用户名: 密码: 验证码:
水库消落带湿地植被的时空演替模式及其适生机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水库消落带(reservoir hydro-fluctuation belt)具有陆地和水域的双重属性,是一种较为特殊的季节性湿地生态系统,近年来已经成为研究热点之一。水库消落带植被是水库消落带生态系统的重要组成部分,消落带植物群落未来演替方向将会给生态环境带来巨大影响。因此,从内在机理和宏观表征两个方面,研究水库消落带湿地植被的适生机制和时空演替模式,对于保持水库消落带生态系统的生态平衡,以及维持水库生态系统的生态功能,保护水库生态环境具有十分重要的意义和价值。
     本文以湿地生态学、生态水文学等为理论依据,以遥感和GIS为技术支撑,选择消落带生境退化严重的官厅水库为研究区,在收集整理研究区1984-2013年间中、高分辨率遥感影像的基础上(中分辨率的Landsat系列影像13景,高分辨率的SPOT-5影像2景,高分辨率的ZY-3影像1景),再结合地面实测数据,首先利用长时间序列的Landsat系列卫星数据和官厅水库历史水文统计资料,基于遥感变化探测技术和GIS空间分析技术,划分了官厅水库消落带的边岸类型,合理确定了官厅水库消落带的范围及其分区;其次,以中、高分辨率的遥感影像和地面实测高光谱数据为数据源,并针对不同空间分辨率的数据源制定了与其对应的湿地植被分类体系,利用面向对象分类、反向传播人工神经网络(BP-ANN)和Fisher线性判别分析,对消落带内的湿地植被进行了分类提取;然后,利用从5期中分辨率Landsat影像上提取的消落带湿地植被空间分布格局图,同时结合消落带的分区数据,基于景观格局和CA-Markov(元胞-马尔可夫)的分析方法,揭示了消落带不同分区内湿地植被的时空演替规律,并对未来消落带不同分区内湿地植被的空间分布格局进行了预测;最后,利用野外采集的湿地植被地面实测高光谱数据、水质数据和室内测定的湿地植被生化参数数据,利用数理统计方法和物种分布统计模型-GAM(结合空间分布预测模块GRASP),以水生植物为例,对湿地植被的适生机制进行了分析。本文的主要研究结论如下:
     (1)获得了三种官厅水库的边岸类型,分别为高坡度稳定型边岸、舒缓坡度稳定型边岸和舒缓坡度淤积型边岸;定量地确定了官厅水库消落带的分区,分为长期出露区和淹水频繁区,二者的范围总和即为官厅水库消落带的总范围,其中,长期出露区的面积为42.06km2,淹水频繁区的面积为46.19km2,官厅水库消落带的总面积为88.25km2。
     (2)5景Landsat系列影像的平均总体分类精度达到84.86%,Kappa系数达到0.81,3景高分辨率影像的平均总体分类精度达到86.67%,Kappa系数达到0.86,提取结果均较为理想;利用地面实测高光谱数据,根据选定的8个光谱特征变量进行典型湿地植被识别,BP-ANN和Fisher线性判别的总分类精度分别达到85.5%和87.98%,识别精度也较为理想。
     (3)在近30年的时间里,长期出露区内,随着水体面积的不断萎缩,沉水植物、挺水植物、湿生植物以及中生植物在空间上呈现较为明显的退化趋势,而盐生植物和耕地则呈现明显的扩张趋势,其中耕地景观成为长期出露区内的优势景观类型,在空间上连续分布,面积较大,盐生植物成为长期出露区内仅次于耕地的第二优势景观类型;淹水频繁区内由于水分相对充足,沉水植物、挺水植物、湿生植物和中生植物未呈现退化趋势,反而在整体上有一定程度的扩张,1987-2013年间沉水植物、挺水植物、湿生植物和中生植物的增加幅度分别为102.17%、172.80%、160.20%和256.32%,同时,充足的水分一定程度上抑制了盐生植物和耕地的扩张,表现为盐生植物在淹水频繁区内的平均比例仅为1.58%,耕地在2007-2013年随着水域面积的增大而减少;采用CA-Markov模型,以2007年和2013年的数据为基础,对2019年的官厅水库消落带湿地植被空间分布格局进行了预测,预测结果表明:长期出露区内的湿地植被整体上仍然呈现进一步的退化趋势,生态环境进一步恶化;淹水频繁区内的湿地植被仍然没有表现出明显的退化趋势,生态环境仍然较为良好。基于水库消落带不同分区湿地植被的时空变化和演替分析结果以及基于CA-Markov模型的水库消落带湿地植被预测结果,再结合水库消落带不同分区湿地植被的转移方向分布图,得到长期出露区内湿地植被的时空演替模式为抑制性演替,而淹水频繁区内则存在两种湿地植被时空演替模式,抑制性演替和促进性演替。
     (4)沉水植物由于受到水体和水中悬浮物等因素的影响,其反射光谱特征较为特别,其他5种植物生态类型的反射光谱则具有一定的相似性,6种植物生态类型的WP r、Dr WP g、Rg以及510nm和675nm附近的吸收特征参数(吸收深度DEP和吸收面积AREA)均存在不同水平的差异;分别建立了含水量和叶绿素含量对典型湿地植被光谱特征参数的响应模型,含水量的响应模型为y=-9.462x2-2.671x+0.608(x为黄边面积SDy)和y=0.219e1.010x(x为SRWI),叶绿素含量的响应模型为y=20.89x-18.45(x为ND(565,735)),经过交叉检验,响应模型均取得了较好的测试效果;最后以水生植物为例,分析了物种分布对环境因子的适应性机制,在预先选定的6个潜在影响沉水植物和挺水植物空间分布的环境因子中,CHLa、TP和distowater是影响二者空间分布的主要因素,但二者的空间分布对于CHLa、 TP和distowater这3个影响因子的响应有所差异,沉水植物一般分布在CHLa浓度和TP含量较低,distowater较大的区域,而挺水植物一般分布在CHLa浓度和TP含量较高,distowater较小的区域。
The reservoir hydro-fluctuation belt is a kind of special seasonal wetland ecological system and has the dual attributes of land and water, which has become the focus of research in recent years. The vegetation of reservoir hydro-fluctuation belt is an important part of the reservoir hydro-fluctuation belt ecosystem and its succession will take a dramatic ecological impact. Therefore, study the suitable mechanism and temporal and spatial succession pattern of the reservoir hydro-fluctuation belt wetland vegetation from two aspects of internal mechanism and macroscopic characterization, which has the important meaning and value for keep the balance of the reservoir hydro-fluctuation belt ecosystem, maintaining the ecological function of the reservoir hydro-fluctuation belt ecosystem, and protecting the ecological environment of the reservoir hydro-fluctuation belt ecosystem.
