烤烟(Nicotiana tabacum L.)对增强紫外线-B辐射的生理响应与适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气臭氧层的衰减,会导致地球表面具有生物学效应的日光UV-B辐射逐渐增强。本研究以云南两个烤烟主栽品种“云烟87”和“红花大金元”为试验材料,模拟昆明地区在大气臭氧层衰减24.65%、39.53%条件下,UV-B辐射将分别增强为:5.30kJ·m-2·d-1(T1)、8.50kJ·m-2·d-1(T2)。通过整个烤烟大田条件下模拟增强UV-B辐射,研究了两个烤烟品种的生长发育、细胞抗氧化能力、光合作用和烤后烟叶化学成分受到的影响。并希望通过研究揭示大气臭氧层衰减后,UV-B辐射增强对烤烟生长和烟叶质量变化形成机理。结果表明:增加低强度UV-B辐射可明显促进了两个烤烟品种的生长,也促进了烤烟的发育进程,使烤烟现蕾期、始花期和盛花期提前。两个烤烟品种的株高和茎粗也是以低UV-B辐射最大,其次是对照,高剂量的UV-B辐射处理上述指标最小。高强度的UV-B辐射可使云烟87品种的节距、叶面积的生长受到抑制。同时增加低强度UV-B辐射可改善了两个烤烟品种叶片的组织结构。
     增强UV-B辐射可显著提高两个烤烟品种叶片膜脂过氧化的程度。随着UV-B辐射的增强,两个品种的SOD、POD、CAT活性均表现显著增加,可溶性蛋白质含量也显著增加,脯氨酸含量显著下降。低强度UV-B辐射促进了两个烤烟品种多酚氧化酶活性的升高和其它可吸收UV-B物质的含量增加,但高强度UV-B辐射可使多酚氧化酶活性和其它可吸收V-B物质含量受到一定的抑制。低强度UV-B辐射促进了两个烤烟品种叶绿素a、叶绿素b和总叶绿素含量的增加,高强度UV-B辐射使叶绿素结构受到破环,叶绿素a、叶绿素b和总叶绿素含量下降。增强UV-B辐射对两个品种的类胡萝卜素含量影响不一致,红大品种的类胡萝卜素含量以低强度UV-B辐射的最高,随着UV-B辐射的进一步增强其含量又降低,而云烟87的类胡萝卜素含量在增强UV-B辐射和对照之间无差别。两个烤烟品种的光合速率、气孔导度和蒸腾速率对增强UV-B辐射的响应不同。红大品种的光合速率、气孔导度和蒸腾速率随着UV-B辐射的增强而增大;而云烟87的光合速率、气孔导度和蒸腾速率均以低强度UV-B辐射下达最高,高强度UV-B辐射下又降低。增强UV-B辐射对两个烤烟品种胞间CO2浓度的响应基本一致,都随着UV-B辐射的增强先减小,高强度UV-B辐射下又增加。
     增强UV-B辐射使两个烤烟品种的水溶性糖含量降低,总氮含量提高,增强UV-B辐射使云烟87水溶性糖含量和总氮含量的变化幅度比红大的高,说明云烟87较红大品种对UV-B辐射增强更敏感。增强UV-B辐射可提高两个烤烟品种的全钾、游离氨基酸、质体色素和类黄酮含量。增强UV-B辐射对红大和云烟87品种的烟碱含量影响不同,云烟87的烟碱含量随UV-B辐射增大而增加,而红大品种烟碱的含量却表现出相反的变化。UV-B辐射增强可使两个烤烟品种邻苯二酚的含量降低。
     通过对22个烤烟品种苗期增强UV-B辐射试验,增强UV-B辐射对大多烤烟品种幼苗株高、茎围、最大叶长、最大叶宽、地上部干重、地下部干重及鲜重都有明显的抑制作用,且比相同品种大田期的抑制程度要高。在UV-B辐射下,大多数烤烟品种叶片中膜脂过氧化程度明显提高,且超氧化物歧化酶和多酚氧化酶的活性受到的影响更大,脯氨酸和其它紫外吸收物质含量也明显增加。从增强UV-B辐射对烤烟光合色素的影响分析,UV-B辐射对大多数烤烟品种的叶绿素a和类胡萝卜素含量具有明显的抑制作用。这也是在苗期大多数烤烟品种生长受抑制的主要原因之一通过烤烟幼苗UV-B生长响应指数和总叶绿素含量变化值综合评价烤烟品种对UV-B的敏感性,结果显示云烟87和云烟85在幼苗期对UV-B耐受性相对较强,而KRK26和红大的耐受性相对较弱,这和大田期评价UV-B敏感性的研究结果差异较大。
     通过在大田期长期增强UV-B辐射对不同烤烟品种生长和光合作用的试验表明,增强UV-B辐射对烤烟的生长和光合作用有显著的作用,UV-B辐射对一些品种生长有刺激作用,但对多数品种生长具有抑制作用。增强UV-B辐射对大多数品种的最大叶长、最大叶宽和茎围影响不大,具有刺激作用的品种较具有抑制作用的品种多。株高和节距对UV-B辐射的响应基本一致,表现出抑制作用的品种多于有促进作用品种。增强UV-B辐射对大多数品种的叶绿素a、叶绿素b、总叶绿素、光合速率、气孔导度、蒸腾速率和最低叶绿素荧光具有抑制作用,对叶绿素a和叶绿素b的比值、类胡萝卜素、类胡萝卜素和总叶绿索的比值、胞间CO2浓度、最大叶绿素荧光值和最大量子效率具有促进作用。其中总叶绿素/光合速率、光合速率/气孔导度、光合速率/蒸腾速率、总叶绿素/最低叶绿素荧光、叶绿素a/叶绿素b的比值与最大量子效率、最大叶绿素荧光和最大量子效率等密切相关。通过UV-B响应指数、总叶绿素含量的变化和Fv/Fm的变化值评价烤烟品种对UV-B的敏感性,所得结果不太一致。综合来看,Fv/Fm变化值的评价结果和生产实际更为接近,但与烤烟品种的来源地关系不大
The depletion of the ozone led to the increase of ultraviolet-B(UV-B) with biological effects in the earth's surface. In the first experiment of our study, the effects of enhanced UV-B radiation on growth, development, antioxidant capacity, photosynthesis and chemical components contents were studied in the leaves of two flue-cured tobacco cultivars-"Yunyan87"(Y87) and "Honghuadajinyuan"(HD). Selected cultivars were exposed to UV-B radiation at ambient(control, CK), ambient plus5.30kJ·m-2·d-1(T1) and ambient plus8.50kJ·m-2·d-1(T2) levels that respectively simulated24.65%and39.53%ozone depletions under summer solstice field conditions in Kunming City (located at25°04' N and102°73'E). The study was meant to provide theoretical basis for the formation mechanism of quality of flue-cured tobacco leaves in different ambient UV-B regions. The results were as follows:
     Low UV-B radiation significantly promote the growth of two flue-cured tobacco varieties, but also to promote reproductive developmental process of flue-cured tobacco, make squaring period, initial time of flowering and full-bloom stage shorten. The plant height and stem diameter of low UV-B radiation were the largest, whereas high UV-B radiation were the least. Influential tendencies of UV-B radiation on internode and plant height of HD are just the same. And the internode of Y87was decrease with enhanced UV-B radiation. The length, width and leaf area of HD were increase with enhanced UV-B radiation, whereas those of Y87were the largest under the low UV-B radiation condition. The low UV-B radiation promoted the increase of leaf area index, weight per unit leaf area and weight per leaf of both cultivars. Compared to control, the high UV-B radiation decreased weight per unit leaf area and weight per leaf of both cultivars, and increased leaf area index. The thickness of palisade tissues, leaf thickness, the ratio of palisade tissues thickness to