热镀锌DP780双相钢的选择性氧化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车车身轻量化作为一种有效地降低汽车燃油消耗的方式,目前受到国内外广泛的关注。车身轻量化通过采用先进高强度钢使得钢板减薄,大幅减轻车身重量的同时保证其安全性。双相钢占到了先进高强度钢使用量的74%,成为了使用比例最大的一种钢种。
     双相钢在汽车车身上使用时,为增强车身的耐蚀能力,其表面必须镀上一层锌。双相钢在进行连续热镀锌时,钢中添加的合金元素在退火过程中容易发生选择性氧化,在钢板表面生成大量的氧化物。这些氧化物与锌液之间的浸润性较差,容易造成漏镀和镀层附着力差的问题。因此,对合金元素的选择性氧化行为及其氧化物进行研究,是提高热镀锌双相钢镀层质量的重要基础工作。本论文针对DP780级别双相钢,对影响其合金元素选择性氧化的各种工艺参数进行了研究,分析了氧化物在基体/锌液界面处与有效Al的反应及其对抑制层形貌的影响,取得了一些对于双相钢热镀锌具有重要意义的创新成果。
     研究了退火时间和退火温度的变化对合金元素选择性氧化的影响。结果表明:退火时间的延长(45s-120s)和退火温度的升高(780℃~840℃),增加了双相钢表面氧化物的密度和颗粒体积,同时使得抑制层中出现粗大的Fe-Al相晶粒。退火时间和退火温度的变化不影响表面氧化物的种类。
     退火过程中不同的合金元素向表面的扩散行为有较大差异。Mn元素有强烈地向表面扩散的趋势,容易在表面发生浓度富集;Cr元素向表面扩散富集的倾向较小,形成的Cr2O3数量较少;sj元素容易在晶界偏析,形成SiOx或Mn2SiO4氧化物;Mo几乎不向钢板表面扩散富集,不发生选择性氧化。
     通过调整退火过程中气氛的氢气含量和露点,研究了气氛与合金元素之间的气相-金属反应。结果表明:氢气含量从5%增加到20%,双相钢表面的氧化物密度增加,但是氢气含量的变化不改变表面氧化物的类型;露点从-50℃升高到-15℃,合金元素发生内氧化,外氧化物减少。采用退火中途切换露点的方法,得到在0℃/-70℃露点条件下,双相钢表面绝大部分为裸露的钢基体。
     研究了MnO在基体/锌液界面处与锌液中有效Al发生的铝热还原反应,得出了MnO在3s浸镀时间内能被有效Al还原的最大半径是131.6nm。同时,分析了抑制层Fe-Al晶粒的生长机理,给出了MnO尺寸与抑制层晶粒粗细分化的关系,在此基础上提出了MnO的尺寸效应。
The light autobody is being paid more and more attention since it is an effective way to reduce oil consumption. The light autobody is utilized by applications of advanced high strength steels, which can reduce sheet gauges and maintain autobody safety at the same time. Dual phase steels account for74%of advanced high strength steels used in the light autobody.
     When the dual phase steels are used in autobody, they have to be coated with a zinc layer by hot-dip galvanizing process to enhance the anti-corrosion capability of autobodys. However, dual phase steels readily give rise to surface selective oxides during annealing prior to galvanizing, since they are alloyed certain contents of alloying elements. The surface selective oxides have bad wetting behaviors with zinc bath, and can cause severe coating defects such as bare spots and bad coating adherence. Therefore, understanding selective oxidation of alloying elements and formation of selective oxides are essential and fundamental to improve zinc coating quality during galvanizing dual phase steels. This dissertation aims to investigate the effects of process parameters on selective oxidation of alloying elements and further understand interfacial reactions of oxides with effective Al in zinc bath, which occur in substrate/zinc interface. Some creative achievements concerning hot-dip galvanizing dual phase steels have been made.
     The influences of annealing duration and annealing temperature on selective oxidation have been investigated. The results show that as annealing duration prolonged and annealing temperature raised the density and size of surface oxides increase. And some coarse intermetallic Fe-Al grains emerge in the inhibition layer. XPS characterization shows that the variations of annealing temperature and duration do not change chemical natures of selective oxides.