     In this paper, taking the wetland ecology and ecological hydrology as theoretical basis, using remote sensing and GIS technology, selecting Guanting Reservoir where the hydro-fluctuation belt habitat degradation seriously as the study area, collecting the remote sensing images during1987-2013in the study area which include3high resolution remote sensing images (SPOT-5and ZY-3) and medium-resolution remote sensing images (Landsat ETM+, Landsat TM and Landsat8OLI), and combined with the ground measured data. Firstly, based on the long time series of Landsat satellite data and the historical hydrological data of Guanting Reservoir; the remote sensing change detection and GIS spatial analysis technology were used to discriminate the stability of the Guanting Reservoir shore, the coverage and partition of Guanting Reservoir hydro-fluctuation belt reasonably. Secondly, based on the moderate, high resolution satellite images and the ground measured hyperspectral data; the different classification systems were made for the different spatial resolution data; and the object-oriented classification, back propagation artificial neural network (BP-ANN) and Fisher linear discriminant analysis were made use of to extract the wetland vegetation of the hydro-fluctuation belt. Then, based on the5wetland vegetation spatial distribution maps of hydro-fluctuation belt extracted from the medium-resolution Landsat images and the partition data of hydro-fluctuation belt; the analysis methods of landscape pattern and CA-Markov were used to reveal the temporal and spatial succession pattern of wetland vegetation with different partitions of hydro-fluctuation belt, and predicted the future spatial distribution pattern of wetland vegetation with different partition of hydro-fluctuation belt. Finally, based on the ground measured hyperspectral data, water quality data and laboratory biochemical parameter data; the mathematical statistics method and the species distribution statistical model (GAM) combined with spatial distribution prediction module (GRASP) were used to analyze the suitable mechanism of wetland vegetation. The principal conclusions of this paper are as follows:
     a) The high slope stability shore, soothing slope stability shore and soothing slope deposit shore were mainly3shore types of the Guanting Reservoir. The water area of Guanting Reservoir first increased and then decreased during1987-2013, which had the maximum water area in1996(113.12km2) and minimum water area in2007(32.49km2), the overall atrophy of water body in Guanting Reservoir was more serious. According to overlay analysis, the hydro-fluctuation belt of Guanting Reservoir was divided into long-term outcrop region and frequent flooding region. The total coverage of Guanting Reservoir hydro-fluctuation belt was also determined reasonably. The area of long-term outcrop region, frequent flooding region and Guanting Reservoir hydro-fluctuation belt were42.06km2,46.19km2and88.25km2, respectively.
     b) The average overall classification accuracy of5Landsat series images was84.86%and the Kappa coefficient was0.81. The average overall classification accuracy of3high resolution images was86.67%and the Kappa coefficient was0.86. The extraction results were ideal. Making use of the selected8spectral characteristic variables to typical wetland vegetation identification, the total classification accuracy of BP-ANN and Fisher linear discriminant analysis were85.5%and87.98%respectively. The classification results were also ideal.
     c) With the water area shrinking, The submerged plant, emerged plant, hygrophilous plant and mesophyte plant presented degeneration obviously in long-term outcrop region from the recent30years; while the halophilous plant and cultivated land presented expansion obviously. The cultivated land landscape became the dominant landscape type of long-term outcrop region; it had continuous spatial distribution and large area. The halophilous plant became the second dominant landscape type of long-term outcrop region. Compared with the long-term outcrop region, water in the frequent flooding region was relative enough, so submerged plant, emerged plant, hygrophilous plant and mesophyte plant did not present the trend of degeneration; instead, they presented a certain degree of expansion. In addition, the enough water greatly inhibited the growth and distribution of the halophilous plant and cultivated land, the halophilous plant and cultivated land did not become the dominant landscape types of the frequent flooding region. The CA-Markov model was used to simulate the spatial distribution pattern of wetland vegetation in the Guanting Reservoir hydro-fluctuation belt based on the2007and2013data. The predicted results show that the wetland vegetation will still present degradation trend in the long-term outcrop region and the ecological environment will further deteriorated; the wetland vegetation will not present degradation trend obviously in the frequent flooding region and the ecological environment will still good. Based on the temporal and spatial analysis results with different partition of Guanting Reservoir hydro-fluctuation belt, succession analysis results with different partition of Guanting Reservoir hydro-fluctuation belt and the CA-Markov prediction result, combined with the transfer direction distribution map of wetland vegetation in different partition of Guanting Reservoir hydro-fluctuation belt, the temporal and spatial succession pattern of long-term outcrop region was inhibitory succession, the temporal and spatial succession pattern of frequent flooding region was inhibitory succession and promotive succession.
