基于LC-MS/MS的超级细菌耐药酶NDM-1的检测、降解抗生素特性及YH-8药代动力学
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十年来,G-杆菌耐药问题日益严重,突出表现在耐碳青霉烯类抗生素的肠杆菌科细菌(大肠埃希菌、肺炎克雷伯杆菌、阴沟肠杆菌、产气肠杆菌等)、非发酵糖细菌(鲍曼不动杆菌、铜绿假单胞菌等),其中肺炎克雷伯杆菌、鲍曼不动杆菌、铜绿假单胞菌耐药最为严重,临床治疗困难。产NDM-1超级细菌首先在印度新德里发现,主要见于大肠埃希菌、肺炎克雷伯杆菌、阴沟肠杆菌、产气肠杆菌等肠杆菌科细菌,对临床常用的大多数抗生素包括碳青霉烯类抗生素耐药,可广泛传播,已经引起全世界的广泛关注和高度重视。
     产NDM-1超级细菌对临床大多数抗生素耐药,治疗困难,而且其临床表现与敏感菌没有明显差异,临床诊断困难,临床上对碳青霉烯治疗无效的阴性菌感染需要考虑这类细菌感染可能。目前产NDM-1超级细菌的实验室检查主要分三步,该方法存在周期长、操作复杂、准确性不高等缺点。因此,迫切需要建立产NDM-1超级细菌的早期、快速、准确的诊断方法。
     本论文旨在应用高灵敏度、高分辨率、高精确度的蛋白质谱检测技术(Nano UPLC Orbitrap)和生物信息分析系统,在现有耐药菌诊断技术和方法基础上,建立产NDM-1超级细菌感染的早期、快速、准确的诊断方法,研究不同抗生素对超级细菌耐药酶NDM-1的稳定性,将为临床超级细菌的诊断和治疗提供重要依据和技术支撑。
     首先,应用基因工程技术获得NDM-1、OXA-23、VIM-2等7个重组细菌耐药酶,建立并优化了其蛋白酶解条件以及LC-MS/MS分析的液相条件和质谱条件,对7种重组耐药酶进行了分析,并应用Mascot软件将分析结果进行数据库搜索,结果满意,其中NDM-1的匹配度达到90%以上。
     其次,应用LC-MS/MS技术检测细菌培养后复杂样品中的目的蛋白。以产NDM-1肺炎克雷伯杆菌为研究对象,通过细菌培养、超声裂解等方法获得含NDM-1的混合液样品,用LC-MS/MS检测,共鉴定出500多种蛋白包括NDM-1。
     为模拟临床样本的检测,进一步确证所建方法的实用性,建立了产NDM-1肺炎克雷伯杆菌小鼠全身感染模型,并对感染前和感染后1h、2h、4h、8h小鼠血清中NDM-1进行了检测。结果显示,感染前及感染后小鼠血清中均检测到种类丰富的蛋白,小鼠感染后不同时间血清均检测到NDM-1,而感染前血清没有检测到NDM-1。采用实验室三步法对蛋白质谱检测结果进行验证,表明结果准确、可靠。
     最后,应用LC-MS/MS和酶标仪,研究了NDM-1对5种β-内酰胺类抗生素的降解特性。结果表明,美罗培南对NDM-1的稳定性最低,10min的相对水解率为100%,酶动力学参数Km为79.39士6.34s-1。厄他培南和新药艾帕培南的稳定性次之,相对水解率在50%以上,Km值分别为120.11士10.53s-1、113.81士11.59s-1;新药百纳培南的稳定性较高,相对水解率为13%,Km值为240.26士38.56s-1。NDM-1对氨曲南没有水解作用。酶动力学研究结果与稳定性实验结果一致。
     综上所述,本研究在现有耐药菌诊断技术和方法基础上,探索性建立应用Nano UPLC Orbitrap液质联用技术检测细菌耐药酶的方法,并应用该技术对产NDM-1肺炎克雷伯杆菌的培养粗提物和动物感染血液中的NDM-1成功进行了检测。特别需要指出的是,在动物超级细菌感染早期不同时间血液中均检测到NDM-1,为临床超级细菌感染的早期、快速、准确诊断提供了重要依据和技术支撑。此外,研究了NDM-1对5种p-内酰胺类抗生素的降解特性,为指导临床合理用药提供了科学依据,对抗超级细菌药物的研发也具有重要的指导意义。
     结核病(Tuberculosis, TB)是严重危害人类健康的呼吸道传染病,被列入我国法定重大传染病。我国是全球22个结核病高负担国家之一,世界卫生组织估计,目前我国结核病年发病人数位居全球第二位。同时,我国也是全球27个耐多药高负担国家之一。从20世纪80年代以来,随着耐药结核病(尤其是耐多药结核病)发病率的不断上升以及结核病与HIV/AIDS并发导致的结核病疫情再度上升,成为全球重大公共卫生问题和社会问题。然而,近40余年来几乎没有新作用机制的抗TB药物问世。
     4-氧代-4-(4-甲氧基苯基)-2(E)-丁烯酸甲酯(YH-8)是我所研发的新一类抗结核化合物,具有较高的抗结核尤其是抗多药耐药结核的活性,安全性较好,具有良好的研发前景。本论文旨在研究YH-8在大鼠体内的吸收、分布,预测YH-8发生代谢性药物相互作用的潜在可能性,为该药物的进一步开发和应用奠定理论基础。
     首先,我们建立了生物样本中YH-8的LC-MS/MS分析方法,并对方法学进行了验证,为之后的研究打下基础。
     进一步,我们通过建立的定量分析方法,研究了YH-8在大鼠体内的血浆药代动力学参数。用非房室模型对其进行分析,得到高、中、低三个剂量的YH-8在大鼠内体的半衰期分别为7.16士0.62、7.13±0.65、7.21士0.57h,三个剂量间的半衰期没有显著差异。三个剂量的药时曲线下面积(AUCo-t)分别为473.70士200.63、1145.40±466.62、2101.66±270.92ng-h/mL。YH-8在大鼠体内呈线性动力学过程,给药剂量与药时曲线下面积呈正相关。
