Twist基因在膀胱癌中表达与RNA干扰的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膀胱肿瘤是泌尿外科最常见的恶性肿瘤,其临床特点主要是高发病率、高复发率和低度恶性。细胞凋亡是机体重要的生理过程,也是机体维持细胞群体数量稳定的重要机制。肿瘤是一类细胞周期失控性疾病,细胞凋亡和增殖失去平衡是肿瘤产生和发展的主要原因之一,也是肿瘤细胞的基本特征。Twist是一个在进化过程中高度保守的转录因子,Twist蛋白被认为是一种癌蛋白,能影响许多肿瘤细胞的凋亡、侵袭和转移。RNA干扰是一项新兴的高效、特异、安全、可操作性强的基因阻断技术。它的发现改变了人们对细胞基因调控的传统理解,RNA干扰技术在对基因功能研究、信号转导基因上下游关系确认以及抗病毒、抗肿瘤治疗中有着广阔的应用前景。本研究应用免疫组化法探讨了Twist在膀胱癌组织中的表达与临床病理特征之间的关系,成功构建了靶向Twist基因的shRNA质粒表达载体,并筛选出其中抑制效果最为明显的shRNA质粒表达载体。用RNAi技术沉默膀胱癌T24细胞Twist基因的表达,观察其对人膀胱癌细胞生物学行为的影响。
     实验结果提示Twist在人膀胱癌组织中高表达,并与肿瘤的病理分级、临床分期有显著相关性。Twist是一个膀胱癌临床辅助诊断的分子标志物,并极可能是膀胱癌的一个潜在的治疗靶点,具有广阔的临床应用价值。人膀胱癌细胞系T24中Twist高表达,可以用作Twist基因沉默研究的靶细胞。RNAi沉默Twist基因后,明显地改变了人膀胱癌细胞生物学行为,表现细胞增殖能力降低,细胞凋亡的增加,细胞迁移速度明显减低。Twist基因干扰还可以明显提高膀胱癌T24细胞对化疗药物的敏感性,这将有助于减少化疗药物的毒副作用,增加化疗药物的疗效,对减少膀胱癌的复发起到重要作用。
     本研究提示:针对Twist基因及其表达产物的检测,将有助于判断膀胱癌的恶性程度,指导膀胱癌治疗;RNAi技术可以做为沉默膀胱癌中Twist基因的有效方法;而靶向Twist的基因治疗,可能为膀胱癌的治疗提供新的策略。
Bladder cancer is the most common tumors of genitourinary tract. The most important clinical character of it is high incidence rate ,high recurrence rate ,and low malignancy. In recent years, molecule mechanisms about bladder cancer is always the hot point, such as gene mutation , protooncogene activation , antioncogene inactivation , apoptosis disequilibrium and so on.The tumor is the result of unlimited cell proliferation, and cell growth is determined by genes.The tumor genes and the tumor suppressor genes exist in the human body, the functions of these two genes are different.The occurrence of tumor is due to increase tumor gene function and inhibit tumor suppressor gene function.A variety of external factors such as radiation, carcinogenic chemicals and viruses induced tumor through the changes of gene.Bladder cancer biological characteristics of malignant include multifocal, multi-gene involvement and heterogeneous multi-stage growth.At present, the treatments of bladder cancer include bladder surgery and anti-cancer drug instillation after surgery.However, easy to relapse after surgery and the height of the chemotherapy drug resistance have been the focus of the study and clinical issues.After nearly 20 years of development,gene therapy has been considered to be following the surgery, chemotherapy and other conventional treatment a very promising way to cure bladder cancer.
     Twist gene is a novel oncogene that is expressed at higher level in most of the tumors analyzed to date compared to normal tissues. Twist could activate many kinds of tumor related genes, and it has close correlation with tumor generation, development and prognosis. Epithelial mesenchymal transformation( EMT) refers to the epithelial cells into mesenchymal cells in a specific physiological and pathological circumstances.EMT plays important roles in embryonic development, chronic inflammation, tumor progression and a variety of fibrotic diseases.Twist is a important transcription factor in the process of EMT .Twist protein is considered to be a cancer protein, can affect the number of tumor cells apoptosis, invasion and metastasis.Twist maybe a new target in gene therapy.
     The present study observed the Twist protein expression in human bladder cancer tissues using immunohistochemical methods and analyzed the correlation between Twist protein expression and clinical pathological characters. Using RNA interference technique silencing Twist gene, the effects and its relative mechanism of Twist shRNA on the human bladder cancer cell line T24 cells was observed. The present study was divided into three parts. The follows are:
     1 Expressions of Twist gene in bladder carcinoma and its clinicopathological significance
     Objective: To investigate the expressions of Twist gene in bladder carcinoma and its clinicopathological significance. Methods: By immunohistochemical assay (SP), the expression of Twist gene was done in 5 cases of normal tissues and 95 cases of bladder carcinoma tissues. The results were analyzed by corresponding statistica methods. Results: Twist gene showed higher expression in bladder carcinoma. The rate of positive expression was 87.4% , while the positive rate was 20% in nomal tissues. The difference was of significance between the two tissues (P<0.05). The expressions of Twist gene was correlated with WHO pathology classification and TNM stage (P<0.05), and was incorrelated with age and sex. Conclusions: The expression of Twist is up-regulated in bladder carcinoma tissues , and it plays an important role in progression of tumor.