     d) The reflectance spectrum of submerged plant was special because of the influence of water body, suspended solid in water, etc. The reflectance spectra of the other five plant ecological types were similar. The WP_r, Dr, WP_g, Rg,510nm and675nm absorption feature parameters had certain differences. The response models of water content and chlorophyll content to spectral feature parameters of typical wetland vegetation were established respectively. The response model of water content was y=-9.462х2-2.671х+0.608(х was the yellow edge area, SDy) and y=0.219e1.010x (х was SRWI) respectively, the response model of chlorophyll content was y=20.89х-18.45(x was ND (565,735)). According to Cross Validation examination, the response models have achieved the satisfactory test results. Finally, take the aquatic plant for example to analyze the suitable mechanism between the species distribution and environmental factors. The6environmental factors which had the effect to the spatial distribution of the submerged plant and emerged plant were selected in advance; CHLa, TP and distowater were the main factors that influence the spatial distribution of the submerged plant and emerged plant, but the response between the spatial distribution and the environmental factors (CHLa, TP and distowater) had certain differences. The submerged plant were generally distributed where the CHLa and TP were lower and distowater was larger, the emerged plant were generally distributed where the CHLa and TP were higher and distowater was smaller.
引文
[1]安树青,张久海,谈健康,等.森林植被动态研究述评.生态学杂志,1998,17(5):50-58.
    [2]白宝伟,王海洋,李先源,等.三峡库区淹没区与自然消落区现存植被的比较.西南农业大学学报(自然科学版),2005,27(5):684-688.
    [3]白军红,欧阳华,杨志峰,等.湿地景观格局变化进展研究.地理科学进展,2005,24(4):36-45.
    [4]蔡亮,郭泺.基于面向对象方法的汶川大地震灾害土地覆盖变化.生态学报,2008,28(12):5927-5937.
    [5]陈定贵,周德民,吕宪国.等.三江平原洪河自然保护区湿地遥感分类研究.2007.70(4):485-491.
    [6]陈云浩,冯通,史培军,等.基于面向对象和规则的遥感影像分类研究.武汉大学学报(信息科学版),2006,3 1(4):316-320.
    [7]陈云浩,李晓兵,陈晋,等.1983-1992年中国陆地植被NDVI演变特征的变化矢量分析.遥感学报,2002,6(1):12-18.
    [8]邓贤兰.井网山自然保护区栲属群落植物区系分析.武汉植物学研究,2003,21(1):61-65.
    [9]丁圣彦,梁国付.近20年来河南沿黄河湿地景观格局演化.地理学报,2004,59(5):653-661.
    [10]杜凤兰,田庆久,夏学齐,等.面向对象的地物分类法分析与评价.遥感技术与应用,2004,19(1):20-23.
    [11]杜桂森.官厅水库富营养化状况研究.北京师范学院学报(自然科学版),1989,10(3):82-85.
    [12]杜桂森,王建厅,张为华,等.官厅水库水体营养状况分析.湖泊科学,2004,16(3):277-281.
    [13]杜卫平.恢复官厅水库饮用水源功能为首都经济建设再做新贡献.北京水利,2005,(4):20-221.
    [14]杜子涛,占玉林,王长耀.基于NDVI序列影像的植被覆盖变化研究.遥感技术与应用,2008,23(1):47-50.
    [15]范繁荣,潘标志,马祥庆,等.白桂木的种群结构和空间分布格局研究.林业科学研究,2008,(2):176-181.
    [16]付彬.早龙湾沼泽植被演替研究.东北师范大学,2006.
    [17]傅伯杰,陈利顶,马克明,等.景观生态学原理及应用.北京:科学出版社,2001:36-64.
    [18]傅伯杰,吕一河,陈利顶,等.国际景观生态学研究新进展.生态学报,2008,28(2):798-804.
    [19]高占国,赵旭阳.基于GIS的土地利用动态变化与预测.首都师范大学学报(自然科学版),2002,23(2):76-79.
    [20]顾丽,王新杰,龚直文.北京湿地景观监测与动态演变.地理科学进展,2010,29(7):789-796.
    [21]韩玲玲,何政伟,唐菊兴,等.基于CA的城市增长与土地增值动态模拟方法探讨.地理与地理信息科学,2003,19(2):32-35.
    [22]侯瑞萍,张克斌,乔锋,等.农牧交错区土地荒漠化与生物多样性研究——以宁夏盐池县为例.生态环境,2004,13(3):350-353.
    [23]胡进刚,张晓东,沈欣,等.一种面向对象的高分辨率影像道路提取方法.遥感技术与应用,2006,21(3):184-188.
    [24]黄华梅.上海滩涂盐沼植被的分布格局和时空动态研究.华东师范大学,2009.
    [25]黄慧萍.面向对象影像分析中的尺度问题研究.北京:中国科学院遥感应用研究所,2003.
    [26]纪敏,李辉,石晓春.面向对象的城市土地利用分类.地理空间信息,2009,(6):62-65.
    [27]姜玲,黄家柱.ALOS数据湿地植被信息提取研究.河北遥感,2007,2:23-26.
    [28]姜雪.基于高分辨率遥感影像的矿区土地利用/土地覆盖信息提取技术研究.首都师范大学,2007.
    [29]金小刚.基于Matlab的元胞自动机的仿真设计.计算机仿真,2002,19(4):27-30.
    [30]郎惠卿.中国湿地植被.北京:科学出版社,1999:35-40.
    [31]赖江山,张谧,谢宗强.三峡库区常绿阔叶林优势种群的结构和格局动态.生态学报,2006,26(4):1073-1079.