     在组织分布实验中,单次灌胃给予大鼠YH-8后,采用LC-MS/MS方法测定各组织中原型药物的含量,结果显示,在小肠中YH-8含量最高,而在心脏、脾中的含量低于其他被检测的组织。YH-8在主要脏器的药物分布顺序为:肠>肝>肺>肾>心>脾。在肺组织间液及肺巨噬细胞中YH-8也具有相当的含量。
     为考察YH-8是否为受害药(Victim drug),被单一的CYP450酶代谢,我们开展了YH-8的生物转化研究。YH-8与人肝脏S9组分和人肝微粒体共同孵育不同时间后,原药浓度逐渐降低,证明YH-8在人肝脏中可被代谢。接下来,我们选取了最常见的10种重组表达的人源CYP450酶,分别与YH-8共同孵育,考察参与YH-8代谢的CYP450酶种类。结果显示,上述10种CYP450酶均能不同程度的对YH-8进行代谢,即YH-8可以被多种CYP450酶代谢,因此YH-8不是受害药,与CYP450酶抑制剂联用时,代谢不会受到干扰。
     在此基础上,借助质谱的不同扫描模式,我们对YH-8的代谢产物进行了初步的探索和预测,寻找到了3种代谢产物M1-M3。同时,在动物实验中,也证实了大鼠血浆和肝脏中这3种代谢产物的存在。
     随后,我们考察了YH-8对主要CYP450酶的抑制作用,评价其是否为凶手药(Perpetrator drug),干扰其他药物的代谢。结果显示,YH-8对主要CYP450酶的半数抑制率(IC50)除CYP1A2外均大于50μM,比对YH-8在大鼠体内的血药浓度,我们认为YH-8对主要CYP450酶无强烈的抑制作用。
     综上所述,我们对YH-8的药代动力学参数及组织分布进行了研究,并使用体外代谢方法预测了YH-8与其他药物联用后发生代谢性药物相互作用的潜在可能性。结果表明,YH-8半衰期合理,适合一日三次的给药方式。YH-8组织分布较广,尤其靶组织中药物原型含量较高,但各组织中药物消除均较快,没有蓄积产生。此外,YH-8被多种CYP450酶所代谢,不是受害药,与P450酶抑制剂联用时,代谢不会受到干扰;YH-8对主要CYP450酶无强烈抑制作用,不是凶手药,不会干扰其他药物的代谢。
During the past decade, drug resistance has become more and more serious in Gram-negative bacilli, especially in the carbapenem-resistant Enterobacteriaceae including Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Enterobacter aerogenes as well as non-fermentable sugars bacteria such as Acinetobacter baumanni, Pseudomonas aeruginosa, etc. The drug-resistance caused by Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa are the most serious, to which the clinical treatment is difficult. The New Delhi metallo-beta-lactamase (NDM-1)-producing superbug was first found in New Delhi, India. NDM-1mainly exists in Enterobacteriaceae, such as Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Enterobacter aerogenes, which are resistant to most antibiotics commonly used in clinical settings including carbapenems. NDM-1can widely spread and have drawn great concern all over the world.
     The NDM-1-producing superbugs are resistant to the majority of clinical antibiotics and are difficult to treat. There are no significant differences on the clinical manifestations caused by NDM-1-producing strains and carbapenem-susceptible strains. As a result, the clinical diagnosis of NDM-1-producing bacteria is difficult. This type of bacteria should be considered if ineffective