方钢管混凝土结构粘结滑移基本性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
方钢管混凝土结构因钢管混凝土特有的优势而迅速发展并广泛应用起来。随着应用的增长,其结构内部钢管与混凝土界面间的粘结滑移基本性能越来越引起工程界的关注,并成为工程应用领域进一步发展难以逾越的难题之一。本文通过轴心推出试验(Push-out Test)及具有代表性的轴心受压构件试验的理论分析,主要研究了方钢管混凝土构件粘结滑移机理及其基本性能。
     本文对14根方钢管混凝土构件,其中包括9根推出试件,3个不同形式节点推出试件及2根不同传力形式的轴压试件进行了试验,通过外贴电阻应变片对钢管表面在各级荷载下纵向应变进行测定,分析得到钢管混凝土在界面抗剪粘结性破坏过程中的应变分布规律;运用改进型“内置式滑移传感器”,对结构内部粘结滑移量的分布规律进行了追踪测试,得到了构件荷载滑移曲线及其特征;通过对粘结应力与内部滑移之间的变化关系的分析得到了界面抗剪破坏粘结性发展规律。基于未确知数学方法,对推出试件平均粘结强度进行了分析计算。在对试验细致观察的基础上,分析了钢管的屈曲模态和粘结滑移机理,更全面地阐述了钢管混凝土界面抗剪粘结性能。
     整理分析了9个方钢管混凝土推出构件的荷载-加载端滑移曲线及其规律,对其初始、极限和稳定残余三个受力阶段进行了试验归纳,并对影响其性能的四个主要影响变量与三个特征粘结强度的对应关系进行了统计研究。在考虑多因素的前提下,得到了两套方钢管混凝土粘结强度统计回归公式,并依此对试验结果进行了误差估计及评估分析。类比分析了国内相关试验研究及成果,应用本文建立的粘结强度回归公式对已有试验数据进行了测算和对比研究。
     根据试件端部实测得到的荷载滑移数据,给出了平均粘结强度-加载端滑移的数学关系。分析统计了钢管应变的试验量测结果,根据力的平衡基本原理推导,以图表的方式展现了推出试验中内部应力随荷载的变化规律,分析了其随荷载大小及沿锚固长度方向上的分布变化。依据电子滑移传感器的量测结果,分析了不同荷载等级作用下界面滑移沿钢管锚固方向的分布规律,由此对试验量测的特征值进行了统计回归。根据试验的粘结应力和内部滑移测量记录结果,得出各截面的局部粘结应力-滑移量沿锚固方向上的关系曲线,建立了考虑x-y向位置函数F(x)和G(x)的局部粘结滑移本构模型τ(x)=S{C_1 ,..., C_i ,...C n,F(x),G(x)}来阐明粘结滑移本构关系的一般规律。
     采用极限平衡法对方钢管混凝土构件的极限承载力进行了数学推导,提出了简单实用的计算公式,与已有试验类比分析,理论值与实测值吻合良好。对于方钢管混凝土,通过极限承载力分析计算,建议核心混凝土侧压力提高系数可取2.67。
     对推出试件、节点推出试件以及不同受力方式轴压试件在不同荷载阶段剪切粘结作用下钢管内力分配情况的分析和总结,分别得到了各级荷载作用下混凝土相对内力与相对长度方向的分布规律、钢管及核心混凝土内力消长规律,并通过统计回归分析,得到了推出试件混凝土内力在其传力长度方向随外荷载增加的轴力公式。此公式的运用可以得到各级荷载下沿传力长度方向不同位置的内力分配情况。通过极限平衡的方法得到了钢管混凝土推出临界传递长度值LsLcs r/ B`对构件传力长度及其限值进行了探讨性研究,建议取距上下柱端各750mm和2.5B两值中小者为传力长度限值。
     提出了考虑临界锚固长度以及采用扎制变形型钢等其他一些粘结锚固设计建议。结合钢管混凝土粘结滑移性能分析,对构件抗剪连接件进行了探讨性设计,并给出了相应的计算公式,以此作为实际工程设计的参考。
     运用ANSYS模拟分析方法对推出试验和两根轴压柱进行了研究,并与试验结果进行了对比验证,结果表明有限元计算结果和试验结果吻合较好。在分析研究粘结滑移基本性能基础上,建立了考虑粘结滑移的和不考虑粘结滑移的轴心受压方钢管混凝土的有限元模型,进行了计算及对比分析,探讨了粘结滑移结果以及不同加载方式对方钢管混凝土构件力学性能的影响。
Concrete-filled square steel tubes (CFSST) with preeminent advantage, have already become a kind of rapidly and widely developed structural forms and directions in the modern high-rise and the skyscraper. The bond strength and the bond-slip performance of the interface between the steel tube and the core concrete of the CFSST is always one of the insurmountable concerns among the construction engineers and managers. The mechanism of bond and basic bond-slip performances studied in this paper are based on the axial push-out test of CFSST and theory analysis.