     2 Construction and screening of plasmid expression vectors encoding the short hairpin RNA targeting Twist gene
     Objective: To construct a plasmid expression vector coding for the short hairpin RNA (shRNA) targeting Twist mRNA. Methods: Two plasmid expression vectors coding for shRNA targeting 777 and 845 of Twist gene sequence and a control vector containing random DNA fragment were constructed. The recombinant plasmids were identified by PCR, and then transfected separately into bladder cancer cell line-T24. The Twist gene silencing effect was detected by RT-PCR and Western blotting. Results: The expected band was amplified from the plasmids coding for shRNA by PCR. Transfection of T24 cells expressing Twist gene with the shRNA plasmids resulted in a inhibition of Twist mRNA and protein expressions by 68% and 76%, respectively. Conclusion: The plasmid expression vectors coding for shRNA targeting Twist mRNA have been constructed successfully,of which pGenesil-shRNA1 most effectively silences Twist gene in T24 cells.
     3 Effect of silencing Twist gene expression by RNA interference on proliferation of human bladder carcinoma T24 cell line
     Objective: To investigate whether Twist gene downregulation by RNA interference (RNAi) leads to inhibition of proliferation and arrest of cell cycle in human bladder carcinoma T24 cell line. Methods: The shRNA expression plasmid targeting to Twist gene was constructed and transfected into bladder cancer T24 cell line with Lipofectamin2000. RT-PCR and Western Blot was used to monitor the validity of specific shRNA in downregulation of Twist expression. Then the MTT assay was performed for detecting cell proliferation and PI flow cytometric analysis for cell cycle. Results: The specific Twist shRNA was confirmed to be efficient in silencing Twist expression. Twist gene downregulation by RNAi inhibited cell proliferation remarkably( P < 0. 05) and arrested cell cycle at G1 phase significantly( P < 0. 05). There was an increase of cell number at G1 phase [ (74.34±3.24) % vs (48. 17±1.62) % , P < 0. 05 ] and a decrease of S phase [ (11.58±1.02) % vs (33.71±3.54) % , P < 0. 05 ] in T24 cells treated with Twist shRNA compared with untreated T24 cells. Conclusions: Twist specific shRNA expression vector could specifically and efficiently inhibit the expression of Twist gene to regulate cell cycle and inhibit cell proliferation in human bladder carcinoma T24 cell line.
     In summary, Twist gene expression products might be the auxiliary diagnosis way in assessing bladder cancer malignance and invasion ability, which might direct the bladder cancer operation and further treatment. The present study showed that Twist shRNA plasmids could silence Twist gene effectively and RNAi gene therapy targeting Twist might offer the new direction for treatment bladder cancer.
引文
[1] Thisse B, el Messa1 M, Perrin-Schmitt F. The twist gene: isolation of a Drosophila zygotic gene necessary for the establishment of dorsoventral pattern [J]. Nucleic Acids Res, 1987, 15(8): 3439-3453.
    [2] Sokol NS, Ambros V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth [J]. Genes Dev, 2005, 19(190): 2343-2354.
    [3] Baylies, MK, Bate M. Twist: a myogenic switch in Drosophila [J]. Science, 1996, 272(5267): 1481–1484.
    [4] IpY T, Park RE, Kosman D, et al. The dorsal gradient morphogen regulates stripes of rhomboid expression in the presumptive neuroectoderm of the Drosophila embryo [J]. GenesDev, 1992, 6(9):1728–1739.
    [5] Leptin M. Twist and snail as positive and negative regulators during Drosophila mesoderm development [J]. GenesDev, 1991, 5(9):1568–1576.
    [6] Jan YN, Jan LY. HLH proteins fly neurogenesis, and vertebrate myogenesis [J]. Cell, 1993, 75(5):827–830.
    [7] Kadesch T. Consequences of heteromeric interactions among helix-loop- helix proteins [J]. Cell Growth Differ, 1993, 4(1):49–55.
    [8] Weintraub H. The MyoD family and myogenesis: redundancy, networks, and thresholds [J]. Cell, 1993, 75(7):1241–1244.
    [9] Murre C, Mc Caw PS, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and mycproteins [J]. Cell, 1989 , 56(5):777–783.
    [10] Simionato E, Ledent V, Richards G, et al. Origin and diversification of the basic helix-loop-helix gene family in metazoans:insights from comparative genomics [J]. BMC Evol Biol, 2007, 2(7):33.
    [11]张锟,高玲. bHLH转录因子对视网膜细胞命运决定的作用[J].国际眼科杂志, 2007, 7(3):759-762.
    [12]韩朝,迟放鲁. bHLH转录因子家族成员Math1及其在内耳的研究进展[J].复旦学报(医学版),2007, 34(4):623-626.