treatment of Gram-negative bacterial infections with carbapenems occurs in clinical settings. Currently, laboratory identification of the NDM-1-producing superbugs includes three steps. The method has many shortcomings, such as time-consuming, complex operations and low accuracy. Therefore, it is urgent to establish an early, rapid and accurate diagnostic method to detect the NDM-1-producing superbugs.
     One aim of this study is to establish an early, rapid and accurate diagnostic method of NDM-1-producing superbug by using the high-sensitivity, high-resolution and high-accuracy protein spectrum detection technology (Nano UPLC Orbitrap) on the basis of the existing drug-resistant diagnostic techniques and methods. The other aim is to study the stability of antibiotics to NDM-1. These will provide an important basis and technical support for diagnosis of clinical superbugs.
     Firstly, we expressed and purified7recombinant proteins including NDM-1, OXA-23and VIM-2etc. Next, we established and optimized the methods and conditions of trypsin digestion as well as the LC-MS/MS detection methods and conditions of these proteins. The LC-MS/MS detection results were compared with the database. The results are satisfactory and the match degree of NDM-1is greater than90%.
     After that, we detected the target proteins in complex samples using LC-MS/MS technology. After obtaining lysate of NDM-1-producing Klebsiella pneumoniae ATCC BAA2146strain, we analyzed the lysate using LC-MS/MS method. There were more than500kinds of mixed ingredients identified including NDM-1.
     In order to simulate the detection of clinical samples and make further confirmation of the practicality of the method, we developed Klebsiella pneumoniae ATCC BAA2146mouse systemic infection model and tested NDM-1in serum samples from the infected mouse at1h,2h,4h and8h postinfection. The serum was detected by the established LC-MS/MS method. The results showed that a variety of proteins were detected in the serums. NDM-1was identified in the infected serum but was not detected in the non-infected serum. The LC-MS/MS detection results of the infected serum were verified with laboratory three-step method and results of the validation were accurate and satisfactory.