spongy and to leaf thickness of low UV-B radiation were the largest, whereas high UV-B radiation were the least. Change in plant height. internode and leaf area in response to UV-B radiation indicated that Y87might be more sensitive to UV-B stress. The low UV-B radiation can improve the growth and anatomical structure of tobacco leaves. UV-B radiation remarkably enhances MDA content level of two flue-cured tobacco varieties leaves. With the enhancement of UV-B radiation, two flue-cured tobacco varieties leaves of SOD and POD. CAT activity increased significantly, and soluble protein content also increased significantly, and proline content decreased significantly. Low UV-B radiation promoted polyphenol oxidase activity and UV-B absorbing substances of two flue-cured tobacco varieties increased, but high UV-B radiation made polyphenol oxidase activity and UV-B absorption material by certain inhibition. Low UV-B radiation also promoted chlorophyll a, chlorophyll b and total chlorophyll content of two flue-cured tobacco varieties to increase, while high UV-B radiation made chlorophyll a, chlorophyll b and total chlorophyll content decreased due to the broken chlorophyll structure by high UV-B radiation. Effect of enhanced UV-B radiation on the carotenoid content of two varieties was inconsistent, the carotenoid content of HD under low UV-B radiation condition was the highest, with the further enhancement of the UV-B radiation and its content decreased, while the carotenoid of Y87is no difference between the enhanced UV-B radiation and control. Responses of two flue-cured tobacco varieties of photosynthetic rate, transpiration rate and stomatal conductance to enhance UV-B radiation were different. Photosynthetic rate, stomatal conductance and transpiration rate of HD increases with the enhancement of UV-B radiation, while photosynthetic rate, stomatal conductance and transpiration rate of Y87are highest under low UV-B radiation condition, those are lower under high UV-B radiation condition. Enhance UV-B radiation on intercellular CO2concentration of two flue-cured tobacco varieties has almost the same response, as low UV-B radiation to reduce, high UV-B radiation to increase. Water soluble total sugar and catechol levels declined markedly in leaves of both cultivars with two doses of UV-B radiation compared with CK. However, total nitrogen, potassium, free amino acids, chromoplast pigment and flavonoid levels increased in leaves of both cultivars. While nicotine level increased in the leaves of Y87, it decreased in the leaves of HD under two doses of UV-B radiation compared with CK. Changes in water soluble total sugar and total nitrogen levels in response to UV-B radiation suggested that Y87was more sensitive to UV-B stress than HD.
     Through short-term UV-B radiation experiment of22flue-cured tobacco varieties seedling showed that enhanced UV-B radiation on most of flue-cured tobacco varieties the plant height, stem circumference, maximum leaf length, maximum leaf width, shoot dry weight, underground dry weightand fresh weight has a significant inhibitory effect, and higher than the degree of inhibition of the field period of the same varieties. UV-B radiation made leaf membrane lipid peroxidation of most of flue-cured tobacco varieties increased significantly, mainly to improve the activity of superoxide dismutase and polyphenol oxidase, as well as increasing proline and UV absorbing compounds to protect the flue-cured tobacco leaves from reactive oxygen and membrane lipid peroxidation harm. UV-B radiation significantly inhibited the chlorophyll a and carotenoids of most of the flue-cured tobacco varieties. This is also why the growth of most of the flue-cured tobacco varieties were inhibited. Through the comprehensive evaluation to UV-B sensitivity of growth response index and total chlorophyll content change value of the flue-cured tobacco varieties seedling, the results showed that Y87and Y85in seedling stage to UV-B patience were relatively strong, and the KRK26and HD patience were relatively weak, this result is different from the field period.