     This test has been done upon 14 CFSST specimens including 9 standard push-out test specimens,3 different connection push-out test ones and 2 different axial load transfer test ones. The tube longitudinal strains of the outer surface were tested at various load levels through the electronic strain gauges installed on the surface at close intervals along the length, from which the bond stress distributing rules were obtained. In all these 14 specimens, the updated Embedded Electronic Steel-Concrete Slip Transfers were respectively embedded on the outside of steel tube at certain intervals along the embedment length to measure the distributions of the interior slip. According to the experimental results, the load-slip curves ( curves) were completely analyzed, and the measured strains as well as measured interior slip at both the loading phase and unloading phase of all the 9 specimens were analyzed. The ultimate bond strength was calculated precisely based on unascertained mathematics theory and fully reflects the bond behavior in CFSST structures. In order to find out P ?S
     the mechanism of bond-slip, the whole push-out experiment process had been fully observed. The first slip time, the development progress, and the final patterns were carefully observed and depicted, then the mechanism of bond-slip were analyzed.
     According to the experimental results of the 9 push-out specimens, together with the mathematical analysis of the P ? Scurves, three characteristics of bond strength, i.e., first-slip bond strength, maximum bond strength and the remnant bond strength, were summed up. The relationships between 4 main factors and the three characteristics of bond strength were analyzed. Two set of bond strength calculation formulae considering several bond-anchoring factors were statistically regressed, the comparison and error analysis of the calculated results were conducted to evaluate the formulae accuracy, by which the calculation results were verified in good agreement with the experimental results. Moreover, theses two set of bond strength calculation formulae were adopted to calculate the bond strength of the former experimental specimens, and compared with the experimental results, from which the calculation formulae were corrected and revised.
     According to the experimental P -S Scurves, the relations of the bond strength and load-end slip (τ-S relations) were studied and mathematically modeled. Based on the measured results of the tube strain, the longitudinal distributions of the bond stresses were consequently established according to the force balance equations. The longitudinal distributions of the interior slip along the embedment length were also obtained from the experimental results, which were measured by the Embedded Electronic Steel-Concrete Slip Transfer, and the characteristic slip values were established by statistically regression. According to the distributions of the bond stresses and the interior slip, a new type of bond-slip constitutive relation model including two longitudinal position functions, F ( x ) and G ( x),was established and expressed as formulaτ(x) =S{C_1 , ..., C_i ,... Cn,F(x),G(x)}, in which the longitudinal difference of the bond-slip constitutive relations along the embedment were fully considered.
     Based on the limit equilibrium method, the ultimate bearing capacity was analyzed, and the simple and practical calculation formula has been proposed. Compared with the former test, theory value matches surveying value quite well. For
     the CFSST, through analyzing and calculating the ultimate bearing capacity, the lateral pressure improves coefficient of core concrete was proposed to be 2.67 desirably.
     With the analysis and summaries of the inner distribution, the rules of relative inner force and length were obtained. According to the regression analysis the formula of concrete axis force was supposed. With the application of the distribution formula, the internal force of steel and concrete was obtained separately along the transfer direction in different position. Based on the limit equilibrium method, the critical transfer length Lcs r of push-out member was analyzed with the relatively ones . According to the test result, the transfer length and its limit were carried out, and the limited transfer length was proposed which is the smaller one of 750mm and 2.5B order to spread shear force.
     Considering the transfer length, some other bonding anchors suggestion such as the distortion section steel were put forward. Together with the analysis of the CFSST bond-slip performance, the design of shear section was discussed, and then the corresponding calculation formula was given for the reference of actual projects design.
     The numerical simulation of the push-out test specimens and the axial load specimens were conducted by the ANSYS according to the bond-slip constitutive relations obtained, the simulation results well matched the experimental results. The two CFSST numerical simulation cases under axial load by ANSYS considering and no considering the bond-slip performance were both conducted and compared with the experimental results. The influence of the bond-slip and different types of loading conditions upon mechanical behaviors of CFSST under axial load is analyzed.
引文
[1-1]钟善桐.钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社.1994:1-29
    [1-2]韩林海.钢管混凝土结构[M].北京:科学出版社.2000:1-20
    [1-3]赵鸿铁.钢与混凝土组合结构[M].科学出版社.2001.
    [1-4]钟善桐.高层钢管混凝土结构[M].哈尔滨:黑龙江科学技术出版社.1999:1-16.