     Finally, we studied the antibiotics-hydrolyzing characterization of NDM-1to five beta-lactam antibiotics. The results showed that meropenem had the lowest stability to NDM-1with the relative hydrolysis rate at10min of100%and the kinetic parameter Km of79.39±6.34s-1. The relative hydrolysis rate of ertapenem and apapenem to NDM-1were higher with hydrolysis rate of50%and Km of120.11±10.53s-1、113.81±11.59s-1, respectively. However, benapenem was with relatively higher stability, which has a relative hydrolysis rate of13%and the kinetic parameter Km of240.26±38.56s-1.Aztreonam cannot be hydrolyzed by NDM-1. The results of enzyme kinetics study were consistent with the results of stability study.
     In summary, on the basis of the existing drug-resistant diagnostic techniques and methods, this study made exploratory study on application of Nano UPLC Orbitrap technology for diagnosis of drug-resistance enzymes of bacteria. NDM-1extracted from Klebsiella pneumoniae and in infected mice's serum was successfully detected. Notably, the NDM-1in infected mice's serum was detected as early as1h postinfection. This provided an important basis and technical support for the early, rapid and accurate diagnosis of clinical superbug infection. In addition, we studied the stability of five antibiotics to NDM-1and the enzyme kinetics of NDM-1to these five antibiotics. The findings provided theoretical basis to guide clinical drug use and had a certain degree of significance for the research and development of anti-superbug drugs.
     Tuberculosis (TB) is a serious respiratory diseases endangering people's health. It is included in the statutory major infectious diseases in China. China is one of the22high TB burden countries. The World Health Organization estimated that the number of annual incidence of TB in China was second largest in the world. Since the1980s, with the rising incidence of drug-resistant TB (MDR-TB), TB has become a major global public health and social problems. However, in the past40years, almost no new anti-TB drug was approved for marketing.
     (E)-Methyl4-(4-methoxyphenyl)-4-oxabut-2-enoate (YH-8) is an anti-TB compound of a novel class which was developed by our institute. It has anti-TB especially MDR-TB activity and was relatively safe. The drug has prospects for research and development. The purpose of this work was to study the absorption and to distribution of YH-8in rats and predict the potential drug metabolic interactions of YH-8with other drugs. In one word, the study laid the theoretical foundation for the further development and application of this compound.
     First, we established LC-MS/MS analysis methods of YH-8in biological samples, and the methodology was validated to lay the foundation for the following research.
     Next, we studied the plasma pharmacokinetic of YH-8using the established quantitative analysis method. The pharmacokinetic properties of YH-8were characterized by noncompartment model and the parameters were found to be T1/2values of7.16±0.62,7.13±0.65,7.21±0.57h and AUC0-t values of473.70±200.63,1145.40±466.62,2101.66±270.92ng-h/ml according to the doses of50,100and200mg/kg, respectively. The doses and the AUCo-t values over the range of oral dosages (50-200mg/kg) were positively correlated.
     In the tissue distribution experiment, we used the LC-MS/MS method to determine the prototype drug content in all the tissues after single oral administration to rats. Results of tissue distribution study indicated that the intestines had a higher concentration of YH-8than other tissues. The heart and spleen have the lower content than other tissues examined. The order of drug distribution in the main organs was:intestine> liver> lung> kidney> heart> spleen. YH-8also had a considerable content in the lung epithelial lining fluid and alveolar macrophages.
     In order to investigate whether YH-8is a "Victim Drug", which is metabolized by a single CYP450enzyme, we carried out the biotransformation research. The original drug concentration decreased when YH-8was incubated with human liver S9fraction and human liver microsomes, which proved that the YH-8could be metabolized by human liver. Then,10commonly used recombinant human CYP450enzymes were selected and incubated with YH-8respectively to examine which CYP450enzymes were involved in the metabolism of YH-8. The results showed that YH-8could be metabolized by all the tested CYP450isoenzymes at varying speeds and degrees. YH-8, which can be metabolized by a variety of CYP450enzymes, was proved not to be the victim drug. Therefore, the metabolism of YH-8would not be disturbed when co-administrated with CYP450enzyme inhibitors.