    [13] Steingrimsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network [J]. Annu Rev Genet, 2004, 38: 365-411.
    [14] Furness SG, Lees MJ, Whitelaw ML. The dioxin(aryl hydrocarbon)receptor as a model for adaptive responses of bHLH/PAS transcription factors [J]. FEBS Lett, 2007, 581(19): 3616-3625.
    [15] Doedens A, Johnson RS. Transgenic models to understand hypoxia- inducible factor function [J]. Methods Enzymol, 2007, 435:87-105.
    [16] Guenou H, Kaabeche K, Dufour C, et al. Down-regulation of ubiquitin ligase Cbl induced by twist haploinsufficiency in Saethre Chotzen syndrome results in increased PI3K/ Akt signaling and osteoblast proliferation [J]. Am J Pathol, 2006, 169(4): 1303-1311.
    [17] Li L, Cserjesi P, Olson EN. Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis [J]. Dev Biol, 1995, 172(1):280–292.
    [18] Bialek P, Kern B, Yang X, et al. A twist code determines the onset of osteoblast differentiation [J].Dev Cell, 2004, 6(3):423–435.
    [19] Schroder R. Vasa mRNA accumulates at the posterior pole during blastoderm formation in the flour beetle Tribolium castaneum [J]. Dev Genes Evol ,2006 ,216(5):277 - 283.
    [20] Kountouras J, Zavos C, Chatzopoulos D. Apoptotic and anti-angiogenic strategies in liver and gastrointestinal malignancies [J]. J Surg Onco1, 2005, 90(4):249-259.
    [21] Soo K, O'Rourke MP, Khoo PL, et al. Twist function is required for the morphogenesis of the cephalic neural tube and the differentiation of the cranial neural crest cells in the mouse embryo [J]. Dev Biol,2002, 247(2): 251–270.
    [22] Maestro R, Dei Tos AP, Hamamori Y, et a1. Twist is a potentia1 oncogene that inhibits apoptosis. Genes Dev, 1999,13(17):2207-2217.
    [23] Stasiopoulos IA, Mironchik Y, Raman A, et al. HOXA5-twist interaction alters p53 homeostasis in breast cancer cells [J]. J Biol Chem, 2005, 280 (3):2294-2299.
    [24] Kwok WK, Ling MT, Yuen HF, et al. Role of p14ARF in TWIST-mediated senescence in prostate epithelial cells [J]. Carcinogenesis, 2007, 28(12): 2467-2475.
    [25] Hamamori Y, Sartorelli V, Ogrysko V, et a1. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A [J]. Cell, 1999,96(3): 405-413.
    [26] Brodeur GM. Neuroblastoma:biological insights into a clinical enigma [J]. Nat Rev Cancer, 2003, 3(3):203–216.
    [27] Castel V , Grau E , Noguera R , et al. Molecular biology of neuroblastoma [J]. Clin Transl Oncol , 2007 , 9(8): 478–483.
    [28] Hjiantoniou E, Iseki S, Uney JB, et al. DNazyme mediated cleavage of Twist transcripts and increase in cellular apoptosis [J]. Biochem Biophys Res Commun, 2003, 300(1): 178–181.
    [29] Sosic D, Richardson JA, Yu K,et al.Twist regulates cytokine gene expression through a negative feedback loop that represses NF-B activity [J]. Cell,2003,112(2):169–180.
    [30] Sosic D, Olson EN. A new Twist on Twist--modulation of the NF-kappa B pathway [J]. Cell Cycle, 2003, 2(2): 76-78.
    [31] Sharif MN, Sosic D, Rothlin CV, et al. Twist mediates suppression of inflammation by type I IFNs and Axl [J]. J Exp Med, 2006, 203(8):1891-1901.
    [32] Nikiforov MA, Hagen K, Ossovskaya VS, et al. p53 modulation of anchorage independent growth and experimental metastasis [J]. Oncogene, 1996,13(8):1709–1719.
    [33] Valsesia-Wittmann S, Magdeleine M, Dupasquier S, et al. Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells [J]. Cancer Cell.2004,6(6): 625–630.
    [34] Mironchik Y, Winnard PT, Vesuna F, et a1. Twist overexpression induces invivo angiogenesis and correlates with chromosomal instability in breast cancer [J]. Cancer Res, 2005, 65(23):10801-10809.
    [35]时昌文,李杰,孙京杰,等. Twist在胃癌中的表达及其与临床病理学指标关系研究[J].中国现代普通外科进展, 2007, 10(3): 233 - 235.
    [36] Kajiyama H, Shibata K, Terauchi M, et al . Chemoresistance to paclitaxel induces epithelial- mesenchymal transition and enhances metastatic potential for epithelial ovarian carcinoma cells [J] . Int J Oncol ,2007 ,31 (2) :277 - 283.
    [37] Yuen HF, Chan YP, Wang ML, et al. Up-regulation of Twist in oesophgeal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis [J]. J Clin Pathol, 2007, 60(5):510-514.