    [1-5] R. P. Johnson. Some Research on Composite Structure in the U.K.[J], 1960-1985. Proc. of an Engineering Foundation Confer. on Steel-Concrete Composite Structure. ASCE, Irises, 1996:15-28
    [1-6] E. H. K. Roil. Review of the Development of Composite Structures in Germany[J]. Proc. of an Engineering Foundation Confer. on Steel-Concrete Composite Structure. ASCE, Irsee, 1996:55-74
    [1-7] S. P. Schneider. Axially Loaded Concrete-Filled Steel Tubes[J]. Journal of Structural Engineering. ASCE, 1998, 124(10):1125-1138
    [1-8] M. Shams, and M. A. Saadeghvaziri, State of the Art of Concrete Filled Steel Tubular Columns[J]. ACI Structural Journal,1997, 94(5):558-571
    [1-9] M. Wakabayashi. Recent Development and Research in Composite and Mixced Building Structures in Japan[J], Proc. of the 4th ASCCS Inter. Confer., Kosice, Slovakia, 1994:237-242
    [1-10] H. Bode. Columns of Steel Tubular Sections Filled with Concrete -Design and Application acier-stahl-steel[J], 1973(11-12):388-393
    [1-11] R. Q. Bridge. High Strength Materials in Concrete Construction. Report of Inter. Confer. on Composite Construction-Conventional and Innovative[J], Austria, 1997:29-40
    [1-12]金雪峰,龙跃凌.方形钢管混凝土结构的特点及研究展望[J].安徽建筑.2004(6).
    [1-13] M. Tomii, V. Matsui, and K. Sakino. Concrete Filled Steel Tube Structures. ASCE-IABSE, National Confer, on the Planning and Design of Tall Building[J]. Tokyo, Japan, August,1973:55-72
    [1-14] M. A. Bradford. Design Strength of Slender Concrete Fi1led Rectangular Steel Tubes[J]. ACI Structural Journal.1996,93(2):229-235
    [1-15] R.W. Furlong. Design of Steel-Encased Concrete Beam-Columns. Structural Division[J], ASCE.1968,94,ST1:267-281
    [1-16] R. W. Furlong. Columns Rules of ACI, SSLC, and LRFD Compared. Journal of Structural Division[J].ASCE,1983,109(10):2375-2386
    [1-17] R. S. Ghosh. Strengthening of Slender Ho11ow Stee1 Columns by Filling with Concrete[J]. Canadian Journal of Civil Engineering. 1977,4(2):127-133
    [1-18] J. Grarder, R. Jacobson. Structural Behavior of Concrete Filled Steel Tubes. ACI Journal of Structural Division.1967,No.64-38:404-413
    [1-19] DIN 18806.Verbundkonstruktionen.Verbrundstutzen, NABau im Din. Beuth Verlag Gmbh, Berlin 30[S],1997
    [1-20] ACI Committee 318. Building Code Requirements for Reinforced Concrete(ACI 318-95) and Commentary(ACI 318R-95)[S]. American Concrete Institute, Detroit,1995
    [1-21] Structural Stability Research Council. A Specification for the Design of Steel Concrete Composite Columns. Task Group 20, Engineering Journal. American Institute of Steel Construction,1979,16(4):101-115
    [1-22] R. B. Knowles, R. Park. Axial Load Design for Concrete Filled Steel Tubes[J]. Journal of Structural Division.ASCE,1970,Vol.96,ST10:2125-2153
    [1-23] P. K. Neogi, H.K. San, and J. C. Chapman. Concrete Filled Steel Columns under Eccentrical Loading[J]. The Structural Engineer.1969,47(5):187-195
    [1-24] S. Sugano, T. Nagashima. Seismic Behavior of Concrete Filled Tubular Steel Columns[J]. ASCE, Tenth Structural Congress`92,Proceedings.1992:914-917
    [1-25] M. Tomii and K. Yashimaro. Experimental Studies on Concrete Filled Steel Tubular Stub Column under Concentric Loading[J]. Proc. of the Inter. Colloquium on stability of Structures under static and Dynamic Loads, SSRC/ASCE, Washington. 1979:718-741
    [1-26] B. Uy. Concrete-Filled Fabricated Steel Box Columns for Multistory Buildings, Behavior and Design[J]. Progress in Structural Engineering and Material.1998,1(2):150-158
    [1-27] B. Uy. Wet Concrete Loading of Thin-Walled Steel Box Columns during the Construction of A Tall Building[J]. Journal of Constructional Steel Research. 1998. 42(2):95-119
    [1-28] J. Webb, J. J. Peyton. Composite Concrete Filled Steel Tube Columns[J]. Proc. of the Structural Engineering Confer. . the Institute of Engineers, Australia, 1990: 181-185
    [1-29] AIJ. Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures[S].Tokyo (Japan): Architectural Institute of Japan, 1997.
    [1-30] AISC. Load and Resistance Factor Design Specification for Structural Steel Buildings[S]. Chicago: American Institute of Steel Construction, 1999.