     Through field experimengt of the effect of long-term enhanced UV-B radiation on growth and photosynthesis of the different flue-cured tobacco varieties showed that enhanced UV-B radiation on growth and photosynthesis of flue-cured tobacco varieties have a remarkable effect, UV-B radiation have a stimulating effect on some varieties, but for most varieties inhibited. Enhanced UV-B radiation has little effect to most of varieties of leaf length, maximum leaf width and stem circumference, has a stimulating effect on the number of varieties than inhibit the number of varieties. The response of plant height and pitch to UV-B radiation is consistent, the inhibition of the number of varieties is higher than the number of varieties of the stimulation. Enhanced UV-B radiation on most varieties of chlorophyll a, chlorophyll b, total chlorophyll, photosynthetic rate, transpiration rate, stomatal conductance and chlorophyll fluorescence has minimum inhibition. The ratio of chlorophyll a and chlorophyll b, carotenoids, carotene and total chlorophyll ratio, the intercellular CO2concentration, the maximum chlorophyll fluorescence and the maximum quantum efficiency had stimulative effect. The total chlorophyll and photosynthetic rate, photosynthetic rate and stomatal conductance, photosynthetic rate and transpiration rate, total chlorophyll and the lowest chlorophyll fluorescence, chlorophyll a and chlorophyll b ratio and the maximum quantum efficiency, the maximum chlorophyll fluorescence and the maximum quantum efficiency are closely related. Three kinds of results, among UV-B response index, total chlorophyll content changes with Fv/Fm change value to evaluate flue-cured tobacco varieties to UV-B sensitivity are less consistent. Taken together, Fv/Fm change value and the results of the evaluation of the actual production are close, but the results had little relation with the origin of flue-cured tobacco varieties.
引文
[1]蔡石勋,魏治中.烟叶结构与品质关联性的初步探讨[J].山西农业大学学报(自然科学版),1984,4(1):34-37.
    [2]陈传孟,陈继树,谷堂生,等.南岭山区不同海拔烤烟品质研究[J].中国烟草科学,1997(4):8-12.
    [3]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2006:24-73.
    [4]陈兰,张守仁.增强UV-B辐射对暖温带落叶阔叶林土庄绣线菊水分利用效率,气孔导度,叶氮素含量及形态特性的影响[J].植物生态学报,2006,30(1):47-56.
    [5]陈拓,王勋陵.UV-B辐射对小麦叶片H2O2代谢的影响[J].西北植物学报,1999,19(2):284-289.
    [6]董铭,李海涛,廖迎春,等.大田条件下模拟UV-B辐射滤减对水稻生长及内源激素含量的影响[J].中国生态农业学报,2006,14(3):122-125.
    [7]冯国宁,安黎哲.增强UV-B辐射对菜豆蛋白质代谢的影响[J].植物学报,1999,41(8):833-836.
    [8]高天鹏,安黎哲,冯虎元.增强UV-B辐射和干旱对不同品种春小麦生长、常量和生物量得影响[J].中国农业科学,2009,42(6):1933-1940.
    [9]何丽莲,祖艳群,李元,等.10个小麦品种对UV-B辐射增强响应的生长和产量差异[J].农业环境科学学报,2006,24(4):648-651.
    [10]贺学礼.植物学实验指导[M].北京:高等教育出版社,2000:9-20.
    [11]黄梅玲,江洪,金清.等.UV-B辐射胁迫下不同起源时期的3种木本植物幼苗的生长及光合特性[J].生态学报.2010(8):1998-2009.
    [12]黄少白,戴秋杰,刘晓忠.水稻对紫外线B辐射增强的生化适应机制[J].作物学报.1998.24(4):464-469.
    [13]黄少白.刘晓忠.戴秋杰,等.紫外光B辐射对菠菜叶片脂质过氧化作用的影响[J].植物学报,1998(6):59-64.
    [14]黄勇,周冀衡.郑明,等.UV-B对烟草生长发育及次生代谢的影响[J].中国生态农业学报.2009.17(1):140-144.
    [15]祭美菊,冯虎元,安黎哲,等.增强的UV-B辐射对植物影响的研究[J].应用生态学报,2002(3):359-364.
    [16]简永兴,杨磊,谢龙杰.湘西北海拔高度对烤烟常规化学成分含量的影响[J].生命科学研究,2005,9(1):63-67.
    [17]蒋静艳,胡正华,牛传坡.UV-B辐射增强对小麦秸秆化学成分及其施用后土壤N2O排放的影响[J].应用生态学报,2010,21(10):2715-2720.
    [18]金莉莉,何清,曹兴.紫外辐射研究概述[J].沙漠与绿洲气象,2009,3(3):1-6.
    [19]兰春剑,江洪,黄梅玲,等.UV-B辐射胁迫对杨桐幼苗生长及光合生理的影响[J].生态学报,2012,31(24):7516-7525.
    [20]李大肥,李军营,邓建华,等.增强UV-B辐射对烤烟幼苗生长及生理特性的影响[J].中国烟草学报,2011,17(4):47-50.
    [21]李元,祖艳群,王勋陵.大气臭氧层减薄,地表紫外辐射增强与植物的响应[J].武汉植物学研究,2000,18(5):426-430.