    [32]雷天赐,黄圭成,雷义均.基于高程模型的鄱阳湖湿地植被遥感信息.2009,23(6):844-847.
    [33]李恩香.广西岩溶植被演替过程中主要生态因子的特征.广西师范大学,2002.
    [34]李红军,郑力,雷玉平,等.基于EOS/MOD1S数据的NDVI与EVI比较研究.地现科学进展,2007,26(1):26-32.
    [35]李建平,张柏,张泠,等.湿地遥感监测研究现状与展望.地理科学进展,2007,26(1):33-43.
    [36]李娜,周德民,赵魁义.高分辨率影像支持的群落尺度的沼泽湿地制图.生态学报,2011,31(22):6717-6726.
    [37]李其军,刘培斌.官厅水库流域水生态环境综合治理关键技术研究与示范.北京::、中国水利水电出版社,2009:1-2.
    [38]李裕元,邵明安,上官周平,等.黄土高原北部紫花苜蓿草地退化过程与植被演替研究.草业学报,2006,15(2):85-92.
    [39]栗小东,过仲阳,朱燕玲,等.结合GIS数据的神经网络湿地遥感分类方法:以上海崇明岛东滩湿地为例.华东师范大学学报(自然科学版),2010,4:26-34.
    [40]刘浩,胡卓玮,赵文慧.基于面向对象的重大工程土地利用变化信息提取——以国家体育场(鸟巢)建设工程为例.国土资源遥感,2009,4:86-89.
    [41]刘红玉,吕宪国.三江平原湿地景观生态制图分类系统研究.地理科学,1999,19(5):432-436.
    [42]刘红玉,张世奎,吕宪国.三江平原湿地景观结构的时空变化.地理学报,2004,59(3):391-400.
    [43]刘梦雪.青藏高原亚高寒草甸植物群落物种多样性和生产力关系的研究.兰州大学,2010.
    [44]刘硕.北方主要退耕还林还草区植被演替态势研究.北京林业大学,2009.
    [45]刘耀林,刘艳芳,张玉梅.基于灰色-马尔柯夫链预测模型的耕地需求量预测研究.武汉大学学报(信息科学版),2004,29(7):575-579.
    [46]刘振乾,徐新良,吕宪国.3S技术在三角洲湿地资源研究中的应用.地理学与国土研究,1999,15(4):88-91.
    [47]陆中臣.流域地貌系统.大连:大连出版社,1991:16-36.
    [48]吕宪国,王起超,刘吉平.湿地生态环境影响评价初步探讨.生态学杂志,2004,23(1):83-85.
    [49]马明国,董立新,王雪梅.过去21a中国两北植被覆盖动态监测与模拟.冰川冻土,2003,25(2):232-236.
    [50]马文.高分辨率遥感影像道路分割算法研究.河海大学,2006.
    [51]那晓东,张树清,孔博,等.基于决策树方法的淡水沼泽湿地信息提取—以三江平原东北部为例.遥感技术与应用,2008,23(4):365-372.
    [52]聂勇,张镱锂,刘林山,等.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测.地理学报,2010,65(1):13-28.
    [53]宁龙梅,王学雷,吴后建.武汉市湿地景观格局变化研究.长江流域资源与环境,2005,14(1):44-49.
    [54]彭少麟,任海,张倩媚.退化湿地生态系统恢复的一些理论问题.应用生态学报,2003,14(11):2026-2030.
    [55]齐述华,王长耀,牛静,等.利用NDVI时间序列数据分析植被长势对气候因子的影响.地理科学进展,2004,23(3):91-99.
    [56]齐义娜.面向对象的高分辨率遥感影像信息提取与尺度效应分析.东北师范大学,2009.
    [57]史小红.科尔沁沙地植被演替特征与土壤特性试验分析.内蒙古农业大学,2004.
    [58]宋开山,刘殿伟,王宗明,等.1954年以来三江平原土地利用变化及驱动力.地理学报,2008,63(1):93-104.
    [59]苏伟,李京,陈云浩,等.基于多尺度影像分割的面向对象城市土地覆被分类研究——以马来西亚吉隆坡市城市中心区为例.遥感学报,2007,11(4):521-530.
    [60]宋永昌.植被生态学.上海:华东师范大学出版社,2001:355-358.
    [61]孙永军,童庆禧,秦其明.利用面向对象方法提取湿地信息.国土资源遥感,2008,1:79-82.
    [62]汤洁,汪雪格,李昭阳.基于C A-Markov模型的吉林省西部土地利用景观格局变化趋势预测.吉林大学学报(地球科学版),2010,40(2):405-411.
    [63]陶超,谭毅华,蔡华杰,等.面向对象的高分辨率遥感影像城区建筑物分级提取方法.测绘学报,2010,39(1):39-45.
    [64]汪爱华.RS和GIS支持下的三江平原沼泽湿地动态变化研究.地理科学,2002,22(5):636-640.
    [65]汪爱华,张树清.三江平原沼泽湿地景观空间格局变化.生态学报,2003,23(2):237-243.
    [66]汪殿蓓,暨淑仪,陈飞鹏.植物群落物种多样性研究综述.生态学杂志,2001,20(4):55-60.
    [67]王根绪,程国栋.荒漠绿洲生态系统的景观格局分析:景观空间方法与应用.干旱区研究,1999,16(3):6-11.
    [68]王海江,王周龙,吴孟泉,等ANFIS在湿地遥感信息提取中的应用研究,测绘科学,2010,4:171-173.
    [69]王海起,王劲峰.空间数据挖掘技术研究进展.地理与地理信息科学,2005,21(4):6-10.