    [1-31] Euro code 4. Design of Steel and Concrete Structures, Part1.1: General Rules and Rules for Building[S]. DDENV 1994-1-1, British Standards Institution, London WIA2BS,1996
    [1-32]钢管混凝土结构设计与施工规程(JCJ01-89)[S].上海:同济大学出版社.1989
    [1-33]中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程(CECS28:90)[S].北京:中国计划出版社.1992
    [1-34]中华人民共和国经济贸易委员会.钢-混凝土组合结构设计规程(DL/T-5085-1999)[S],北京:中国电力出版社.1992
    [1-35]国家军用标准.战时军港抢修早强型组合结构设计规程(GJB)[S].解放军总后勤部.2001
    [1-36]蒋家奋,汤关柞.三向应力混凝土[M].北京:中国铁道出版社.1988:1-16
    [1-37]蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社.1989:l-15
    [1-38]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社。1999:1-18
    [1-39]陶忠.方钢管混凝土构件力学性能若干关键问题的研究[D].哈尔滨工业大学工学博士学位论文.2001:1-5
    [1-40]韩林海,钢管混凝土结构的特点及发展[J],工业建筑.1998,28(10):1-5
    [1-41] Y. Morishita, M. Tomii, and Y. Yoshimura. Experimental Studies on Bond Strength in Concrete Filled Square and Octagonal Steel Tubular Columns Subjected to Axial Load[J]. Transactions of Japan Concrete Institute.1979:359-366
    [1-42] Y. Morishita, M. Tomii, and Y. Yoshimura. Experimental Studies on Bond Strength in Concrete Filled Circular Steel Tubular Columns Subjected to Axial Loads[J]. Transactions of Japan Concrete Institute. 1980(2):351-358.
    [1-43] Y. Morishita, M. Tomii, Experimental Studies on Bond Strength between Square Steel Tube and Encased Concrete Core under Cyclic Shearing Forced and Constant Axial Force[J]. Transactions of Japan Concrete Institute. 1982(4):363-370
    [1-44] Virdi K. S. and Dowling, P. J.(1975). Bond Strength in Concrete Filled Circular Steel Tubes[J], CESLIC Report CC11, Imperial College, London.
    [1-45]蔡绍怀.现代钢管混凝土结构[M]北京:人民交通出版社,2003
    [1-46]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D].北京:清华大学,1990
    [1-47]姜绍飞,韩林海,乔景川.钢管混凝土中钢与混凝土粘结问题初探[J].哈尔滨建筑大学学报,2000,33(3):24-28
    [1-48]坪井善勝,若林実.铁骨铁筋コンクリ-トに関する実驗的研究[J].日本建築學會論文報告集第57号,1956(7),549-552
    [1-49]李红.型钢与混凝土粘结性能的试验研究[D].西安建筑科技大学硕士论文,1995.3
    [1-50]杨勇.型钢混凝土粘结滑移基本理理论及应用研究[D],西安:西安建筑科技大学,2003
    [1-51] R.W. Furlong. Strength of Steel-Encased Concrete Beam-Columns. Journal of Structural Engineering[J], ASCE.1967,93(5):113-124
    [1-52] M. Tomii and K. Yashimaro. Experimental Studies on Concrete Filled Steel Tubular Stub Column under Concentric Loading[J]. Proc. of the Inter. Colloquium on stability of Structures under static and Dynamic Loads,SSRC/ASCE,Washington. 1977:718-741
    [1-53] Ge H.B. and Usami T. Strength of Concrete Filled Steel Thin-Walled Box Columns: Experiment, Journal of Structural Engineering[J],ASCE.1992,118(l1):3036-3054
    [1-54] C. W. Roeder, B. Cameron and C. B. Brown. Composite Action in Concrete Filled Tubes[J]. Journal of Structure Engineering. ASCE,1999,125(5):477-484
    [1-55] M. Johansson, K. Gylltoft. Mechanical Behavior of Circular Steel-Concrete Composite Stub Columns[J]. Journal of Structural Engineering, ASCE. 2002, 128(8):1073–1081
    [1-56] M .D. O`Shea, R. Q. Bridge. Behavior of Thin-Walled Box Sections with Lateral Restraint[J]. Department of civil engineering research report. The University of Sydney, No.R739, 1997.
    [1-57] B. Uy. Strength and Ductility of Fabricated Steel-Concrete Filled Box Columns. Proc. Of the 4th Int. Confer. on Steel-Concrete Composite Structures. Slovakia, 1994:616-629.
    [1-58] B. Uy. Ductility and Strength of Thin-walled Concrete Filled Box Columns. Confer. Report on Composite Construction-Conventional and Innovative. Innsbruck, Austria, 1997:801-806.