     The segregation to steel surface is quite different for various alloying elements. Mn has a strong tendency to diffuse to steel surface, resulting in a sever segregation on steel surface so that MnO is the main surface oxide. Cr has a much less tendency of segregation on steel surface, and the amounts of Cr2O3are much less than MnO. Mo can hardly segregate on steel surface and virtually no Mo oxides could be traced on steel surface.
     By means of adjusting hydrogen content and dew point, the gas-metal reaction occurred in annealing process is examined. The results show that as hydrogen contents increased from5%to20%, the density of surface oxides increase. Moreover, the variations of hydrogen contents do not change chemical natures of selective oxides. When dew point rises from-50℃to-15℃, internal oxidation of alloying elements takes place, and consequently the mass of external oxides decrease. With the concept of preoxidation-reduction, annealed dual phase steels with large proportion of bare surface are obtained when the dew point is set as0℃/-70℃.
     The aluminothermic reaction of MnO with effective Al is investigated. And the maximum volume of MnO that is able to be reduced by effective Al in the limited galvanizing time of3s is obtained, which is equal to131.6nm. The growth mechanism of Fe-Al grains is discussed. Furthermore, a correlation between the size of MnO and the formation of coarse Fe-Al grains is given. A size effect of oxides on nucleation of Fe-Al intermetallic grains is proposed.
引文
[1]Cees. Ten Broek. Reinventing steel-mass reduction and climate change mitigation[A].2009年汽车用钢生产及应用技术国际研讨会[C].大连,中国金属学会,2009:69-75.
    [2]张启富,刘邦津,黄建中.现代钢带连续热镀锌[M].北京:冶金工业出版社,2007.
    [3]纪亮,袁盈,李刚等.我国机动车排放标准的大气污染物减排效果研究[J].环境工程技术学报,2011,3:45-49.
    [4]潘广宏,孟明.稀燃汽车尾气中氮氧化物的催化消除技术[J].化学工业与工程,2011,3:32-39.
    [5]刘侃侃.城市机动车尾气排放及道路扩散模式综述[J].环境监测管理与技术,2009,6:33-35.
    [6]尤学一,李莉,刘伟.城市街道内污染物扩散的数值模拟[J].天津大学学报,2007,9:12-16.
    [7]Senuma T. Physical Metallurgy of Modern High Strength Steel Sheets [J], ISIJ International,2001,41(6):520-532.
    [8]T. Kvackaj, I. Pokorny. Auto Body Sheets for a new Car generation [J]. Metabk,2002,41(1):37-42.
    [9]International Iron and Steel Institute. Project reports on ultra light steel auto report (ULSAB), ultra light steel auto closure (ULSAC), ultra light steel auto body-advanced vehicle concept (ULSAB-AVC) http://www.worldautosteel.org
    [10]International Iron and Steel Institute, ultra Light steel autobody-advanced vehicle concept (ULSAB-AVC) over view Report (2002). Http://www.worldautosteel. org.
    [11]马鸣图.先进汽车用钢[M].北京:化学工业出版社,2007.
    [12]Konieczny A. On the formability of automotive TRIP steels [J]. SAE Technical Paper No.2003-01-0521.
    [13]Ludke B, Pfestorf M. Sheet steels for automotive applications, TMS [J]. The First International Symposium on Niobium Microalloy,2006,10:1-8.
    [14]桥本修.日本第141、142回西山纪念讲座[R].日本钢铁协会,1992:665
    [15]Mizui N. International symposium modern LC and ULC sheet steels for cold forming:processing and properties. Ed. By Wolfgang Bleck. Germany:Aachen, 1998:169-183.
    [16]江海涛,康永林,于浩.烘烤硬化汽车钢板的开发与研究进展[J].汽车工艺与材料,2005,(3):1-4.
    [17]占部俊明,细谷佳弘.汽车用高强度冷轧钢板的现状及展望[J].世界钢铁,2007,7(4):58-62。
    [18]曾伟明,张梅,李麟等.超高强度微合金复相钢的连续冷却转变特性[J].上海金属,2010,32(1):19-22.
    [19]Jong Sang Kim, Suk-Kyu Lee. Development of Hot-dip galvanized advanced high strength steels [A]中国2010带钢连续热镀锌发展论坛[C],北京腐蚀与防护协会,北京,2010.