    [38] Song LB, Liao WT, Mai HQ, et al. The clinical significance of twist expression in nasopharyngeal carcinoma [J]. Cancer Letter, 2006, 242(2):258-265.
    [39] Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial– mesenchymal transition regulators snail, SIP1, and twist in gastric cancer [J]. Am J Pathol, 2002, 161(5):1881–1891.
    [40] Hoek K, Rimm DL, Williams KR, et al. Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas[J]. Cancer Res, 2004, 64(15): 5270– 5282.
    [41] Van Doorn R, Dijkman R, Vermeer MH, et al. Aberrant expression of the tyrosine kinase receptor EphA4 and the transcription factor twist in Sezary syndrome identified by gene expression analysis [J]. Cancer Res, 2004, 64(16): 5578–5586.
    [42] Watanabe O, Imamura H, Shimizu T, et al. Expression of twist and wnt in human breast cancer [J]. Anticancer Res, 2004, 24(6): 3851–3856.
    [43] Entz-Werle N, Stoetzel C, Berard-Marec P, et al. Frequent genomic abnormalities at Twist in human pediatric osteosarcomas [J]. Int J Cancer, 2005, 117(3): 349–355.
    [44] Kwok WK, Ling MT, Lee TW, et al. Up-regulation of Twist in prostate cancer and its implication as a therapeutic target [J]. Cancer Res, 2005, 65(12): 5153–5162.
    [45] Martin TA, Goyal A, Watkins G, et al. Expression of the transcription factors snail, slug, and twist and their clinical significance in human breast cancer [J]. Ann Surg Oncol, 2005, 12(6):488–496.
    [46] Raval A, Lucas DM, Matkovic JJ, et al. Twist2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia [J]. J Clin Oncol, 2005, 23(17): 3877–3885.
    [47] Fidler I J. The pathogenesis of cancer metastasis:the‘seed and soil’hypothesis revisited [J]. Nat Rev Cancer, 2003, 3(6): 453-458.
    [48] Yang J , Mani S A , Donaher J L ,et al . Twist , a master regulator of morphogenesis , plays an essential role in tumor metastasis [J] . Cell , 2004,117(7): 927 - 939.
    [49] Hanahan D, Winberg RA. The hallmarks of cancer [J]. Cell, 2000, 100(l):57-70.
    [50] Cavallaro U, Christofori G. Cell adhesion and signaling by eadherins and Ig CAMs in caneer [J]. Nat Rev Cancer, 2004, 4(2): 118-132.
    [51] Brabletz T, Jung A, Reu S, et al. Variable beta-eatenin expression in eoloreetale aneersindieates tumor Progression driven by the tumor environment [J]. Proc Natl Aead Sci USA, 2001, 98(18):10356-10361.
    [52] Brabletz T, SPaderna, Kolb J. Down-regulation of the homeodomain factor Cdx2 in colorectal cancer by collagen type I:an active role for the tumor environment in malignant tumor progression [J]. Cancer Res, 2004, 64(19): 6973-6977.
    [53] Derycke LD, Bracke ME. N-cadherin in the spotlight of cell–cell adhesion, differentiation, embryogenesis, invasion and signaling [J]. Int J Dev Biol, 2004, 48(5-6):463–476.
    [54] Huber MA, Kraut N, Beug H. Molecular requirements for epithelial– mesenchymal transition during tumor progression [J]. Curr Opin Cell Biol, 2005, 17(5):548–558.
    [55] Heimann R, Lan F, McBride R, et al. Separating favourable from unfavourable prognostic markers in breast cancer: the role of E-cadherin [J]. Cancer Res, 2000, 60(2):298–304.
    [56] Vleminckx K, Vakaet L, Mareel M, et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role [J]. Cell, 1991, 66(1):107–119.
    [57] Maestro R, Dei Tos AP, Hamamori Y, et al. Twist is a potential oncogene that inhibits apoptosis [J]. Genes Dev, 1999, 13(17):2207–2217.
    [58] Alexander NR, Tran NL, Rekapally H, et al. N-cadherin gene expression in prostate carcinoma is modulated by integrin dependent nuclear translocation of Twist1 [J]. Cancer Res, 2006, 66(7):3365-3369.
    [59] Lee TK, Poon RT, Yuen AP, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition [J]. Clin Cancer Res, 2006, 12(18): 5369-5376.
    [60] Howe LR, Watanabe O, Leonard J, et al. Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation [J]. Cancer Res, 2003, 63(8):1906–1913.
    [61] Schmitt CA, Fridman JS, Yang M, et al. Dissecting p53 tumor suppressor functions in vivo[J]. Cancer Cell, 2002, 1(3):289–298.
    [62] Zeisberg M, Bottiglio C, Kumar N. Bone morphogenie Protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models [J]. Am J physiol Renal physiol, 2003, 285(6):1060-1067.
    [63] Khalil N, Parekh TV,O’Connor R. Regulation of the effeets of TGF-beta 1 by activation of latent TGF-beta l and differential expression of TGF-beta receptors(T beta R-I and T betaR-Ⅱ)in idiopathic pulmonary fibrosis [J]. Thorax, 2001, 56(12):907-915.