    [22]李元,祖艳群,王勋陵.增强的UV-B辐射对春小麦植株化学成分、真菌定殖和分解的影响[J].应用生态学报,2001,12(2):223-225.
    [23]李元,王勋陵.UV-B辐射增加对麦田生态系统N、P累积和循环的影响[J].农业环境保护,2000,19(3):129-132
    [24]李元,吊明.紫外辐射生态学[M].北京:环境科学出版社,2000.
    [25]李英年,杜明远,唐艳鸿,等.祁连山海北高寒草甸地区UV-B的气候变化特征.[J].干旱区资源与环境,2006,20(3):79-84.
    [26]林文雄,梁康迳,梁义元,等.水稻对紫外线B辐射增强的抗性遗传分析[J].作物学报,2002,28(5):686-692.
    [27]马剑雄,徐兴阳,罗华元,等.不同品种烤烟对种植海拔的敏感性[J].烟草科技.2009(3):53-61.
    [28]彭祺,周青.植物次生代谢响应UV-B辐射胁迫的生态学意义[J].中国生态农业学报,2009,17(3):610-615.
    [29]邵建平,徐洁,綦世飞,等.增强UV-B辐射对烤烟水溶性糖和蛋白质含量以及施木克值的影响[J].云南农业大学学报(自然科学版),2011,26(1):64-69.
    [30]师生波,尚艳霞,师瑞,等.高山植物美丽风毛菊PSⅡ光化化学效率和光合色素对短期增补UV-B辐射的响应[J].植物生态学报.2012,36(5):420-430.
    [31]师生波,尚艳霞,朱鹏锦,等.滤除自然光中UV-B辐射成分对高山植物美丽风毛菊光合生理的影响[J].植物生态学报,2011,35(2):176-186.
    [32]唐旭东,王勋陵.增强UV-B辐射对蚕豆叶片微粒体膜一些性质的影响[J].植物生理学报,1998,24(002):171-176.
    [33]王彪,李天福,王树会.海拔高度与烟叶化学成分的相关分析[J].广西农业科学,2006,37(5):537-539.
    [34]王瑞新.烟草化学[M].北京:中国农业出版社,2003(1):250-281.
    [35]王瑞新.烟叶化学品质分析法[M].郑州:河南科学技术出版社,1990.
    [36]王英利.增强UV-B对番茄生长、生理生化代谢的影响[D].西安:西北大学,2000.
    [37]王英利,王勋陵,岳明.UV-B及红光对大棚番茄品质的影响[J].西北植物学报,2000,20(4):590-595.
    [38]魏鼎文,赵延亮,秦芳.中国北京和昆明地区大气臭氧层的异常变化[J].科学通报,1994,39(6):1509-1511.
    [39]谢灵玲,赵武玲,沈黎明.光照对大豆苯丙氨酸解氨酶基因表达及异黄酮合成的调节[J].植物学通报,2000,17(5):443-449.
    [40]晏斌,戴秋杰.紫外线B对水稻叶组织中活性氧代谢及膜系统的影响[J].植物生理学报,1996,22(4):373-378.
    [41]阎秀峰.植物次生代谢生态学,植物生态学报,2001,25(5):639-640.
    [42]杨红旗.中国烤烟主要香气体物的研究[D].长沙:湖南农业大学,2005:24-48.
    [43]杨景宏,陈拓,王勋陵.增强紫外线B辐射对小麦叶绿体膜组分和膜流动性的影响[J].植物生态学报,2000,24(1):102-105.
    [44]姚益群,谢金伦,郭其菲.云南烟草香气研究[J].烟草科技,1988,(4):24-27.
    [45]姚银安.荞麦(Fagopyrum taturicum Gaertn和F. esculentum Moench.)对紫外线B辐射的响应研究[D].中国科学院成都生物研究所博士论文.2006.
    [46]姚银安,祖艳群.李元.紫外线B辐射与植物体内酚类次生代谢的关系[J].植物生理学通讯,2003,39(2).179-184.
    [47]姚晓芹.青城高原东缘几种树苗对增强紫外线-B和氮供应的响应[D].中国科学院成都生物研究所博士论文,2007.
    [48]易琦,郭世昌,常有礼.等.云南省大气臭氧变化及其对烤烟生长和化学品质的影 响研究[J].云南大学学报(自然科学版),2009,31(6):584-591.
    [49]余叔文,汤章城.植物生理与分子生物学[M].北京:科学出版社,1997.
    [50]YC/T 142-1998,烟草农艺性状调查方法[S].
    [51]张树源,武海,吴姝,等.青海高原及上海平原地区植物叶片光合作用的光抑制[J].西北植物学报,1999,19(1):56-66.
    [52]张志良.植物生物化学技术和方法[M].北京:北京农业出版社,1986.
    [53]郑斯中译.增强的紫外线B辐射对副极地石南灌丛生态系统的影响[M].AMBO中译本,1995,24:106-111.
    [54]郑有飞,杨志敏,颜景义,万长建.作物对太阳紫外线辐射的生物效应及其评估[J].应用生态学报,1996,7(1):107-109.
    [55]钟楚,陈宗瑜,毛自朝,等.滤减UV-B辐射对烟叶可溶性蛋白,光合色素和类黄酮的影响[J].广西植物,2010,30(004):501-506.
    [56]周淑平,肖强,陈叶君,等.不同生态地区初烤烟叶中重要致香物质的分析[J].中国烟草学报,2004,10(1):9-16.
    [57]朱广廉.植物生理学实验[M].北京:北京大学出版社,1990.