    [20]王利,朱晓东.汽车轻量化与先进的高强度钢板[J].宝钢技术,2003,(5):53-59.
    [21]Sugimoto K, Kobayashi M, Hashimoto S. Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual phase steel [J]. Metall. Trans. A,1993,23A:3085-3091.
    [22]Hiwatashi S, Takahashi M, Katayama T. Effect of deformation-induced transformation on deep drawability, forming mechanism of TRIP type high-strength steel sheet [J]. Jpn. Soc. Technol. Plast.,1994,35:109-114.
    [23]Pichle A, Hebesberger T, Traint S, et al通过添加微合金元素控制显微组织来改善先进高强度薄板性能[A].汽车用铌微合金化钢板[C].北京:冶金工业出版社,2006:191-211.
    [24]Black W. Using the TRIP effect -the dawn of a promising group of cold formable steels [A]. Int. Conf. on TRIP-Aided High Strength Ferrous Alloys [C]. Aachen, Germany:WMG,2002:13-23.
    [25]Speer J G, Rizzo F C, Matlock D K, et al. The "quenching and partitioning" Process:Background and Recent Progress[J]. Materials Research,2005,8(4): 417-423
    [26]Edmonds D V, He K, Miller M K, et al. Microstructure Features of "quenching and partitioning":A New Martensite Steel Heat Treatment J]. Materials Science Forum,2007,539-543:4819-4825.
    [27]黄建中.汽车腐蚀及其表面涂镀防护技术的现状与进展[J].汽车工艺与材料,2006(8):1-7.
    [28]黄建中,朱峰,钟积礼等.汽车用其用材的腐蚀与对策:中国·瑞典10年合作研究[J].腐蚀科学与防护技术,1999,11(1):1-12.
    [29]张红,杜翠薇,齐慧滨等.镀锌层破损汽车钢板在含NaCl溶液和泥浆中的腐蚀行为与EIS研究[J].腐蚀科学与防护技术,2009,21(3):333-336
    [30]张红,杜翠薇,齐慧滨等.pH值对热镀锌汽车板和IF钢基板在NaCl溶液中电化学行为的影响[J].2009,30(7):451-454.
    [31]苏连峰.汽车用先进高强度钢开发和研究的进展[J].钢铁研究,2009,37(5):58-62.
    [32]谭娟,王俊等.高强钢合金化热镀锌进展[J].材料导报,2008,22(2):64-67.
    [33]Driilet P, Zermout Z, Bouleau D, et al. Selective oxidation of high Si, Mn and Al steel grade during recrystallization annealing, and steel/Zn reactivity[A]. Galvatech'046th international conference on zinc and zinc alloy coated steel sheet [C]. Chicago, USA, The association for iron & steel technology,2004:1123-1134.
    [34]Akihiro Miyasaka. Recent Progress in Coated high tensile strength steels for automobile use [A]. Galvatech'07 7th international conference on zinc and zinc alloy coated steel sheet [C]. Osaka, Japan, the Iron and Steel Institute of Japan, 2007:354-350.
    [35]Yong Feng Gone, Han Soo Kin, Bruno Harles, et al. Internal oxidation during intercritical annealing of CMnSi TRIP steel[J]. ISIJ International,2009, 49(4):557-563
    [36]Jong-Sang Kim, Kwang-Geun Chin. Development of advanced high strength steels with 1180MPa in tensile Strength [A]. Galvatech'07 7th international conference on zinc and zinc alloy coated steel sheet [C]. Osaka, Japan, the Iron and Steel Institute of Japan,2007:369-373.
    [37]唐荻,江海涛,米振莉等.国内冷轧汽车用钢的研发历史、现状及发展趋势[J].鞍钢技术,2010,361(1):1-6.
    [38]A. Murugaiyan, A. Saha Podder. Phase transformations in two C-Mn-Si-Cr dual dhase dteels [J]. ISIJ International,2006,46(10):1489-1494.