    [1-59]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上)[J],建筑科学, 1996(3): 22-28
    [1-60]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(下)[J],建筑科学, 1996(4): 19-23
    [1-61]钟善桐.钢管混凝土中钢管与混凝土的共同工作[J].哈尔滨工业大学学报,2001(34): 6-10
    [1-62]王刚,王福建,徐叶琴.界面滑移的钢管混凝土力学特性试验研究[J].江南大学学报, 2004(8): 398-402
    [1-63]邓洪洲,傅鹏程,余志伟.矩形钢管和混凝土之间的粘结性能试验[J],特种结构, 2005,22(1):50-52,96
    [1-64]袁伟斌,金伟良.离心钢管混凝土结构粘结强度分析.华中科技大学学报(城市科学版) [J],2005,122(1):26-29,34
    [1-65]刘永健,池建军.方钢管混凝土界面粘结强度的试验研究[J].建筑技术. 2005, 36(2): 97-98,107
    [1-66]池建军.钢管混凝土界面抗剪粘结性能的有限元分析[J].辽宁省交通高等专科学校学报,2005,7(3):1-3
    [1-67]杨有福,韩林海.矩形钢管自密实混凝土的钢管-混凝土界面粘结性能研究[J].工业建筑,2006,36(11):32-36
    [1-68] Manfred Keuser and Gerhard Mehlhorn. Finite Element Models for Bond problems[J]. Journal of Structural Engineering, Proceedings of ASCE, 1987, 113(10):2160-2173
    [1-69]朱伯龙,董振祥.钢筋混凝土非线性分析[M].同济大学出版社,1985
    [1-70]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994
    [1-71]宋启根,单炳梓,金芷生,朱万福编著.钢筋混凝土力学[M].南京:南京工学院出版社,1986
    [1-72]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998
    [1-73] M. Y. H. Bangash. Numerical Modeling of Bond and Bond-Slip[J]. Concrete and Concrete Structures: Numerical Modeling and Applications, London and New York: Elsevier Applied Science,19
    [1-74] Bazant, Z. P. et.al.. Task Committee on Finite Element Analysis of Reinforced Concrete Structures[J]. State-of-the Art Report on Finite Element Analysis of Reinforced Concrete. New York: Published by ASCE.1982
    [1-75] Ngo. D, Scordelis AC.. Finite element analysis of reinforced concrete members[J], Jounrna1 of ACI, 1967,64:411-416
    [1-76] Nilsson, Arthur H.. Nonlinear analysis of reinforced concrete by the finite element method[J]. ACI Journal, 1968,65,September
    [1-77] A. C. Scordelis, D. Ngo, H. A. Franklin. Finite element study of reinforced concrete beams with tension Cracks[J]. ACI, 1974,42(I)
    [1-78] Bugukozturk, O.. Nonlinear analysis of reinforced concrete structure[J]. Computer and Structure, 1977(7).
    [1-79] Hunaiti, Y.. Bond Strength in battened Composite Columns[J]. Journal of Structural Engineering, Proceedings of ASCE, 1991,,117(3):699-714.
    [1-80] H. Shakir-Khalil. Push-out Strength of Concrete-Filled Steel Hollow Sections[J]. the Structural Engineer, 1993,71(13):230-233
    [1-81] H. Shakir-Khalil. Resistance of Concrete-Filled Steel Tubes to Push-out Forces[J]. the Structural Engineer, 1993,71(13):234-238
    [1-82]王祖华,钟树生.劲性钢筋混凝土梁的非线性有限元分析[J].混凝土结构基本理论及应用(第二届学术讨论会论文集),1990:609-616
    [1-83]刘永军.型钢混凝土柱正截面承载力有限元分析[D].西安建筑科技大学硕士论文,1998
    [1-84]江建华.型钢混凝土(SRC)构件抗剪性能非线性有限元分析[D].西安建筑科技大学硕士论文,1998
    [1-85]刘忠清.劲性钢筋混凝土的平面非线性有限元分析[D].清华大学硕士论文,1995
    [1-86] Brettmann, B. B., Darwin, D., and R. C. Donahey, Bond of Reinforcement to Superplasticized Concrete[J]. ACI, 83(1):98-107
    [1-87] Y. W. Chan, Y. G. Chen, Y. S. liu. Effect of Consolidation on Bond of Reinforcement in Concrete of Different Work abilities[J]. ACI Materials Journal,,100(4):294-301
    [1-88] Chen Y. G., A Study on Bond Properties of SCC and the Ductility of SCC Column[J]. Master’s thesis, National Taiwan University, Engineer. 1993,71(13):234-243,
    [1-89]日本建築學會.铁骨铁筋コンクリ-ト構造計算規準同解説[S],1999,2010
    [1-90]日本建筑学会.钢骨钢筋混凝土结构计算标准及解说[S].冯乃谦,叶列平等译.北京:能源出版社,1998
    [1-91]中华人民共和国行业标准.钢骨混凝土结构设计规程[S].北京:冶金工业出版社,1998
    [1-92]中华人民共和国行业标准.钢与混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2002。
    [1-93]王传志,滕智明主编.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985
    [1-94] Park R,Paulay T:Reinforced Concrete Structures[M].New York:A Wiley Interscience Publication,1975
    [1-95]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [1-96] D.Watstein.ACI Committee 408-A guide for determination of bond strength in beam specimens[J],Journal of the ACI,1964(2):129-135
    [1-97] Fercuson P.M.ACI Committee 408:Bond stress-the state of the art[J],Journal of the ACI,1966, (11):1161-1188
    [1-98] Lutz L A,Gergely P.Mechanics of bond and slip of deformed bars in concrete[J].Journal of ACI,1967,64(11):711-721.