    [58]左敏,周冀衡,何伟,等.增强UV-B辐射对烤烟香气前体物含量的影响[J].云南农业大学学报(自然科学版).2011,26(6):795-799.
    [59]左园园,刘庆,林波,等.短期增强UV-B辐射对青榨槭幼苗生理特性的影响[J].应用生态学报,2005,16(9):1682-1686.
    [60]AHMACKERNESS S. SURPLUS S L, BLAKE P. et al. Ultraviolet-B induced stress and changes in gene expression in Arabidopsis thaliana:role of signalling pathways controlled by jasmonic acid, ethylene and reactive Oxygen species[J]. Plant, Cell & Environment,1999,22(11):1413-1423.
    [61]AHMACKERNESS S, SURPLUS S L. BLAKE P. et al. Ultraviolet-B induced stress and changes in gene expression in Arabidopsis thaliana:role of signalling pathways controlled by jasmonic acid, ethylene and reactive Oxygen species[J]. Plant, Cell & Environment,1999,22(11):1413-1423.
    [62]ALLEN D J. NOGUES S. BAKER N R. Ozone depletion and increased UV-B radiation:is there a real threat to photosynthesis?[J]. Journal of Experimental Botany, 1998,49(328):1775-1788.
    [63]ARNOTTS T,MURPHY T M. A comparison of the effects of a fagal effector and ultradiation on ion transport and hydrogen peroxide synchesis by rose cells[J]. Enviorn Exp Bot,1991,32:137-143
    [64]BABU T S, JANSEN M K, GREENBERG B M, et al. Amplified degradation of photosystem Ⅱ D1 and D2 proteins under a mixture of photosynthetically active radiation and UVB radiation:dependence on redox status of photosystem Ⅱ[J]. Photochemistry and Photobiology,1999,69(5):553-559.
    [65]BALLARE C L,ROUSSEAUX,M C,Searles P S. Impacts of solar ultraviolet-B radiation on terrestrial ecosystems of Tierra del Fuego(southern Argentina)-An overview of recent progress[J]. J Photochem Photobiol B,2001,62:67-77.
    [66]BARBER J. Molecular basis of the vulnerability of photosystem II to damage by light[J]. Functional Plant Biology,1995,22(2):201-208.
    [67]BARNES P W, JORDAN P W, GOLD W G, et al. Competition, morphology and canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation[J]. Functional Ecology,1988,2(3): 319-330.
    [68][68] BARNES P W, SHINKLE J R, FLINT S D, et al. UV-B radiation photomorphogensis and plant-plant interaction[J]. Progress in Biotany,2005, 66:313-340.
    [69]BARNES P W,FLINT S D.CALDWELL M M. Early-season effects of supplemented solar UV-B radiation on seedling emergence.canopy structure,simulated stand photosynthesis and competition for light[J]. Global Change Biol,1995,1:43-53.
    [70]BARNES P W,JORDAN P W,CALDWELL M M. Morphological responses of crop and weed species of different growth forms to ultraviolet B radiation[J]. Am J Bot,1990,77:1354-1360.
    [71][71] BASIOUNY F M. VAN T K. BIGGS R H. Some morphological and biochemical characteristics of C3 and C4 plants irradiated with UV-B[J]. Physiologia Plantarum,1978,42(1):29-32.
    [72]BILLINGS W D. MOONEY H A. The ecology of Arctic and alpine plants[J]. Biological Reviews,1968,43(4):481-529.
    [73]BRANDLE J R, CAMPBELL W F, SISSON W B, et al. Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation[J]. Plant Physiology,1977,60(1):165.
    [74]CAASI, LIT M T. Effects of crude and partially purified extracts from UV-B irradiated rice leaves on helicoverpa armigera (hubner)[J]. Photochemistry and Photobiology,2005,81(5):1101-1106.
    [75]CALDWELL M M. Solar ultraviolet radiation and the growth and development of higher plants[M]. IN:Giese AC, ed. Photophysiology, Vol.6. New York:Academic Press,1971:131-137.
    [76]CALDWELL M M, TERAMURA A H, TEVINI M. Effects of increased solar ultraviolet radiation on terrestrial plants[J]. Ambio,1995,24(3):166-173.
    [77]CALDWELL M M, TERAMURA A H, TEVINI M. The changing solar ultraviolet climate and the ecological consequences for higher plants[J]. Trends in Ecology & Evolution,1989,4(12):363-367.
    [78][78] CALDWEL1 M M. Solar ultraviolet radiation as an ecological factor for alpine plants[J]. Ecol Monogr,1968,38:243-268.
    [79]CALLAGHAN T V,BJORN L O,CHERNOV Y,CHAPIN T,CHRISTENSEN T R,HUNTLEY B. Responses to Projected Changes in Climate and UV-B at the Species Level [J].AMBIO,2004,33:418-435.
    [80]CASATI P, LARA M V, ANDREO C S. Regulation of enzymes involved in C4 photosynthesis and the antioxidant metabolism by UV-B radiation in Egeria densa, a submersed aquatic species [J]. Photosynthesis Res,2001,71:251-264.
    [81]CHAN B G,WAISS A C,BINDER R G,ELLIGER C A. Inhibition of Lepidopterous larval growth by cotton constituenis[J]. Ent Exp App,1978,24:294.
    [82]CORDI B, DEPLEDGE M H. PRICE D N. et al. Evaluation of chlorophyll fluorescence, in vivo spectrophotometric pigment absorption and ion leakage as biomarkers of UV-B exposure in Marine macroalgae[J]. Marine Biology,1997. 130(1):41-49.