    [39]Shi M F双相钢和低合金高强度钢成形性能的对比[J].世界钢铁,2002,4:18-22
    [40]邝霜,康永林,于浩等C-Si-Mn冷轧双相钢的应变硬化特性[J].材料工程,2008。
    [41]邝霜,康永林,于浩等.500MPa级冷轧双相钢的组织与性能研究[J].金属热处理,2005,32(5):51-55.
    [42]Jinbo Qu, Wael Dabboussi, et al. Effect of microstructure on static and dynamic mechanical property of a dual phase steel studied by shear punch testing[J]. ISIJ International,2005,45(11):1741-1746.
    [43]C. Mapelli, S. Barella, R. Venturini. Characterization of the relation among the mechanical behavior and the texture features in high martensitic dual phase steels [J]. ISIJ International,2005,45(11):1727-1735.
    [44]康永林,孙建林.高强度薄钢板研究的新进展及其在汽车上的应用[J].钢铁,2002,37(5):65-70.
    [45]王利,杨雄飞,陆匠心.汽车轻量化用高强度钢钢板的发展[J].钢铁,2006,41(9):1-8.
    [46]Tetsuya Mega, Kohei Hasegawa, Hidetaka Kawabe. Ultra high-strength steel sheets for bodies, reinforcement parts, and seat frame parts of automobile-ultra high-strength steel sheets leading to great improvement in crash-worthiness. JFE Technical Report,2004(4):38-43.
    [47]A. Pichler, E. Tragl, T. Kurz, et al. DP grades with improved formability[R]. ECSC Report, Contract No. RFSR-CT-2004-00035,2009.
    [48]Man Been Moon, Sang Wook Lee,et al. Development of 590Mpa grade DP GA steel for automotive outer panel use[A]. Galvatech'11,8th international conference on zinc and zinc alloy coated steel sheet [C]. Genova, Italy, AIM,2011
    [49]Mintz B. Review on the hot dip galvanizability of low Si TRIP and dual phase steels with 590MPa strengths [A]. Galvatech'01,5th International conference on zinc and zinc alloy coated steel sheet [C], Brussels, Verleg Stahleisen GmbH,2001: 551-559.
    [50]K. Kyono, T. Shimizu, K. Sakata. Development of high strength grade galvannealed sheet steel [A]. Galvatech'01,5th International conference on zinc and zinc alloy coated steel sheet [C]. Brussels, Verleg Stahleisen GmbH,2001: 121-128.
    [51]Wolfgang Bleck, Phiu-On Kriangyut. Grain refinement and mechanical properties in advanced high strength sheet steel [J]钢铁,2005,40(增刊):50-57.
    [52]Mohsen Asadi Asadadab, Massoud Goodarzi. Kinetics of Austenite Formation in Dual Phase Steels [J]. ISIJ International,2008,48(9):1251-1255.
    [53]T. Waterschoot, K. Verbeken B. C. DE Cooman. Tempering kinetics of the martensitic phase in DP Steel [J]. ISIJ International,2006,46(1):138-149.
    [54]N. R. BANDYOPADHYAY, S. DATTA. Effect of manganese partitioning on transformation induced plasticity characteristics in microalloyed dual phase steels [J]. ISIJ International,2004,44(5):927-934.
    [55]Richard Meguerian, Joseph McDermid. Reactive wetting kinetic during the galvanizing of high-Mn steels [A]. Galvatech'07 7th international conference on zinc and zinc alloy coated steel sheet [C]. Osaka, Japan, the Iron and Steel Institute of Japan,2007:448-453.
    [56]冯惠平,王四根,花礼先.碳和锰元素对Mn-Si双相钢连续冷却转变的影响[J].金属热处理,1998,2:15-18.
    [57]张国珍,田棕,吴建英.硅、锰和轧制工艺对双相钢组织和性能的影响[J].北京科技大学学报,1994,2:35-39.
    [58]王科强,刘仁东,韩启航.C-Mn-Cr系冷轧热镀锌双相钢的高温力学性能及热力学研究[J].热加工工艺,2011,11:62-65.
    [59]隋晓红,李平,赵宝纯.热处理对低碳硅-铌双相钢组织与性能的影响[J].金属热处理,2010,12:46-51.
    [60]赵征志,徐刚,金光灿等.高强度C-Mn-Si系冷轧双相钢的研究与开发,金属热处理,2009,1:67-72.