    [1-99] John F.MC Dermott.ACI Committee 408-Opportunities in bond research[J],Journal of the ACI, 1970(11):857-867
    [1-100] Nilson A H.Internal measurement of bond-slip[J].Journal of ACI,1972(7):439-441..
    [1-101] Kemp E.L.,Wilhelm W.J..Investigation of the parameters influencing bond cracking[J].Journal of the ACI, 1979(1):47-71
    [1-102] Lahnert B.J.,Houde J.,and Gerstle K.H..Direct measurement of slip between and concrete[J].Journal of ACI,1986(11):974-982.
    [1-103]金芷生,朱万福,庞同和.钢筋与混凝土粘结性能试验研究[J].南京工学院学报,1985(2):73-85
    [1-104]赵羽习.钢筋混凝土粘结性能和耐久性的研究.[D],杭州:浙江大学,2001
    [1-105]角彻三.混凝土与钢筋的粘结力[J].郑秀媛译,冶金建筑情报,1980(10):33-37
    [1-106]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究-Ⅰ付着応力分布にっぃて(Ⅰ).日本建築學會論文報告集第131号(1):1-8
    [1-107]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究-Ⅰ付着応力分布にっぃて(Ⅱ).日本建築學會論文報告集第132号(2):1-6
    [1-108]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究-Ⅱ鉄筋コンクリ—ト引張材の変形にっ??日本建築學會論文報告集第134号(4):1-8
    [1-109]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究-Ⅲ引拔試驗にっぃて.
    [1-110]日本建築學會論文報告集第139号(9):1-109
    [1-111] Virdi,K.S, Dowling.P.J.Bondstrength in Concrete Filled Steel Tubes[J]. IABSE Proceedings,1980
    [1-112]刘玉茜.钢管混凝土粘结滑移性能的理论分析及ANSYS程序验证[D].西安建筑科技大学硕士论文,2006
    [1-113] H.Shakir-Khalil.Pushout Strength of Concrete Filled Steel Hollow Section[J].Structural Engineering.1993,71(13):230-233
    [1-114] Tommii M Yoshimura k, Morishita Y. A method of improving bond strength in between steel tube and concrete core cast in square and octagonal steel tubular columns[J], Transactions of Japan Concrete Institute, 1980,2:327-334
    [1-115]薛立红.钢管混凝土柱组合界面抗剪连接的试验研究[D].北京:中国建筑科学研究院,1994
    [1-116]池建军.界面抗剪粘结性能的试验研究与有限元分析[D].长沙:长沙理工大学,2004
    [1-117]刘永健,刘君平,池建军.钢管混凝土界面抗剪粘结滑移力学性能试验[J].广西大学学报(自然科学版),2010,35(1):17-23,29
    [1-118]康希良,程耀芳,张丽,赵鸿铁.钢管混凝土粘结-滑移本构关系理论分析[J].工程力学,2009,26(10):74-78
    [1-119]康希良,程耀芳,涂昀,薛建阳.钢管混凝土粘结-滑移性能试验研究及数值分析[J],工程力学,2010,27(9):102-106
    [1-120] S. P. Tastani and S. J. Pantazopoulou, M.ASCE. Direct Tension Pullout Bond Test Experimental Results[J], Journal of Structural Engineering, Proceedings of ASCE,2010:731-743
    [2-1]王传志,滕智明主编.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985
    [2-2] Park R,Paulay T:Reinforced Concrete Structures[M].New York:A Wiley Interscience Publication,1975
    [2-3]宋启根,单炳梓,金芷生,朱万福编著.钢筋混凝土力学[M].南京:南京工学院出版社,1986
    [2-4]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [2-5] D.Watstein.ACI Committee 408-A guide for determination of bond strength in beam specimens[J],Journal of the ACI,1964(2):129-135
    [2-6] Fercuson P.M.ACI Committee 408:Bond stress-the state of the art[J],Journal of the ACI,1966, (11):1161-1188
    [2-7] Lutz L A,Gergely P.Mechanics of bond and slip of deformed bars in concrete[J].Journal of ACI,1967,64(11):711-721.
    [2-8] John F.MC Dermott.ACI Committee 408—Opportunities in bond research[J],Journal of the ACI, 1970(11):857-867
    [2-9] Nilson A H.Internal measurement of bond-slip[J].Journal of ACI,1972(7):439-441..
    [2-10] Kemp E.L.,Wilhelm W.J..Investigation of the parameters influencing bond cracking[J].Journal of the ACI, 1979(1):47-71
    [2-11] Lahnert B.J.,Houde J.,and Gerstle K.H..Direct measurement of slip between and concrete[J].Journal of ACI,1986(11):974-982.
    [2-12]金芷生,朱万福,庞同和.钢筋与混凝土粘结性能试验研究[J].南京工学院学报,1985(2):73-85
    [2-13]徐有邻.变形钢筋混凝土粘结锚固性能的试验研究.[D],北京:清华大学,1990.