    [83]CORREIA C M. MOUTINHO-PEREIRA J M, COUTINHO J F, BJORN L O. TORRES-PEREIRA J M G. Ultraviolet-B radiation and nitrogen affect the photosynthesis of maize:a Mediterranean field study [J]. Eur J Agron.2005.22: 337-347.
    [84]CRITCHLEY C. RUSSELL A W. Photoinhibition of photosynthesis in vivo:the role of protein turnover in photosystem Ⅱ[J]. Physiologia Plantarum.1994.92(1): 188-196.
    [85]DAI Q J, PENG S B, CHVAEZ A Q. VERGARA B S. Intraspecific responses of 188 rice cultivars to enhanced UV-B radiation [J]. Environ Exp Bot,1994,34:422-433 and 433-442.
    [861 DAY T A. HO WELLS B W. RUHLAND C T. Changes in growth and pigment concentrations with leaf age in pea under modulated UV-B radiation field treatments[J]. Plant, Cell & Environment,1996,19(1):101-108.
    [87]DAY T A, VOGELMANN T C, DELUCIA E H. Are some life forms more effective than others in screening out ultraviolet-B radiation[J]. Oecologia,1992,83:513-519.
    [88]DAY T A,RUHLAND C T,XIONG F S. Influence of solar ultraviolet-B radiation on Antarctic terrestrial plant:results from a 4 year field study[J]. J Photochem Photobiol B,2001,62:78-87.
    [89]DAY T A. Relating UV-B radiation screening effectiveness of foliage to absorbing-compound concentration and anatomical characteristics in a diverse group of plants[J]. Oecologia,1993,95(4):542-550.
    [90]DAY T A. Ultraviolet radiation and plant ecosystems[M]. In Ecosystems,Evolution and Ultraviolet Radiation. Springer,NewYork 2001,80-117.
    [91]FENG H Y, AN L Z, TAN L L, HOU Z D, WANG, X L. Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro [J]. Environmental and Experimental Botany,2000,43:45-53.
    [92]FLINT S D.CALDWELL M M. A biological spectral weighting function for ozone depletion research with higher Plants [J]. Physiol Plant,2003a,117:137-144.
    [93]FLINT S D.CALDWELL M M. Field testing of UV biological spectral weighting functions for higher plants [J]. Physiol Plant,2003b,117:145-153.
    [94]FREDERICK J E. Ultraviolet sunlight reaching the earth's surface:a review of recent research[J]. Photochemistry and Photobiology,1993,57(1):175-178.
    [95]GRANTPETTERSON J,RENWICK J A. Eeffets of ultraviolet-B exposure of Arabidopsis thiana on herbivory by two crucifer feeding insects(Lepidoptera) [J]. Environ Entomol,1996.25:135-142.
    [96]HATCHER P E.PAUL N D.The effect of elevated UV-B radiation on herbivory by Autographa gamma[J]. Ent ExP App.1994,71:227-233.
    [97]HOFMANN R W,CAMPBELL B D,FOUNTAIN D W,JORDAN B R.GREER D H.HUNT D Y.HUNT C L. Multivariate analysis of intraspecific responses to UV-B radiation in white clover (Trifolium repens L.) [J]. Plant Cell Environ.2001.24: 917-927.
    [98]HOWLAND G P. Dark-repair of ultraviolet-induced pyrimidine dimers in the DNA of wild carrot protoplasts[J]. Nature,1975(254):160-161.
    [99]JANSEN M A K, GABA V. GREENBERG B M. Higher plants and UV-B radiation: balancing damage, repair and acclimation [J]. Trends Plant Sci,1998,3:131-135.
    [100]JONES H G. Plants and microclimate:a quantitative approach to environmental plant physiology[M]. [S.l.]:Cambridge Univ Pr,1992.
    [101]JORDAN B R, HE J, CHOW W S, et al. Changes in mRNA levels and polypeptide subunits of ribulose 1,5-bisphosphate carboxylase in response to supplementary ultraviolet-B radiation[J]. Plant, Cell & Environment,1992,15(1):91-98.
    [102]JORDAN B R,CHOW W S,STRID A. Radiation in cab pabA RNA transcripts in response to supplemental UV-B radiation[J]. FEBS Lett,1991,284:5-8.
    [103]JOSEPH P,JONAN H. Effects of carbon dioxide,water supply and season on terpene content and emission by rosmarinus officinalis[J]. J Chem Ecol,1997,23:979-993.
    [104]KAKANI V G, REDDY K R, ZHAO D, SAILAJA K. Field crop responses to ultraviolet-B radiation:a review[J]. Agri For Meteor,2003,120:191-218.
    [105]KERR J. B,MEELORY C T. Evidence for large upward trends of UV-B radiation likned to ozone depletion[J]. Science,1993,262:1032-1034.
    [106]KIM H Y, KOBAYASHI K, NOUCH I. Enhanced UV-B radiation has little effect on growth, Vc values and pigments of pot-grown rices (Oryza Sativa L.)in the field [J]. Plant Physiol,1996,96:1-5.
    [107]KRAMER G F,NORMAN,H A,KRIZEK D T. Influence of UV-B radiation on polyamine,lipid peroxidation and membrane lipids of cucumber[J]. Phytochem,1991,30:2101-2108.
    [108]LARKUM A. WOOD W F. The effect of UV-B radiation on photosynthesis and respiration of phytoplankton, benthic macroalgae and sea grasses[J]. Photosynthesis Research,1993,36(1):17-23.
    [109]LI Y, ZU Y, CHEN J, CHEN H. Intraspecific responses in crop growth and yield of 20 soybean cultivars to enhanced ultraviolet-B radiation under field conditions [J]. Field Crops Res,2002,78:1-8.