    [70]王红娟,姜加虎,黄群.基于知识的洞庭湖湿地遥感分类方法.2008,17(3):370-373.
    [71]王建强,吴连喜,张岩岩.基于3S技术湿地遥感信息分类方法的研究.水利科技与经济,2006,12(10): 718-720.
    [72]王庆光,潘燕芳.基于BP神经网络的湿地遥感分类.韶关学院学报(自然科学),2007,28(3):72-75.
    [73]王树森.华北土石山区基于森林植被演替规律的森林健康的研究.北京林业大学,2005.
    [74]王宪礼,肖笃宁,布仁仓,等.辽河三角洲湿地的景观格局分析.生态学报,1997,17(3):317-323.
    [75]王颖,宫辉,赵文吉,等.北京野鸭湖湿地资源变化特征.地理学报,2005,60(4):656-664.
    [76]王占生,刘文君.微污染水源饮用水处理.北京:中国建筑工业出版社,1999:23-58.
    [77]王正兴,刘闯,陈文波,等MODIS增强型植被指数EVI与NDVI初步比较.武汉大学学报(信息科学版),2006,31(5):407-410.
    [78]王宗明,陈铭,宋开山.三江平原别拉洪河流域湿地农田化过程中湿地-农田景观梯度时空特征分析.水土保持学报,2008,22(1):194-198.
    [79]温仲明,赫晓慧,焦峰,等.2008延河流域本氏针茅(Stipa bungeana)分布预测—广义相加模型及其应用.生态学报,28(1):192-201.
    [80]邬建国.景观生态学:格局、过程、尺度与等级,第2版.北京:高等教育出版社,2007:66-88.
    [81]吴统贵.杭州湾滨海湿地植被群落演替及优势物种生理生态学特征.中国林业科学研究院,2009.
    [82]席琳.伏牛山东麓不同演替阶段植被群落特征与水土保持特性.河南农业大学,2009.
    [83]邢旗,刘爱军,刘永志,等.应用MODIS-NDVI对草原植被变化监测研究——以锡林郭勒盟为例.草地学报,2005,13:15-19.
    [84]徐玲.崇明东滩湿地植被演替不同阶段鸟类群落动态变化的研究.华东师范大学,2004.
    [85]许坤.三江平原沼泽湿地植被演替系列β多样性及土壤种子库研究.东北师范大学,2007.
    [86]杨国清,刘耀林,吴志峰.基于CA-Markov模型的土地利用格局变化研究.武汉大学学报(信息科学版),2007,32(5):414-418.
    [87]杨国清,吴志峰,祝国瑞.广州地区土地利用景观格局变化研究.农业工程学报,2006,22(5):218-221.
    [88]杨杰,田永超,姚霞,等.水稻上部叶片叶绿素含量的高光谱估算模型.生态学报,2009,29(12):6561-6571.
    [89]杨建平,丁永建,陈仁升.长江黄河源区高寒植被变化的NDVI记录.地理学报,2005,60(3):467-478.
    [90]杨小唤,张香平,江东.基于MODIS时序NDVI待征值提取多作物播种面积的方法.资源科学,2004,26(6):17-22.
    [91]衣伟宏,杨柳,张正祥.基于ETM+影像的扎龙湿地遥感分类研究.湿地科学,2004(3):208-212.
    [92]于信芳,庄人方.基于MODIS NDVI数据的东北森林物候期监测.资源科学,2006,28(4):111-117.
    [93]张国坤.新开河流域湿地景观格局动态变化过程研究.自然资源学报,2007,22(3):204-210.
    [94]张建春,彭补拙.河岸带及其生态重建研究.地理研究,2002,21(3):373-383.
    [95]张秀英,冯学智,江洪.面向对象分类的特征空间优化.遥感学报,2009,13(4):664-669.
    [96]张益源.内蒙古鄂尔多斯退耕还林地植被演替过程研究.北京林业大学,2011.
    [97]张月丛,赵志强,李双成等.基于SPOT-NDVI的华北北部地表植被覆盖变化趋势.地理研究,2008,27(4):745-754.
    [98]张志锋,宫辉力,赵微,等.基于3S技术的北京野鸭湖湿地资源的动态变化研究.遥感技术与应用,2003,1 8(5):291-296.
    [99]赵冰茹,刘闯,刘爱军,等.利用MODIS-NDVI进行草地估产研究——以内蒙古锡林郭勒草地为例.草业科学,2004,21(8):12-15.
    [100]赵瑞锋,周华荣,肖笃宁,等.塔里木河中下游地区湿地景观格局变化.生态学报,2006,26(10):3470-3478.
    [101]郑利娟,李小娟,胡德勇,等.基于对象和DEM的湿地信息提取——以洪河沼泽湿地为例.遥感技术与应用,2009,24(3):346-351.
    [102]钟文君,兰樟仁.基于高空间分辨率遥感影像的湿地信息提取技术研究.云南地理环境研究,2007,19(5):134-139.
    [103]周灿芳.植物群落动态研究进展.生态科学,2000,19(2):53-59.
    [104]周成虎,孙战利,谢一春.地理元胞自动机研究.北京:科学出版社,2001:1-77.
    [105]周国法.应用一维空间序列方法研究空间分布型与时空相关.生态学报,1997,17(2):200-208.
    [106]宗秀影,刘高焕,乔玉良.黄河三角洲湿地景观格局动态变化分析.地球信息科学学报,2009,11(1):91-97.
    [107]Adam E, Mutanga O, Rugege D. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation:a review. Wetlands Ecol Manage,2010,18:281-296.
    [108]Adamoli J, Sennhauser E, Acero J M, et al. Stress and disturbance:vegetation dynamics in the dry Chaco region of Argentina. Journal of biogeography,1990:491-500.