    [61]Hardy Mohrbacher铌微合金化汽车板[A].汽车用铌为合金化钢板.北京:冶金工业出版社,2006:1-5.
    [62]韩会全,刘彦春,崔席勇.退火和缓冷工艺对双相钢组织性能的影响[J].轧钢,2009,26(1):18-21.
    [63]Hardy Mohrbacher. Effects of Niobium in galvanized advanced high strength steels for automoticve applications [A].2009大连汽车用钢生产及应用技术国际研讨会[C],大连,中国金属学会,2009:112-115.
    [64]张增良,宋仁柏,程知松等.800MPa冷轧双相钢的工艺与组织性能研究[J].上海金属,2007,29(5):160-165.
    [65]邝霜,康永林,于浩.冷轧双相钢连续退火组织的转变[J].钢铁,2007,11:65-70.
    [66]蒋俊华.1000MPa超高强双相钢水淬及回火工艺研究[D].上海,上海交通大学,2007.
    [67]邝霜,康永林,刘仁东等.热镀锌线生产600MPa冷轧双相钢的组织性能分析[C].2007年钢铁年会论文集.成都:265-268.
    [68].Rashid M. S. GM980X—Potential Applications and Review [J].SAE PrePrints, 1977, Feb:1-12.
    [69]张淑苑.双相钢及高强度低合金钢(HSLA)成形性能的比较[J].本钢技术,2002,(5):11-16.
    [70]马鸣图,吴宝榕.双相钢物理和力学冶金[M].北京:冶金工业出版社,1988:123-125.
    [71]Dehanshu Bhattacharya. Development in advanced high strength steels [A]. Proceedings of the joint international conference of HSLA steels 2005 and ISUGS 2005[C]. Sanya, China,2008,8-10:70-77.
    [72]大泽一典,铃木善继,田中俊吾.川崎制铁技报[J].2002,34:59-65.
    [73]焦书军,张红,郑建平.冷轧热镀锌双相钢成分设计模型化的研究[J].宝钢技术,2003,5:43-47.
    [74]袁明生.先进高强度热镀锌钢面临的挑战及研究[J].世界钢铁,2006,3:6-16.
    [75]尹显东,张立芬,黄大鹏.新型实用热镀锌双相钢(RDP600)的试验研究[J].汽车工艺与材料,2006,6:11-13.
    [76]Takashi Iwama, Fusato Kitano, Yasunobu Nagataki. Development of galvannealed dual-Phase ultra-high strength steel sheets with superior formability and spot-weldability [A]. Galvatech'04 6th international conference on zinc and zinc alloy coated steel sheet [C]. Chicago, USA, The association for iron & steel technology,2004:529-545.
    [77]Li Y.X., Lin Z.Q., Jiang A.Q., et al. Use of high strength steel sheet for lightweight and crash worthy car body[J]. Materials and Design,2003,24(3): 177-182.
    [78]M. B. Moon, W. B. Kim, S. J. Park. Development of 590MPa grade low Si concentration TRIP GA sheet steels [A]. Galvatech'07 7th international conference on zinc and zinc alloy coated steel sheet [C]. Osaka, Japan, the Iron and Steel Institute of Japan,2007:363-368.
    [79]M.F. Shi, G.H. Thomas, X.M. Chen, Formability performance comparison between Dual Phase and HSLA Steels [A].43rd MWSP[C], ISS-AME, Warrendale, PA,2001,165-168.
    [80]K. Kyono, T. Shimizu, K. Sakata, Development of High Strength Grade Galvannealed Sheet Steels [A]. Galvatech'01 5th international conference on zinc and zinc alloy coated steel sheet [C], Brussels,121-123.
    [81]O.M. Faral, T. Hourman, Influence of continuous annealing conditions on dual phase and TRIP Steels for automotive application [A].41st MWSP[C], ISS-AIME, Warrendale, PA,1999,253-256.
    [82]J. Vrieze, A. Dekker, H. Winter, Cold-rolled Hot-Dip galvanised multi-phase steel with 600-900 MPa tensile strengths [A]. IOM galvanised steel sheet forum-automotive[C], London,2000,17-21.