    [2-14]赵羽习:钢筋混凝土粘结性能和耐久性的研究.[D],杭州:浙江大学,2001
    [2-15]角彻三.混凝土与钢筋的粘结力[J].郑秀媛译,冶金建筑情报,1980(10):33-37
    [2-16]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究-Ⅰ付着応力分布にっぃて(Ⅰ).日本建築學會論文報告集第131号(1):1-8
    [2-17]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究-Ⅰ付着応力分布にっぃて(Ⅱ).日本建築學會論文報告集第132号(2):1-6
    [2-18]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究-Ⅱ鉄筋コンクリ—ト引張材の変形にっ??日本建築學會論文報告集第134号(4):1-8
    [2-19]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究-Ⅲ引拔試驗にっぃて.
    [2-20]日本建築學會論文報告集第139号(9):1-109
    [2-21]杨勇.型钢混凝土粘结滑移基本理论及应用研究.西安建筑科技大学博士论文[D],2003
    [2-22] Virdi,K.S, Dowling.P.J.Bondstrength in Concrete Filled Steel Tubes[J]. IABSE Proceedings,1980
    [2-23] Charles W Roeder,Brad Cameron,Colin B.Brown.Composite Action in Concrete Filled Tubes[J].Journal of Structural Engineering,1999,125(5):477-484
    [2-24]刘玉茜.钢管混凝土粘结滑移性能的理论分析及ANSYS程序验证[D].西安建筑科技大学硕士论文,2006
    [3-1] C.W.Roeder,B.Cameron and C.B.Brown.Composite Action in Concrete Filled Tubes[J].Journal of Strutural Engineering.ASCE,1999,125(5):477-484
    [3-2] H.Shakir-Khalil.Pushout Strength of Concrete Filled Steel Hollow Section[J].Structural En in erin .19 ,71(13):230-233 g e g 93
    [3-3] H.Shakir-Khalil.Resistance of Concrete-filled Steel Tubes to pushout forces[J].Structural Engineering.1993,71(13):234- 243
    [3-4]姜绍飞,韩林海.钢管混凝土中钢与混凝土粘结问题初探[J].哈尔滨建筑大学学报. 2000(4):24-28
    [3-5] MORISHITA Y, TOMII M, YOSHIMURA K. Experimental studies on bond strength in concrete filled square and octagonal steel tubular columns subjected to axial loads[J]. Transactions of Japan Concrete Institute, 1979, 1:359-366
    [3-6] TOMMII M YOSHIMURA K, MORISHITA Y. A method of improving bond strength in between steel tube and concrete core cast in square and octagonal steel tubular columns[J], Transactions of Japan Concrete Institute, 1980,2:327-334
    [3-7] MORISHITA Y, TOMII M, Experimental studies on bond strength between square steand encased concrete core under cyclic shearing force andof Japan Concrete Institute, 1982, 4:363-370
    [3-8]薛立红.钢管混凝土柱组合界面抗剪连接的试验研究[D].北京:中国建筑科学
    [3-9]池建军.界面抗剪粘结性能的试验研究与有限元分析[D].长沙:长沙理工大学,2004
    [3-10] M,Shams,and M.A.Saadeghvaziri,State of the Art of C oncrete Filled Steel TubColumns[J].ACI Structural journal.1997,94(5):558-571
    [3-11]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度(上)[J].建筑科学. 1996(3)
    [3-12]邓洪洲,傅鹏程,余志伟.矩形钢管和混凝土之间的粘结性能试验[J].特种结构,2005(22):50-52,96
    [3-13] C.W.Roeder,B.Cameron and C.B.Brown.Composite ATubes[J].Journal of Strutural Engineering.ASCE,1999,125(5):477-484
    [3-14] Tomii,M.Yoshimura,K.and Morishita,A Method of Improveing Bond Strength Concrete Institute,1980 Tube and Concrete Core Cast in Circular Steel Tubular Columns[J].Transactions of Japan
    [3-15]王光远.工程软设计理论[M],科学出版社,1992
    [3-16]王光远.未确知信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(4):1-10
    [3-17]刘开第,吴和琴.不确定性信息数学处理及应用[M].北京:科学出版社,1999
    [4-1] Nilson A H. Internal measurement of bond-slip[J]. Journal of ACI,1972 (7): 439-441. 1956, (7):549-552
    [4-2]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究—Ⅰ付着応力分布にっぃて(Ⅰ)[J].日本建築學會論文報告集第131号(1):1-8
    [4-3]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究—Ⅰ付着応力分布にっぃて(Ⅱ)[J].日本建築學會論文報告集第132号(2):1-6
    [4-4]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究—Ⅱ鉄ンクリ—ト引張材の変形にっぃて[J].日本建築學會論文報告集第134号(4):1-8
    [4-5]六車熙,森田司郎,富田幸次郎.鋼とコンクリ—ト付着に関する基礎的研究—Ⅲ引拔試驗にっぃて[J].日本建築學會論文報告集第139号(9):1-109
    [4-6]王传志,滕智明主编.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985
    [4-7]宋启根,单炳梓,金芷生,朱万福编著.钢筋混凝土力学[M].南京:南京工学院出版社,1986
    [4-8]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [4-9]徐有邻.变形钢筋混凝土粘结锚固性能的试验研究[D].北京:清华大学,1990
    [4-10]赵羽习.钢筋混凝土粘结性能和耐久性的研究[D].杭州:浙江大学,2001
    [5-1]徐有邻.变形钢筋混凝土粘结锚固性能的试验研究[D].北京:清华大学,1990.