    [64] Willis BC, Liebler JM, Luby-Phelps K, et al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis [J]. Am J Pathol, 2005, 166(5):1321-1332.
    [65] Yao HW, Xie QM, Chen JQ, et al. TGF-beta l induces alveolar epithelial to mesenchymal transition in vitro [J]. Life sci, 2004, 76(l):29-37.
    [66] Horikawa T, Yang J, Kondo S, et al. Twist and epithelial-mesenchymal transition are induced by the EBV oncoprotein latent membrane protein 1 and are associated with metastatic nasopharyngeal carcinoma [J]. Cancer Res, 2007, 67(5):1970-1978.
    [67] Sharon GN, Jean-Eudes D, Michal GM, et al. Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells [J]. Developmental Dynamics, 2005, 232(2):487–497.
    [68] Mironchik Y, Winnard PT Jr, Vesuna F, et al. Twist overexpression induces in vivo angiogenesis and correlates with chromosomal instability in breast cancer [J]. Cancer Research, 2005, 65(23):10801-10809.
    [69] Vesuna F, Winnard P Jr, Glackin C, et al. Twist overexpression promotes chromosomal instability in the breast cancer cell line MCF-7[J]. Cancer Genetics and Cytogenetics, 2006,167(2):189-191.
    [70] Napoli C, Lemieux C, Jorgensen R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans [J]. Plant Cell, 1990, 2(4):279-289.
    [71] Cogoni C, Romano N, Macino G.. Suppression of gene expression by homologous transgenes [J]. Antonie Van Leeuwenhoek, 1994, 65(3):205-209.
    [72] Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed [J]. Cell, 1995 , 81(4):611-620.
    [73] Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans [J]. Nature, 1998, 391(6669):744-745.
    [74] Wianny F, Zernicka-Goetz M. Specific interference with gene function by double-stranded RNA in early mouse development [J]. Nat Cell Biol, 2000, 2(2):7075.
    [75] Elbashir S M, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian ce1ls [J]. Nature, 2001, 411(6836):494-498.
    [76] Nykanen A, Haley B, Zamore PD. ATP requirements and small interference RNA structure in the RNA interference pathway [J]. Cell, 2001,107 (3):309-321.
    [77] Tuschil T. Expanding small RNA interference [J]. Nat Biotechno1, 2002, 20 (5):446-468.
    [78] Haussecker D, Proudfoot NJ. Dicer-dependent turnover of intergenic transcripts from the human beta-globin gene cluster [J]. Mol Cell Biol, 2005, 25(21):9724-9733.
    [79] Xie Z, Allen E, Wilken A, et al. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana [J]. Proc Natl Acad Sci USA, 2005, 102(36): 12984- 12989.
    [80] Harris KS, Zhang Z, McManus MT, et al. Dicer function is essential for lung epithelium morphogenesis [J].Proc Natl Acad Sci USA, 2006 ,103(7):2208-2213.
    [81] Kuehbacher A, Urbich C, Zeiher AM, et al. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis [J]. Circ Res, 2007, 101(1):59-68.
    [82] Luo H, Hu DX, Chen P. Dicer efficiently converts large dsRNAs into siRNAs suitable for COX-2 gene [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2007, 32(3):437-442.
    [83] Suarez Y, Fernandez-Hernando C, Pober JS, et al. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells [J]. Circ Res, 2007, 100(8):1164-1173.
    [84] Jaskiewicz L, Filipowicz W. Role of Dicer in posttranscriptional RNA silencing [J]. Curr Top Microbiol Immunol, 2008, 320:77-97.
    [85] Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 2001, 409(6818): 363-366.
    [86]康洁,刘福林. RNAi的抗病毒作用及其机制[J].现代免疫学, 2004, 24 (5):439-441.
    [87] Tijsterman M, Plasterk RH. Dicers at RISC: the mechanism of RNAi [J]. Cell, 2004, 117(1):1-3.
    [88] Sen GL, Blau HM. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies [J]. Nat Cell Biol, 2005, 7(6):633-636.
    [89] Vestin A, Weinstein J, Davidov E, et al. Gene silencing RNAi technology: possible application to therapy [J]. Harefuah, 2006, 145(2): 156-159.
    [90] Aigner A. Applications of RNA interference: current state and prospects forsiRNA-based strategies in vivo [J]. Appl Microbiol Biotechnol, 2007, 76 (1):9-21.
    [91] Hutvagner G, Simard MJ. Argonaute proteins: key players in RNA silencing [J]. Nat Rev Mol Cell Biol, 2008, 9(1):22-32
    [92]吴元明,陈苏民. RNA干涉的最新研究进展[J].中国生物化学与分子生物学报, 2003, 19(4):411-417.
    [93] Harborth J, Elbashir SM, Becheft K, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs [J]. Cell Science, 2001, 114(24):45-57.
    [94] Maliogka VI, Dovas CI, Katis NI. Demarcation of ilarviruses based on the phylogeny of RNA2-encoded RdRp and a generic ramped annealing RT-PCR [J]. Arch Virol, 2007, 152(9):1687-1698.