    [83]J.S. Rege, T. Inazumi, Y. Nagataki, Development of HDGI/HDGA dual phase steel family DP500, DP600, DP800, DP1000 at National Steel Corporation[A]. 44th MWSP[C], ISS-AIME, Warrendale, PA,2002,391-396.
    [84]M. Kamura, Y. Utsumi, Y. Omiya, Crashworthiness and spot weldability of galvannealed DP800 steel sheet[C].SAE Paper,2001(1):3094-3097.
    [85]K. Yamazaki, M. Oka, H. Yasuda, Recent advances in ultrahigh-strength sheet steels for automotive structural Use[C].Nippon Steel Technical Report,1995,64: 37-44.
    [86]Y. Suzuki, K. Osawa, C. Kato, et al. Development of TS 590MPa grade galvannealed sheet steel for automotive use[A], IOM Galvanised steel sheet forum-automotive[C], London,2000:57-66.
    [87]K. Kyono, T. Shimizu, K. Sakata, C. Kato, Development of High Strength Grade Galvannealed Sheet Steels[A], Galvatech'01 [C], Brussels,2001:121-128.
    [88]Y. Tobiyama, K. Osawa, M. Hirata. Development of 590MPa galvannealed sheet steels with dual phase structure [J]. Kawasaki Steel Technical Report,2000,42: 19-23.
    [89]辜蕾钢,徐文章.冷轧带钢连续退火冷却技术及建设的连续退火机组[J].钢铁技术,2007,5:13-15.
    [90]何建锋.冷轧板连续退火技术及其应用[J].上海金属,2004,26(4):50-53
    [91]张学辉,毛卫民等.汽车用冷轧超高强度双相钢的研发和生产[J].武钢技术,2008,46(3):54-58.
    [92]刘彦春,董瑞峰,闫波.应用超快冷工艺开发540MPa级C-Mn双相钢试验[J].轧钢,2007,2:16-19.
    [93]三浦正明.高EI和高γ型980 MPa级冷轧钢板的特性[J].鞍钢技术,2008,(1):59-62.
    [94]Toshiki Nonaka. Development of ultra high strength cold rolled steel sheet for automotive use [J]. Nippon Steel Technical Report.2003:56-57.
    [95]Hiroshi Kawaguchi.汽车用铌微合金化钢板[M].北京:冶金工业出版社,2006:39-40.
    [96]范建文,刘清友,侯豁然等.超细晶铁素体钢的强度[J].金属热处理,2007,3:42-45.
    [97]翁宇庆.超细晶钢理论及技术进展[J].钢铁,2005,3:17-25.
    [98]潘秀兰,王艳红,梁慧智.超细晶钢关键技术[J].世界钢铁,2011,4:1-9.
    [99]Marion Calcagnotto, Dirk Ponge, Dierk Raabe. Ultrafine grained Ferrite/Martensite dual phase steel fabricated by large strain warm deformation and subsequent intercritical annealing [J]. ISIJ International,2008,48(8): 1096-1101.
    [100]Kyung-Tae Park, Young Kook Lee, Dong Hyuk Shin. Fabrication of ultrafine grained Ferrite/Martensite dual phase steel by severe plastic deformation [J]. ISIJ International,2005,45(5):750-755.
    [101]C. Wagner, Types of reactions in the oxidation of alloys [J].Z. Elektrochem, 1959,63:772-778.
    102] R. A. Rapp. Kinetics, microstructures and mechanism of internal oxidation-its effect and prevention in high temperature alloy oxidation [J], Corrosion,1965,21:382-385.
    103] J. H. Swisher, Oxidation of metals and alloys [M], Ohio:ASM, Metals Park, Chapter 12,1971.
    104] J. L. Meijering, Internal oxidation in alloys, advances in materials research [M], New York:Wiley 1971.
    105] F.Maak, Zur Auswertung von Messungen der Schichtdicken binarer Legierungen mit innerer Oxydation bei Gleichzeitiger auβerer Oxydation[J], Z. Metall.1961,52:545-549.
    [106]D. L. Douglass, A critique of internal oxidation in alloys during the post-Wagner era [J], Oxid. Met.,1995,44:81-84.