    [109]Aerts R, Berendse F. The effect of increased nutrient availability on vegetation dynamics in wet heathlands. Plant Ecology,1988,76(1):63-69.
    [110]Ali M. Aquatic and shoreline vegetation of Lake Nubia, Sudan. Acta Bot Croat,2004,63(2):101-111.
    [111]Aspinall R, Pearson D. Integrated geographical assessment of environmental condition in water catchments:Liking landscape ecology, environmental modeling and GIS. Journal of Environmental Management,2000,59:299-319.
    [112]Antunes A F B, Lingnau C, Da Silva J C. Object oriented analysis and semantic network for high resolution image classification. Anais XI SBSR, Belo Horizonte, Brasil,2003:05-10.
    [113]Bakker J P, Olff H, Willems J H, et al. Why do we need permanent plots in the study of long-term vegetation dynamics. Journal of Vegetation Science,1996,7(2):147-156.
    [114]Bazzaz F A. The physiological ecology of plant succession. Annual review of ecology and systematics, 1979,10:351-371.
    [115]Beck P S A, Atzberger C, Hogda K A, et al. Improved monitoring of vegetation dynamics at very high latitudes:a new method using MODIS NDVI. Remote Sensing of Environment,2006,100(3):321-334.
    116] Becker F, Choudhury B J. Relative sensitivity of normalized difference vegetation index (NDVI) and microwave polarization difference index (MPDI) for vegetation and desertification monitoring. Remote Sensing of Environment,1988,24(2):297-311.
    117] Benediktsson J, Swain P H, Ersoy O K. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Transactions on geoscience and remote sensing, 1990,28(4):540-552. Benz U C, Peter H, Gregor W, et al. Multi-resolution object-oriented Fuzzy Analysis of Remote Sensing Data for GIS-ready Information. ISPRS Journal of Photogrammetry & Remote Sensing, 2004(58):239-258.
    118] Briske D D, Fuhlcndorf S D, Smeins F E. Vegetation dynamics on rangelands:a critique of the current paradigms. Journal of Applied Ecology,2003,40(4):601-614.
    119] Brown M E, Pinzon J E, Didan K, et al. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+sensors. Geoscience and Remote Sensing, IEEE Transactions on,2006,44(7):1787-1793.
    120] Budelsky R A, Galatowitsch S M. Establishment of Carex stricta.Lam.seedlings in experimental wetlands with implications forrestoration. Plant Ecology,2004,175(1):91-105.
    121] Cattelino P J, Noble 1 R, Slatyer R O, et al. Predicting the multiple pathways of plant succession. Environmental Management,1979,3(1):41-50.
    122] Ceccato P, Flasse S, Tarantola S, et al. Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment,2001,77(1):22-33.
    123] Chopra R, Verma V K, Sharma P K. Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab, India, through remote sensing. International Journal of Remote Sensing,2001,22(1):89-98.
    124] Clements F E. Plant succession:an analysis of the development of vegetation:Carnegie Institution of Washington,1916.
    125] Coops H, Brink F W, Velder G. Growth and morphological response of four helophyte species in an experimental water-depth gradient. Aquatic Botany,1996,54:11-24.
    126] Costa M P F, Niemann O, Novo E, et al. Biophysical properties and mapping of aquatic vegetation during the hydrological cycle of the Amazon floodplain using JERS-1 and Radarsat. International Journal of Remote Sensing,2002,23(7):1401-1426.
    127] Denslow J S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia,1980,46(1):18-21.
    128] Elmore A J, Mustard J F, Manning S J. Regional patterns of plantcommunity response to changes in water; Owens valley, California. Ecological Applications,2003,13(2):443-460.
    129] Ernst Dottavio C L, Hoffer R M, Mrocynski R P. Spectral characteristics of wetland habitats[Indiana, Landsat; land use]. Photogrammetric Engineering and Remote Sensing,1981,47:223-232.
    130] ESRI2002 Environmental Systems Research Institute, ArcGIS, Arc View 3.3.
    [131]Zengeya F M, Mutanga O, Murwira A. Linking remotely sensed forage quality estimates from WorldView-2 multispectral data with cattle distribution in a savanna landscape. International Journal of Applied Earth Observation and Geoinformation,2013,21:513-524.
    [132]Fensholt R, Sandholt I. Derivation of a shortwave infrared water stress index from MOD1S near-and shortwave infrared data in a semiarid environment. Remote Sensing of Environment,2003,87(1):111-121.
    [133]Forest Science Department, Oregon state University, Corvallis Oregon, March,1994:62.+Append.
    [134]Fujihara M, Kikuchi T. Changes in the landscape structure of the Nagara River Basin, central Japan. Landscape and Urban Planning,2005,70(3/4):271-281.
    [135]Fung T, Siu W. Environmental quality and its changes, an analysis using NDVI. International Journal of Remote Sensing,2000,21(5):1011-1024.
    [136]Galvao L S, Formaggio A R, Tisot D A. Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment,2005,94(4):523-534.
    [137]Gammon P T, Carter V P. Comparison of vegetation classes in the Great Dismal Swamp using two individual Landsat images and a temporal composite. In P. T. Gammon. Dismal Swamp National Wildlife Refuge. USGS.1976.
    [138]Gao B C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment,1996,58(3):257-266.
    [139]Glenn-Lewin D C, Peet R K, Veblen T T. Plant succession:theory and prediction. Springer,1992:12-64.
    [140]Glenn-Lewin D C, van der Maarel E. Patterns and processes of vegetation dynamics. Plant succession, 1992:11-59.
    [141]Guisan A, Edwards J. Generalized linear and generalized additive models in studies of species distributions; setting the scene. Ecological Modeling,2002,157(2-3):89-100.