    [95] Calderon AJ, Lavergne JA. RNA interference: a novel and physiologic mechanism of gene silencing with great therapeutic potential[J]. P R Health Sci J, 2005, 24(1):27-33.
    [96] Zhang DX, Pan B, Liu B, et al. Experimental strategies of the application of RNAitechnique in mammalian cells [J]. Yi Chuan, 2005, 27(5):839-844.
    [97] Zhou D, He QS, Wang C, et al. RNA interference and potential applications [J]. Curr Top Med Chem, 2006, 6(9):901-911.
    [98] Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs [J]. Cell, 2001, 107(3):297-307.
    [99]朱汝森,刘新光,梁念慈. RNAi实现策略的进展[J].国外医学临床生物化学与检验学分册, 2005, 25(3):214-215.
    [100] Bass BL. RNA interference the short answer [J]. Nature, 2001, 411(6836):428-429 .
    [101] Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs [J]. Cell, 2009, 136(4):642-655.
    [102] Nagvi AR, Islam MN, Choudhury NR, et al. The fascinating world of RNA interference [J]. Int J Biol Sci, 2009, 5(2): 97-117..
    [103] Brand S. Antisense-RNA regulation and RNA interference [J]. Biochim BiophysActa, 2002, 1575(1-3): 15-25.
    [104] Irie N, Sakai N, Ueyama T, et al. Subtype and species-specific knockdown of PKC using short interfering RNA [J]. Biochem Biophys Res Commun, 2002, 298(5): 738-743.
    [105] Kurreck J. RNA interference: from basic research to therapeutic applications [J]. Angew Chem Int Ed Engl, 2009, 48(8):1378-1398.
    [106] Suig, Soohoo C, Affar EL B, et al. ADNA vector-based RNAi technology to suppress gene expression in mammalian cells [J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(8): 5515-5520.
    [107] Harborth J, Elbashir SM, Vandenburgh K, et al. Sequence,chemical,and structural variation of small interfering RNAs and short hairpin RNAs and the effectonmammalian gene silencing [J]. Antisense & Nucleic Acid Drug Development, 2003, 13(2):83-105.
    [108] Nykaneha, Haley B, Zamore PD. ATP requirements and small interfering RNA structure in the RNA interference pathway [J]. Cell, 2001, 107(3): 309-321.
    [109] Pham JW, Sontheimer EJ. Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway [J]. Biol Chem, 2005 , 280(47): 39278-39283.
    [110] Tuschl T, Borkhardt A. Small interfering RNAs: are volutionary tool for the analysis of gene function and gene therapy [J]. Mol Intervent, 2002, 2(3):158-167.
    [111] Li GY, Fan B, Wu YZ, et al. Inhibition of vascular endothelial growth factor gene expression by T7-siRNAs in cultured human retinal pigment epithelial cells. Chin Med J (Engl), 2005, 118(7) : 567-573.
    [112] Myers J W , Jones J T, Meyer T, et al. Recombinant Dicer efficiently converts large dsRNAs into siRNAs suitable for gene silencing [J]. Nat Biotech, 2003, 21:324-328.
    [113] Yang D, Buchholz F, Huang Z D, et al. Short RNA duplexes produced by hydrolysis with Escherichia coli RNase III mediate effective RNA interference in mammalian cells [J]. Proc Natl Acad Sci USA, 2002, 99(15): 9942-9947.
    [114] Watanabe T, Sudoh M, Miyagishi M, et al. Intracellular-diced dsRNA has enhanced efficacy for silencing HCV RNA and overcomes variation in the viral genotype. [J]. Gene Ther, 2006, 13(11) : 883-892.
    [115] Lee N S, Dohjima T, Bauer G, et al. Expression of small interfering RNAs targetedagainst HIV-1 rev transcripts in human cells [J]. Nat Biotech, 2002, 20(5): 446-448.
    [116] Giering JC, Grimm D, Storm TA, et al. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic [J]. Mol Ther, 2008 ,16(9) :1630-1636.
    [117] Castanotto D, Li HT, Rossi JJ. Functional siRNA expression from transfected PCR products [J]. RNA, 2002,8(11):1454-1460.
    [118] Amarzguioui M, Rossi JJ, Kim D. Approachesfor chemically synthesized siRNA and vector-mediated RNAi [J]. FEBS Lett, 2005, 579(26): 5974-5981.
    [119] Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells [J]. Science, 2002, 296(5567): 550-553.
    [120] Aravin A, Tuschl T. Identification and characterization of small RNAs involved in RNA silencing [J]. FEBS Lett, 2005, 579(26): 5830-5840.
    [121] Sontheimer EJ, Carthew RW. Silence from within: endogenous siRNAs and miRNAs [J]. Cell, 2005, 122(1): 9-12.
    [122] Schutz S, Sarnow P. Interaction of viruseswith the mammalian RNA interference pathway [J]. Virology, 2006, 344(1): 151-157.