    [110]LI Y.YUE M.WANG X. Effects of enhanced ultraviolet-B radiation on crop structure.growth and yield components of spring wheat under field conditions[J]. Field Crops Res,1998,57:253-260.
    [111]LI Y.ZU Y Q. CHEN H, CHEN J, YANG J, HU Z. Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions [J]. Field Crops Res.2000.67:25-33.
    [112]LONG S P. HUMPHRIES S. FALKOWSKI P G. Photoinhibition of photosynthesis in Nature[J]. Annual Review of Plant Biology,1994,45(1):633-662.
    [113]LUTZ C, SEIDLITZ H K, MEINDL U. Physiological and structural changes in the chloroplast of the green alga Micrasterias denticulata induced by UV-B simulation [J]. Plant Ecol,1997,128:55-64.
    [114]MADRONICH S, MCKENZIE R L, CALDWELL M M, BJONR L O. Changes in ultraviolet radiation reaching the earth's surface [J]. Ambio,1995,24:143-153.
    [115]MADRONICH S, MEKENZIE R L, BJONR L O, CALDWELL M M. Changes in biologically active ultraviolet radiation reaching the Earth's surface [J]. J Photochem Photobiol B,1998,46:1-27.
    [116]MADRONICH S,MCKENZIE R L,CALDWELL M M,BJONR L O. Changes in ultraviolet radiation reaching the earth's surface [J]. Ambio,1995,24:143-153.
    [117]MALANGE G,CALMANOVICI G,DUNTARULO S. Oxidative damage to chlorophalsts form chlorella vulgaris exposed to ultraviolet-B radiatin[J].Physiol Plant,1997,101:455-462.
    [118]MARK U,SAILE M M,TEVINE M. Effects of solar UV-B radiation on growth,flowering and yield of Central and Southern European maize cultivars[J]. Photochem Photobiol,1996.64:457-462.
    [119]MCKENZIE R. CONNOR B. BODEKER G. Increased summertime UV radiation in New Zealand in response to ozone loss[J]. Science,1999,285(5434):1709-1711.
    [120]MERDELYN C L.MALCOLM I W.MURALI N. UV-B irradiation induces differential leaf damage,ultrastructural changes and accumulation of specific phenolic compounds in rice cultivars[J]. Aust J Plant Phyiol.1997.24:261-274.
    [121]MIDDLETON E M. Initial assessment of physiological response to UV-B irradiation using fluorescence measurements[J]. J Plant Physiol.1996.148:69-77.
    [122]MIRECHI R M.TERAMURA A H. Effects of UV-B irradiation on soybean[J]. Plant Physiol.1984,74:475-480.
    [123]MOORTHY P. KATHIRESAN K. Effects of UV-B radiation on photosynthetic reactions in Rhizophora apiculata[J]. Plant Growth Regulation.1995.28(5):49-54.
    [124]MURALI N S. TERAMURA A H. Effects of supplemental ultraviolet-B radiation on the growth and physiology of field-grown soybean[J]. Environmental and Experimental Botany,1986.26(3):233-242.
    [125]MURPHY T M. WRIGHT J A. MURPHY J B. Inhibition of protein synthesis in cultured tobacco cells by ultraviolet radiation[J]. Photochemistry and Photobiology. 1975,21(4):219-225.
    [126]MURPHY T M. Membranes as targets of ultraviolet radiation[J]. Physiologia Plantarum,1983,58(3):381-388.
    [127]NEDUNCHEZHIAN N, ANNAMALAINATHAN K, KULANDAIVELU G. Induction of heat shock like proteins in Vigna sinensis seedlings growing under ultraviolet B (280-320 nm) enhanced radiation[J]. Physiologia Plantarum,1992, 85(3):503-506.
    [128]OHYAMA K, PELCHER L E, GAMBORG O L. The effects of ultraviolet irradiation on survival and on nucleic acids and protein synthesis in plant protoplasts[J]. Radiation Botany,1974,14(4):343-346.
    [129]PUAL N D, GWYNN-JONES, D. Ecological roles of solar UV radiation:towards an integrated approach[J].Trends Ecol Evol,2003,18:48-55.
    [130]ROZEMA J, VAN D J, BJORN L O, et al. UV-B as an environmental factor in plant Life:stress and regulation[J]. Trends in Ecology & Evolution,1997,12(1):22-28.
    [131]ROZEMA J/TOSSERAM M,NELISSEN H J M. Stratospheric ozone reduction and ecosystem processes:enhanced UV-B radiation affects chemical quality and decomposition of leaves of the dune grassland species Calamagrostis epigejos[J]. Plant Ecol,1997b,128:284-294.
    [132]SAILEMARK M, TEVINI M, MARK U. Effects of solar UV-B radiation on growth, flowering and yield of central and southern European maize cultivars (Zea mays L.)[J]. Photochemistry and Photobiology,1996,64(3):457-463.
    [133]SEARLES P S, KROPP B R. FLINT S D, et al. Influence of solar UV-B radiation on peatland microbial communities of southern Argentinia[J]. New Phytologist, 2001,152(2):213-221.
    [134]SEARLES P S,FLINT S D.CALDWELL M M. A meta-analysis of plant field studies simulating stratospheric ozone depletion[J]. Oecologia.2001.127:1-10.
    [135]SINGH A. Increased UV-B radiation reduces N2-fixation in tropical leguminous crops[J]. Environmental Pollution,1997,95(3):289-291.