    [142]Guofu L, Shengyan D. Impacts of human activity and natural change on the wetland landscape pattern along the Yellow River in Henan Province. Journal of Geographical Sciences,2004,14(3):339-348.
    [143]Hardinsky M A, Lemas V, Smart R M. The influence of soil salinity, growth form and leaf moisture on the spectral reflectance of Spartina alternifolia canopies. Photogrammetric Engineering and Remote Sensing, 1983,49(1):77-83.
    [144]Hardisky M. A., Smart R. M., Klemas V. Seasonal spectral characteristics and aboveground biomass of the tidal plant, Spartina alterniflora. Photogrammetric Engineering and Remote Sensing,1983,49:85-92.
    [145]Hazin H, Erzini K. Assessing swordfish distribution in the SouthAtlantic from spatial predictions Fisheries Research,2008,90:45-55.
    [146]Hess L L, Melack J M, Novo E M L M, et al. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment,2003,87(4):404-428.
    [147]Huston M, Smith T. Plant succession; life history and competition. American Naturalist,1987:168-198.
    [148]Ichii K, Kawabata A, Yamaguchi Y. Global correlation analysis for NDVI and climatic variables and NDVI trends:1982-1990. International Journal of Remote Sensing,2002,23(18):3873-3878.
    149] Inamdar S P, Sheridan J M, Williams R G, et al. Riparianecosystem management model (REMM):I. Testing of thehydrologic component for a coastal plain riparian system. Transactions of the ASAE,1999, 42(6):1679-1689.
    150] Jensen J R, Hodgson M E, Christensen E, et al. Remote sensing inland wetlands:a multispectral approach. Photogrammetric engineering and remote sensing (USA),1986,52:87-100.
    151] Karrenberg S, Edwards P J, Kollmann J, et al. The life history ofSalicaceae living in the active zone of floodplains. FreshwaterBiology,2002,47:733-748.
    152]Kawabata A, Ichii K, Yamaguchi Y. Global monitoring of interannual changes in vegetation activities using NDVI and its relationships to temperature and precipitation. International Journal of Remote Sensing, 2001,22(7):1377-1382.
    153] Kellogg C H, Bridgham S D, Leicht S A. Effects of water level, shade and time on germination and growth of freshwater marsh plantsalong a simulated succession gradient. Journal of Ecology,2003,91(2): 274-282.
    154] Kushwaha S P S, Dwivedi R S, Rao B R M. Evaluation of various digital image processing techniques for detection of coastal wetlands using ERS-1 SAR data. International Journal of Remote Sensing,2000,21(3): 565-579.
    155] Lee K H, Lunetta R S. Wetland detection methods[J]. Wetland and environmental applications of GIS, 1995:249-284.
    156] Lees A C, Peres C A. Conservation value of remnant riparianforest corridors of varying quality for Amazonian birds and mammals. Conservation Biology,2008,22 (2):439-449.
    157] Lehmann A, Overton J M, Leathwick J R. GRASP:generalized regression analysis and spatial prediction. Ecological Modelling,2002,157:189-207.
    158] Lunetta R S, Knight J F, Ediriwickrema J, et al. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment,2006,105(2):142-154.
    159] Lu X G, Jiang M. Progress and prospect of wetland research in China. Journal of Geographical Sciences, 2004,14(supplement):45-51.
    160] Luijten J C. A systematic method for generating land use patterns using stochastic rules and basic landscape characteristics: Results for a Colombianhillside Watershed. Agriculture Ecosystems and Environment,2003,95(2):427-441.
    161]Mander U, Kuusemets V, Krista L, et al. Efficiency and dimensioning of riparian buffer zones in agricultural catchments. Ecological Engineering,1997,8:299-324.
    162] Mc G K, Marks B J. FRAGSTATS:Spatial analysis program for quantifying landscape structure. Reference Manual.
    163] Merton R N. Monitoring community hysteresis using spectral shift analysis and the red-edge vegetation stress index. Proceedings of the Seventh annual JPL Airborne Earth Science Workshop. Pasadena; NASA, Jet Propulsion Laboratory,1998,2:12-16.
    [164]Michel P, Overton J M C, Mason N W H, et al. Species-environment relationships of mosses in New Zealand indigenous forest and shrubland ecosystems. Plant ecology,2011,212(3):353-367.
    [165]Minshall G W, Rugenski A. Riparian processes and interactions. Methods in Stream Ecology,2007,2: 721-742.
    [166]Nilsson C, Berggrea K. Alterations of riparian ecosystem causedby river regulation. Bioscience,2000, 50(9):782-793.
    [167]Oindo B O, Skidmore A K. Interannual variability of NDVI and species richness in Kenya. International Journal of Remote Sensing,2002,23(2):285-298.
    [168]Palialexis A, Georgakarakos S, Lika K, et al. Use of GIS, remote sensing and regression models for the identification and forecast of small pelagic fish distribution. Proceedings of the 2nd International CEMEPE & SECOTOX Conference, Mykonos, June,2009:21-26.
    [169]Penuelas J, Filella I, Biel C, et al. The reflectance at the 950-970 nm region as an indicator of plant water status. International Journal of Remote Sensing,1993,14(10):1887-1905.
    [170]Peters A J, Walter-Shea E A, Ji L, et al. Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric engineering and remote sensing,2002,68(1):71-75.
    [171]Piao S, Fang J, Zhou L, et al. Interannual variations of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 1999. Journal of Geophysical Research:Atmospheres (1984-2012),2003,108(D14):4401.
    [172]Potter C S, Brooks V. Global analysis of empirical relations between annual climate and seasonality of NDVI. International Journal of Remote Sensing,1998,19(15):2921-2948.