    [123] Carmona S, Ely A, Crowther C, et al. Effective Inhibition of HBV Replication in Vivo by Anti-HBx Short Hairpin RNAs [J]. Molecular Therapy, 2006, 13(2): 411-421.
    [124] Rumi M, Ishihara S, Aziz M, et al. RNA polymeraseⅡmediated transcrip-tion from the polymeraseⅢpromoters in short hairpin RNA expression vector [J]. Biochemical and Biophysical Research Communications, 2006, 339 (2): 540-547.
    [125] Elbashir S M, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002, 26: 199-213.
    [126] Paddison PJ, Silva JM, Conklin DS, et al. Aresource for large-scale RNA interference-based screens in mammals [J]. Nature, 2004,6981(428): 427- 431.
    [127] Kawasaki H, Taira K. Short hairpin type of dsRNAs that are controlled by tRNA(Va1)promoter significantly induce RNAi mediated gene silencing in the cytoplasm of human cels[J]. Nucleic Acids Res, 2003, 31(2): 700-707.
    [128]何承伟,刘芳,刘新光等. RNAi在基因治疗中的应用及其设计.广东医学院学报, 2006, 24(1):66-68.
    [129] Anderson J, Akkina R. HIV-1 resistance conferred by siRNA cosuppression of CXCR4and CCR5 coreceptors by a bispecific lentiviral vector [J]. AIDS Res Ther, 2005 , 2(1):1.
    [130] Shen C, Buck AK, Reske SN, et al. Gene silencing by adenovirus- delivered siRNA [J]. FEBS Lett, 2003, 539(1-3): 111-114.
    [131] RandallG, PanisM, Cooper JD, et al. Cellular cofactors affecting hepatitis C virus infection and replication [J]. Proc Natl Acad SciUSA, 2007, 104 (31): 12884-12889.
    [132] Kapadia SB, Chisari FV. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids [J]. Proc NatlAcad SciUSA, 2005, 102 (7): 2561-2566.
    [133] Song E, Lee SK, Wang J, et al. RNA interference targeting Fas protect mice from fulminant hepatitis [J]. Nat Med, 2003,9(3):347-351.
    [134]陈竞.RNAi的研究进展[J].川北医学院学报, 2004,19(3):198.
    [135] Wang S, Chai YB, Liu F, et al. Effect of specific siRNA targeting against bcr-abl chimeric gene on chronic myelogenous leukemia cells [J]. Zhonghua Yi Xue Za Zhi, 2005 , 85(3) : 198-202.
    [136] Williams NS, Gaynor RB, Scoggin S, et al. Identification and validation of genes involved in the pathogenesis of colorectal cancer using cDNA microarrays and RNA interference [J]. Clin Cancer Res, 2003,9(3):931-946.
    [137] Voena C, Conte C, Ambrogio C, et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration [J]. Cancer Res, 2007 , 67(9) : 4278-4286.
    [138] Lima RT, Martins LM, Vasconcelos MH,et al. Specific downregulation Of bcl-2 and xIAP by RNAi enhances in MCF-7 human breast cancer the effects of chemotherapeutic agents cells [J].Cancer GeneTher, 2004, 11(5): 309-316.
    [139] Crans-Vargas HN, Landaw EM, Bhatia S,etal. Expression of cyclic adenosine monophosphate response element binding protein in acute leukemia [J]. Blood, 2002, 99(7): 2617-2619.
    [140] Regamey A, Hohl D, Liu JW- et al. The tumor suppressor CYLD interacts with TRIP and regulates negatively nuclear factor kappa B activation by tumor necrosis factor [J]. J Exp Med, 2003, 198(12): 1959-1964.
    [141] Shi Z, Liang YJ, Chen ZS, et al. Reversal of MDR1/P -glycoprotein-mediatedmultidrug resistance by vector-based RNA interference in vitro and in vivo [J]. Cancer Biol Ther, 2006, 5(1):39-47.
    [142] Stege A, Priebsch A, Nieth C, et al. Stable and complete overcoming of MDR1/P-glycoprotein-mediated multidrug resistance in human gastric carcinoma cells by RNA interference [J]. Cancer Gene Ther, 2004 , 1(11) : 699-706 .
    [143] Kosciolek BA, Kalantidis K, Tabler M, et al. Inhibition of telomerase activity in human cancer cells by RNA interference [J]. Mo Cancer Ther 2003, 2(3): 209-216.
    [144] DeSchrijver E, Brusselmans K, Heyns W, et al. RNA interference mediated silencing of the fatty acid synthase gene attenuates growth and induces morphological changes and apoptosis of LNCaP prostate cancer cells [J]. Cancer Res, 2003, 63(13):3799-3804.
    [145] Narayanan BA, Narayanan NK, Davis L, et al. RNA interference mediated cyclooxygenase-2 inhibition prevents prostate cancer cell growth and induces differentiation: modulation of neuronal protein synaptophysin,cyclin D1,and androgen receptor [J]. Mol Cancer Ther, 2006, 5(5): 1117-1125.