    [107]H.J.Grabke, V.Leroy, H. Viefhaus. Segregation on the surface of steels in heat treatment and oxidation [J]. ISIJ International,1995,35(2):95-113.
    [108]S. Swaminathan, M. Rohwerder. Temperature and dew point dependent segregation of phosphorus and sulfur in Fe-Mn-P-S model alloy [J]. Surface & Coatings Technology,2011,205:4089-4093.
    [109]Huachu Liu, Yanlin He, Srinivasan Swaminathan. Effect of dew point on the surface selective oxidation and subsurface microstructure of TRIP-aided steel [J]. Surface & Coatings Technology,2011,206:1237-1243.
    [110]Suk-Kyu Leel, Jong-Sang Kiml, Jin-Won Choi. Effects of dew point on selective oxidation of TRIP steels containing Si, Mn, and B [J]. Met. Mater. Int., 2011,17(2):251-257.
    [111]K.C.Yang, L.W. Chang. Effect of dew point and Niobium on galvanizability of 780MPa grade galvanized dual-phase steel [A]. Galvatech'07 7th international conference on zinc and zinc alloy coated steel sheet [C]. Osaka, Japan, the Iron and Steel Institute of Japan,2007:478-481.
    [112]Vanessa de Freitas Cunha Linsa, Laureanny Madeirab. Selective oxidation of dual phase steel after annealing at different dew points [J]. Applied Surface Science,2011,257:5871-5878.
    [113]X. Vanden Eynde, J. P. Servais, M. Lamberigts. Investigation into the surface selective oxidation of dual-phase steels by XPS, SAM and SIMS [J]. Surf. Interface Anal.2003,35:1004-1014.
    [114]S. Alibeigi, R. Kavitha, R.J. Meguerian, et al. Reactive wetting of high Mn steels during continuous hot-dip galvanizing [J]. Acta Materialia,2011,59(9): 3537-3549.
    [115]Jonas Staudte, Jean-Michel Mataigne, Didier Loison, et al. Galvanizability of high Mn grades versus Mn-Al and Mn-Si grades [A]. Galvatech'11 8th international conference on zinc and zinc alloy coated steel sheet [C]. Genova, Italy, AM,2011
    [116]L. Lin, B. C. Cooman D, P. Wollants. Effect of aluminum and silicon on transformation induced plasticity of the TRIP Steel [J]. J. Mater. Sci. Technol., 2004,20(2):135-138.
    [117]L. Li, Y. L. He, B. C. Cooman D, et al Computer-aided designing and manufacturing of advanced steels [J]. Rare Metals,2006,25(5):407-411.
    [118]M. Spiegel, I. Parezanovic. Selective oxidation and segregation during annealing of steels at low oxygen partial pressures [J]. Materials at High Temperatures.2005,3-4:343-349.
    [119]S. Suzuki, H. Hasegawa, S. Mizoguchi. SMS/XPS studies of surface layer formed in Fe-Si-Mn alloys by oxygen penetration [J]. ISIJ International,2003, 43(1):71-76.
    [120]Ivana Cvijovic, Ivana Parezanovic. Michael Spiegel. Influence of H2-N2 atmosphere composition and annealing duration on the selective surface oxidation of low-carbon steels [J]. Corrosion Science,2006,48:980-993.
    [121]R. Khondker, A. Mertens, J.R. McDermid. Effect of annealing atmosphere on the galvanizing behavior of a dual-phase steel [J]. Materials Science and Engineering A,2007,463:157-165.
    [122]T. Van De Putte, Z. Zermout, D. Loison. Selective oxidation during the austenitic annealing of a CMnSi Steel [J]. Advanced Materials Research,2007, 15-17:129-134.
    [123]Ivana Parezanovic. Selective oxidation and segregation in commercial steels and model alloys [D]. RWTH, Aachen, Germany,2005.
    [124]Y. Suzuki, T. Yamashita, Y. Sugimoto, et al. Thermodynamic analysis of selective oxidation behavior of Si and Mn-added steel during recrystallization Annealing [J]. ISIJ International,2009,49(4):564-573.
    [125]K.S. Shin, S.H. Park, S.H. Jeon, et al. Characterization of the galvanizing behavior depending on annealing dew point and chemical composition in Dual-Phase steels [A]. The Asia-Pacific Galvanizing Conference 2009[C], Lotte Hotel Jeju, Korea,2009:157-161.