    [5-2]邵卓民,沈文都,徐有邻.钢筋混凝土的锚固可靠度及锚固设计[J].建筑结构学报,1987(4).
    [5-3]李继华,林忠民,李明顺.建筑结构概率极限状态设计[M].北京:中国建筑工业出版社,1990.
    [6-1]赵鸿铁.钢与混凝土组合结构.科学出版社[M],2001
    [6-2]周明.方钢管混凝土构件力学性能研究[D].哈尔滨:哈尔滨工业大学,2000
    [6-3]韩林海,陶忠.方钢管混凝土轴压力学性能的理论分析与试验研究[J].土木工程学报. 2001,34(2):18-24
    [6-4]陶忠.方钢管混凝土构件力学性能若干关键问题的研究[D],哈尔滨,哈尔滨工业大学,2001
    [6-5]钟善桐.钢管混凝土结构(修订版)[M],哈尔滨:黑龙江科学技术出版社,1994
    [6-6]蔡绍怀现代钢管混凝土结构[M].北京:人民交通出版社,2003
    [6-7]顾威,王庆利.圆CFRP-钢复合管混凝土轴压短柱试验研究[J].沈阳建筑工程学院学报(自然科学版), 2004,2(2):118-120.
    [6-8] Tomii M., Matsui V., and Sakino K.. Concrete Filled Steel Tube Structures[J]. ASCE-IABSE National Conference on the Planning and Design of Tall Buildings. Tokyo, Japan, August,1973:56.72.
    [6-9]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社, 1996.
    [6-10]蔡绍怀,焦占拴.钢管混凝土短柱的基本性能和强度计算[J].建筑结构学报,1984, 5(6):13-29.
    [6-11]蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社, 1989.
    [6-12]顾维平,蔡绍怀,冯文林.钢管高强混凝土的性能与极限强度[J].建筑科学,1991, (1): 23-27.
    [6-13]何明胜,石磊.方钢管混凝土轴压短柱承载力分析[J].工程力学增刊,2003:496.498.
    [6-14]谭克锋,蒲心诚,蔡绍怀.钢管超高强混凝土的性能与极限承载能力的研究[J].建筑结构学报,1999,20(1):10-15.
    [6-15]余勇.方钢管混凝土结构的性能研究[D].同济大学博士学位论文,1998.
    [6-16]韩林海.钢管混凝土结构[M].科学出版社,2000.
    [6-17] Tomii M., Inelastic behavior of concrete filed steel tubular beam-column [J]. International colloquium on stability of structures under static and dynamic loads. Washington. DC, May, 1977:17-19.
    [7-1] Bazant Z P, et.al.. Task Committee on Finite Element Analysis of Reinforced Concrete Structures[J]. State-of-the Art Report on Finite Element Analysis of Reinforced Concrete, New York: Published by ASCE, 1982.
    [7-2] Bangash M Y H. Numerical modeling of bond and bond-slip[J]. Concrete and Concrete Structures: Numerical Modeling and ApplicationScience, 1985.
    [7-3] Ngo D, Scordelis A C. Finite element analysis of reinforced concrete members[J], Journal of ACI, 1967, 64(3): 411-416.
    [7-4] Nilsson A H. Nonlinear analysis of reinforced concrete by the finite element method[J], Journal of ACI, 1968, 65(9): 757-766.
    [7-5]朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,1998.
    [7-6]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [7-7]江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994.
    [7-8]王传志,滕智明主编.钢筋混凝土结构理论[M].北京:中国建筑工业出版社,1985.
    [7-9] ANSYS Element Reference[M], Electronic Release, SAS IP, INC., 1998.
    [7-10] ANSYS Theory Reference[M], Electronic Release, SAS IP, Inc., 1998.
    [7-11] Bangash M Y H. Numerical modeling of bond and bond-slip[M]. Concrete and ConcreteStructures: Numerical Modeling and Applications. London, New York: Elsevier AppliedScience, 1985.
    [7-12]池建军.钢管混凝土界面抗剪粘结性能的试验研究与有限元分析[D].长沙理工大学硕士学位论文,2004.
    [7-13]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [7-14]蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报,1999,32(4):16-26.
    [7-15] ANSYS非线性分析指南[M],ANSYS中国,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700