    [136]SISSON W B.CALDWELL M M. Atmospheric ozone depletion:Reduction of photosynthesis and growth of a sensitive higher plant exposed to enhanced UV-B radiation[J]. J ExP Bot,1977.28:691-705.
    [137]STAPLETON A E. Ultraviolet radiation and plants:burning questions[J]. The Plant Cell.1992.4(11):1353.
    [138]STOLARSKI R.BOJKOV R.BISHOP L. Measured trends in stratospheric ozone[J]. Science.1992.256:342-349.
    [139]STRID A, CHOW W S, ANDERSON J M. Effects of supplementary ultraviolet-B radiation on photosynthesis in Pisum sativum[J]. Biochimica ET Biophysica ACTA (BBA)-Bioenergetics,1990,1020(3):260-268.
    [140]SULLIVAN J H, TERAMURA A H. Effects of ultraviolet-B irradiation on seeding growth in the pincease [J]. Amer J Bot,1988,75:225-230.
    [141]SULLIVAN J H, TERAMURA A H. The effects of ultraviolet-B radiation on seeding growth loblolly pine. II. Growth of field-grown seedlings[J]. Trees,1992,6: 115-120.
    [142]TAKEUCHI Y. Adaptive alteration in the activities of scavenges of active oxygen in cucumber cotyledons irradiation with UV-B[J]. J Plant Physiol,1996,148:181-187.
    [143]TERAMURA A G,SULLIVAN J H,LYDON J. Effects of UV-B on soybean yield and quality:a 6-year field study [J]. Physiol Plant,1990,80:5-11.
    [144]TERAMURA A H,BIGGS R H,KOSSUTH S. Effects of ultraviolet-B radiation on soybean. VI. Leaf ontogeny as a factor in evaluating ultraviolet B irradiance effects on net Photosynthesis[J]. Am J Bot,1981,68:934-941.
    [145]TERAMURA AH, MURALI JN. Intraspecific differences in growth and yield of soybean exposes to ultraviolet-B radiation under greenhouse and field conditions [J]. Environ Exer Bot,1986,26:89-95.
    [146]VU C V, ALLEN J L, GARRARD L A. Effects of enhanced UV-B radiation (280-320 nm) on ribulose-1,5-bisphosphate carboxylase in pea and soybean[J]. Environmental and Experimental Botany.1984,24(2):131-143.
    [147]VU C V, ALLEN J L, GARRARD L A. Effects of supplemental UV-B radiation on primary photosynthetic carboxylating enzymes and soluble proteins in leaves of C3 and C4 crop plants[J]. Physiologia Plantarum,1982.55(1):11-16.
    [148]WELL E. Regulation der flavonoid biosynthesis durch ultraviolet light under phytochrom in Gellkuturen and Keim lingen Von Petersille[J]. Berichte DER Deutschen Botanischen Gesellschaft.1974,87:267-273.
    [149]WILLEKENS H. VAN CAMP W. VAN MONTAGU M. et al. Ozone. Sulfur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L[J]. Plant Physiology,1994,106(3): 1007-1014.
    [150]WILSON M I, GHOSH S, GERHARDT K E. et al. In Vivo photomodification of Ribulose-1,5-Bisphosphate carboxylase/oxygenase holoenzyme by ultraviolet-B radiation (formation of a 66-kilodalton variant of the large subunit)[J]. Plant Physiology,1995,109(1):221-229.
    [151]WILSON M I, GREENBERG B M. Protection of the Dl photosystem Ⅱ reaction center protein from degradation in ultraviolet radiation following adaptation of Brassica napus L. to growth in ultraviolet-B[J]. Photochemistry and Photobiology, 1993,57(3):556-563.
    [152]YU S G, BJORN L O. Effects of UV-B radiation on light-dependent and light-independent protein phosphorylation in thylakoid proteins[J]. Journal of Photochemistry and Photobiology B:BIOL,1997,37(3):212-218.
    [153]YU S G, BJORN L O. Ultraviolet-B stimulates grana formation in chloroplasts in the African desert plant Dimorphotheca pluvialis[J]. Journal of Photochemistry and Photobiology B:BIOL,1999,49(1):65-70.
    [154]YUAN L, MING Y, XUNLING W. Effects of enhanced ultraviolet-B radiation on crop structure, growth and yield components of spring wheat under field conditions[J]. Field Crops Research,1998,57(3):253-263.
    [155]YUAN L, YANQUN Z, HAIYAN C, et al. Intraspecific responses in crop growth and yield of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions[J]. Field Crops Research,2000,67(1):25-33.
    [156]YUE M, LI Y, WANG X L. Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions [J]. Environmental and Experimenta Botany,1998,40:187-196.
    [157]ZAVALA J A, RAVETTA D A. The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia. Argentina [J]. Plant Ecology,2002,161:185-191.
    [158]ZEPP R G, CALLAGHAN T V, ERICKSON D J. Effects of increased solar ultraviolet radiation on biogeochemical cycles[J]. Ambio,1995,24(3):181-187.
    [159]ZEPP R G, CALLAGHAN T V, ERICKSON E J. Interactive effects of ozone depletion and climate change on biogeochemical cycles [J]. Photochem Photobiol Sci,2003,2:51-61.
    [160]ZEPP R G. CALLAGHAN T V, ERICKSON D J. Effects of increased solar ultraviolet radiation on biogeochemical cycles[J]. Ambio,1995,24:181-187.
    [161]ZISKA L H. TERAMURA A H.SULLIVAN J H. Physiological sensitivity of plants along an elevational gradient to UV-B radiation[J]. American Journal of Botany, 1992.2(3):863-871.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700