    [146] Zhu G, Gilchrist R, Borley N, et al. Reduction of TSG101 protein has anegative impact on tumor cell growth [J]. Int J Cancer, 2004, 109 (4) : 541-547.
    [147] Chung BI, Malkowicz SB. Expression of the protooncogene Axl in renal cell carcinoma [J]. DNA Cell Biol, 2003 , 22(8)533-540.
    [148] Altieri DC. Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm [J]. J Cell Biochem, 2004, 92: 656-663.
    [149] Ning S, Fuessel S, Kotzsch M, et al. SiRNA-mediated down regulation of survivin inhibits bladder cancer cell growth [J].Eur Urol Suppl, 2004, 3(2):53-60.
    [150] Muratovska A, Zhou C, et al. Paired-Boxgenes are frequently expressed in cancer and often required for cancer cell survival. Oncogene, 2003, 22(39):7989-7997.
    [151] Kunze D, Wuttig D, Fussel S, et al. SiRNA-mediated inhibi-tion of antiapoptotic genes in hunman bladder cancer cells [J]. Eur Urol Suppl, 2006, 5(14):800-808.
    [152] Ding Y, Wang G, Ling MT, et al. Significance of Id up regulation and its association with EGFR in bladder cancer cell invasion [J]. Int J Oncol, 2006, 28(4):847-854.
    [153] Kim IA, Bae SS, Fernandes A, et al. Selective Inhibition Ras,Phospho-inositide3 Kinase, and Akt Isoforms Increases the Radiosensitivity of Human Carcinoma Cell Lines [J].CanceRes, 2005, 65(17):7902-7910.
    [154] Chakraborty A, White SM, Guha S. Granulocyte colony stimulating receptor promotes beta1-integrin-mediated adhesion and invasion of bladder cancer cells [J]. Urology, 2006, 68(1):208-213.
    [155] Grassmann R, Jeang KT. The roles ofmicroRNAs in mammalian virus infection [J]. Biochim Biophys Acta, 2008, 20 (3):169-175.
    [156] BoutrosM, Ahringer J. The art and design of genetic screens: RNA interference [J]. NatRev Genet, 2008, 9 (7): 554-566.
    [157] De FougerollesA, Novobrantseva T. siRNA and the lung: research tool or therapeutic drug? [J]. CurrOpin Pharmaco, 2008, 8 (3):280-285. [158]Sobin LH, Wittekind C. International Union Against Cancer (UICC). Urinary bladder. In TNM: Classification of Malignant Tumors [J]. New York, Wiley-Liss, 1997:187-190.
    [159] Epstein JI, Amin MB, Reuter VR, et al. The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Bladder Consensus Conference Committee [J]. Am J Surg Pathol, 1998, 22(12):1435-1448.
    [160] Kajiyama H, Hosono S, Terauchi M, et al. Twist expression predicts poor clinical outcome of patient s with clear cell carcinoma of the ovary [J] . Oncology , 2006 , 71(5-6): 394-396.
    [161] Florian K, David A. Twist induce an epithelial-mesenchymal transition to facilitate tumor metatasis [J] . Cancer Biology & Therapy, 2004, 3 (11) :1058 - 1059.
    [162] Yuen H F, Chua C W, Chan Y P , et al . Significance of Twist and E-cadherin expression in t he metastatic progression of prostatic cancer [J] . Histopat hology, 2007, 50 (5):648 - 658.
    [163]沈波,鞠桂芝. siRNAs在RNA干扰中的作用[J].吉林大学学报:医学版, 2005, 31(9):816-818.
    [164] Farah MH. RNAi silencing in mouse models of neurodegenerative diseases [J] . Curr Drug Deliv, 2007, 4(2): 16-17.
    [165] Davidson BL, Boudreau RL. RNA interference: a tool for querying nervous system function and an emerging therapy [J] . Neuron, 2007,53(6): 781-788.
    [166] Kamath R S, FraserA G, Dong Y, et al. Sysematic functional analysis of the Caenor habditis elegans genome using RNAi [J]. Nature, 2003, 421 (6920) : 231 - 237.
    [167] Zhang X, Wang Q, Ling MT, et al. Anti-apoptotic role of Twist and its association with Akt pathway in mediating taxol resistance in nasopharyngeal carcinoma cells [J]. Int J Cancer, 2007,120(9):1891- 1898.
    [168] Haney SA. Expanding t he repertoire of RNA interference screens for developing new anticancer drug targets [J]. Expert Opin Ther Targets, 2007,11(11):1429-1441.
    [169] Yu AM. Small interfering RNA in drug metabolism and transport [J]. Curr Drug Metab, 2007, 8(7):700-708.
    [170] Hassan A. Potential applications of RNA interference2basedt herapeutics in the treatment of cardiovascular disease [J] .Recent Patent s Cardiovasc Drug Discov, 2006, 1(2) : 141-149.
    [171] Roukos DH. Innovative genomic2based model for personalizedt reatment of gastric cancer: integrating current standards and new technologies [J]. Expert Rev Mol Diagn , 2008, 8(1):29-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700