    [173]Powell M, Accad A, Austin M P, et al. Predicting loss and fragmentation of habitat of the vulnerable subtropical rainforest tree Macadamia integrifolia with models developed from compiledecological data.Biological Conservation,2010,143:1385-1396.
    [174]Roshier D A, Rumbachs R M. Board-scale mapping of temporary wetlands in arid Australia. Journal of Arid Environments,2004,56(2):249-263.
    [175]Rutchey K, Vilcheck L. Development of an Everglades vegetation map using a SPOT image and the Global Positioning System. Photogrammetric Engineering and Remote Sensing,1994,60:767-775.
    [176]Sandman A, Isaeus M, Bergstrom U, et al. Spatial predictions of Baltic phytobenthic communities; Measuring robustness of generalized additive models based on transects data. Journal of Marine Systems, 2008,74:S86-S96.
    [177]Sarkar C, Abbasi S A. Cellular automata-based forecasting of the impact of accidental fire and toxic dispersion in process industries. Journal of Hazardous Materials,2006,137(1):8-30.
    [178]Schlerf M, Atzberger C, Hill J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sensing of Environment,2005,95(2):177-194.
    179] Silva J M C, Uhl C, Murray G. Plant succession, landscape management, and the ecology of frugivorous birds in abandoned Amazonian pastures. Conservation biology,1996,10(2):491-503.
    180] Tang J, Wang L et al. Investigating landscape pattern and its dynamics in Daqing, China. International Journal of Remote Sensing,2005,26(11):2259-2280.
    181] Tang J, Wang X. Analysis of the land use structure changes based on Lorenz curves. Environmental monitoring and assessment,2009,151(1-4):175-180.
    182] Tansey K, Chambers I, Anstee A, et al. Object-oriented classification of very high resolution airborne imagery for the extraction of hedgerows and field margin cover in agricultural areas. Applied geography, 2009,29(2):145-157.
    183]Thenot F, Methy M, Winkel T. The photochemical reflectance index (PRI) as a water-stress index. International Journal of Remote Sensing,2002,23(23):5135-5139.
    184] Tieszen L L, Reed B C, Bliss N B, et al. NDVI, C3 and C4 production, and distributions in Great Plains grassland land cover classes. Ecological Applications,1997, 7(1):59-78.
    185]Townsend P A, Walsh S J. Remote sensing of forested wetlands:application of multitemporal and multispectral satellite imagery to determine plant community composition and structure in southeastern USA. Plant Ecology,2001,157:129-149.
    186] Tseira M, Irit A C. The effectiveness of the protection of riparianlandscapes in Israel. Land Use Policy, 2008,26(4):911-918.
    187] Van Der Meer F. Analysis of spectral absorption features in hyperspectral imagery. International Journal of Applied Earth Observation and Geoinformation,2004,5(1):55-68.
    188] Venkatachalam A, Jay R, Eiji Y. Impact of riparian buffer zoneson water quality and associated management considerations. Ecological Engineering,2005,24(5):517-523.
    189] Verhoef W, Menenti M, Azzali S. Cover A colour composite of NOAA-AVHRR-NDVI based on time series analysis (1981-1992). International Journal of Remote Sensing,1996,17(2):231-235.
    190] Walsh S J, Crawford T W, Welsh W F, et al. A multiscale analysis of LULC and NDVI variation in Nang Rong district, northeast Thailand. Agriculture, Ecosystems & Environment,2001,85(1-3):47-64.
    191] Walter V. Object-based classification of remote sensing data for change detection. ISPRS Journal of photogrammetry and remote sensing,2004,58(3):225-238.
    192] Wang F H. Quantitative Methods and Application in GIS. LLC:CRC Press,2006:66-88.
    193] Wang J, Price K P, Rich P M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. International Journal of Remote Sensing,2001,22(18):3827-3844.
    194] Wang J, Shang J, Brisco B, et al. Evaluation of multidate ERS-1 and multispectral Landsat imagery for wetland detection in southern Ontario. Canadian Journal of Remote Sensing,1998,24:60-68.
    195] Weber T, Sloan A, Wolf J. Maryland's Green Infrastructure Assessment:Development of a comprehensive approach to land conservation. Landscape and Urban Planning,2006,77:94-110.
    [196]Weber T. Landscape Ecological Assessment of the Chesapeake Bay Watershed. Environmental Monitoring and Assessment,2004,94:39-53.
    [197]Work E A, Gilmer D S. Utilization of satellite data for inventorying prairie ponds and potholes. Photogrammetric Engineering and Remote Sensing,1976,5:685-694.
    [198]Xue T X, Ye B, Liu J Y. A patch connectivity index and its change in relation to new wetland at the Yellow River Delta. International Journal of Remote Sensing,2004,25(21):4617-4628.
    [199]Yang L, Wylie B K, Tieszen L L, et al. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the US northern and central Great Plains. Remote Sensing of Environment,1998,65(1):25-37.
    [200]Yue Y M, Zhang B, Wang K L, et al. Spectral indices for estimating ecological indicators of karst rocky desertification. International Journal of Remote Sensing,2010,31(8):2115-2122.
    [201]Zacharias I, Dimitriou E, Koussouris T. Estimating groundwaterdischarge into a lake through underwater springs by using GIS technologies. Environmental Geology,2003,44(7):843-851.
    [202]Zarco-Tejada P J, Rueda C A, Ustin S L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment,2003,85(1):109-124.
    [203]Zerger A, Gibbons P, Seddon J, et al. A method for predicting native vegetation condition at regional scales. Landscape and Urban Planning,2009,91:65-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700