泳,陆肇达.液力传控系统的技术特性[J].起重运输机械,1998,(11):9-11.
    [55]李有义.液力传动[M].哈尔滨:哈尔滨工业大学出版社,2004.·[56]闫国军,李有义,程晓忠.液力变矩器输出特性的变充液量调节[J].工程机械,2000(3).
    [57]北方交通大学.内燃机液力传动[M].北京:中国铁道出版社,1980.
    [58]刘春宝.轿车扁平化液力变矩器研究[D].吉林:吉林大学,2009.
    [59]韩占忠. FLUENT:流体工程仿真计算实例与分析[M].北京:北京理工大学出版社,2009.8.
    [60]李鹏飞,徐敏义,王飞飞.精通CFD工程仿真与案例实战[M].北京:人民邮电出版社,2011.
    [61]田华,葛安林,马文星等.液力变矩器泵轮内流场的数值模拟[J].吉林大学学报(工学版),2004,34(3):378-382.
    [62]褚亚旭.基于CFD的液力变矩器设计方法的理论与实验研究[D].吉林:吉林大学,2006.
    [63]江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700