    [126]S. Shimada, Y. Takada, J. Lee, et al. Trial to evaluate wettability of liquid Zn with steel sheets containing Si and Mn[J]. ISIJ International,2008,48(9): 1246-1250.
    [127]Ivana Parezanovic, Michael Spiegel. Influence of B, S, P, Si and C segregation on the selective oxidation of dual phase and interstitial free steels [A]. Galvatech'04 6th international conference on zinc and zinc alloy coated steel sheet [C]. Chicago, USA, The association for iron & steel technology,2004:401-410.
    [128]In-Ho Jung, Manas Paliwal, Young-Min Kim. Thermodynamic analysis of the oxidation of high-strength steels [A]. The Asia-Pacific Galvanizing Conference 2009[C], Lotte Hotel Jeju, Korea,2009:241-245.
    [129]Marie-Laurence Giorgi, Jean-Bernard Guillot, Amelie Ollivier. Selective oxidation of ferritic steels [A]. Galvatech'07 7th international conference on zinc and zinc alloy coated steel sheet [C]. Osaka, Japan, the Iron and Steel Institute of Japan,2007:409-414.
    [130]A. Ollivier-Leduc, M.-L. Giorgi, D. Balloy. Nucleation and growth of selective oxide particles on ferritic steel [J]. Corrosion Science,2010,52:2498-2504.
    [131]Marc Blumenau, Afrooz Barnoush, Ingo Thomas. Impact of selective oxidation during inline annealing prior to hot-dip galvanizing on Zn wetting and hydrogen-induced delayed cracking of austenitic FeMnC steel [J]. Surface & Coatings Technology 2011,206:542-552.
    [132]I. Parezanovic', M. Spiegel. Surface modification of various Fe-Si and Fe-Mn alloys by oxidation/reduction treatments [J]. Surface Engineering,2004, 20(4):285-292.
    [133]S. Swaminathan, M. Spiegel. Thermodynamic and kinetic aspects on the selective surface oxidation of binary, ternary and quaternary model alloys [J]. Applied Surface Science,2007,253:4607-4619.
    [134]Takeshi Yasui, Makoto Nakazawal, Akihiro Miyasaka. Factors affecting galvanizing behavior of Si-containing steel sheets [A]. Galvatech'07 7th international conference on zinc and zinc alloy coated steel sheet [C]. Osaka, Japan, the Iron and Steel Institute of Japan,2007:493-498.
    [135]Y. Suzuki, Y. Sugimoto, S. Fujita. Effect of Mn content in steels on the selective surface oxidation behavior of 1 mass% Si bearing low C steels in recrystallization annealing [J]. Tetsu-Hagane,2007,93(7):489-498.
    [136]E M. Bellhouse, J. R. McDermid. Selective Oxidation and Reactive Wetting of 1.0 Pct Si-0.5 Pct A1 and 1.5 Pct Si TRIP-Assisted Steels [J]. Metal. Mater. Trans. A,2010,41A:1539-1553.
    [137]J.R. McDermid, M.H. Kaye, W.T. Thompson. Fe Solubility in the Zn-Rich Corner of the Zn-Al-Fe Systemfor Use in Continuous Galvanizing and Galvannealing [J]. Metal. Mater. Trans. B,2007,38B:215-230.
    [138]W. A. Miller, G. A. Chadwick. On the magnitude of the solid/liquid interfacial energy of pure metals and its relation to grain boundary melting [J]. Acta Metallurgica,1967,15(4):607-614.
    [139]Nai-Yong Tang. Modelling A1 enrichment in galvanized coatings [J]. Metal. Mater. Trans. A,1995,26A:1699-1704.
    [140]C. Zener. Theory of Growth of Spherical Precipitates from Solid Solution [J]. Journal of Applied Physics,1949,20:950-953.
    [141]R. Kavitha, Joseph R. McDermid. Aluminothermic reduction of manganese oxides in the continuous galvanizing bath [A]. Galvatech'11,8th international conference on zinc and zinc alloy coated steel sheet [C]. Genova, Italy, AIM,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700