     Based on different scan mode of the mass spectrometry, the metabolites of YH-8were predicted and three metabolites (M1-M3) were found. The animal experiments also confirmed the presence of the three metabolites in rats'plasma and livers.
     Next, we investigated the inhibitory effect of YH-8on main CYP450enzymes to evaluate whether it was a perpetrator drug. The results showed that IC50values of YH-8were greater than50μM towards the main CYP450enzymes except CYP1A2. Taking the plasma concentration of YH-8in rats into account, we considered that YH-8did not inhibit the main CYP450enzymes.
     In summary, we studied the pharmacokinetic parameters and tissue distribution of YH-8and predicted the potential drug-drug interactions of YH-8in vitro. The results indicated that the half-life of YH-8in rats was reasonable and was suitable for the mode of administration for three times a day. YH-8was widely distributed and had high levels in the target tissue. Meanwhile, the elimination of YH-8in all tissues was fast and not likely to accumulate. Moreover, the results showed that the YH-8is not a victim drug and can be metabolized by many CYP450enzymes. So the metabolism of YH-8will not be disturbed when co-administrated with a CYP450enzyme inhibitor. Moreover, YH-8did not exhibit inhibitory effect on main CYP450enzymes, so it was not a perpetrator drug, and would not disturb the metabolism of other drugs.
引文
[1]李振芳,胡仪吉.合理应用抗生素[J].中国医刊,1999,34(7):2-5.
    [2]陈咏兰,罗超雄.抗生素不合理使用的现状与对策[J].新医学,1994,25(4):204-206.
    [3]魏美秀,刘尚齐,宁忠平.抗生素的合理应用[J].临床荟萃,1995,10(12):538-539.
    [4]王怡云.医院感染常见耐药菌群及耐药酶的临床意义.甘肃医药,2008,27(6):10-13.
    [5]杨善浦,董虹.小儿下呼吸道感染病原菌产超广谱p-内酰酶的检测分析[J].中华医院感染学杂志,2010,20(23):3806-3808.
    [6]刘建华,刘新锋,帅金凤,等.儿童产超广谱p-内酰胺酶菌株感染危险因素分析[J].中国当代儿科杂志,2011,139(12):959-961.
    [7]中国药学会医院药学专业委员会儿科药学专业组.抗菌药物儿科临床应用的基本意见(一)[J].儿科药学杂志,2005,11(6):42-45.
    [8]Kumarasamy KK, Toleman MA, Walsh TR, et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK:a molecular, biological, and epidemiological study. Lancet Infect Dis,2010,10(9):597-602.
    [9]Yong D, Toleman M A, Giske C G, et al. Characterization of a new metallo-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic struc-ture inKlebsiella pneumoniaesequence type 14 from India [J]. Antimicrob Agents Chemother,2009,53(12):5046-5054.
    [10]Deshpande P, Rodrigues C, Shetty A, et al. New Delhi Metallo-β-lactamase (NDM-1) in enterobacteriaceae:treatmentoptions with carbapenems compromised [J]. The Association of Physicians of India,2010,58:147-150.
    [11]Zarfel G, Hoenigl M, Leitner E, et al. Emergence of New Delhi metallo-β-lactamase, Austria. Emerg Infect Dis,2011,17(1):129-130.
    [12]Muir A, Weinbren M J. New Delhi metallo-β-lactamase:acautionary tale [J]. Hospital Infection,2010,75(3):239-240.
    [13]CDC Home. Detection of enterobacteriaceae isolates carrying metallo-beta-lactamase -United States,2010 [N]. Morbidity and Mortality Weekly Report, 2010,59(24):750.
    [14]Boland V. First case of NDM-1 Superbug now confirmed in Ontario [EB/OL]. Digital Journal,2010-8-21, http://www.digitaljournal.com/article/296385.
    [15]Leverstein-van Hall MA, Stuart JC, Voets GM, et al. Carbapen-em-resistant Klebsi -ella pneumoniae following foreign travel [J]. NedTijdschr Geneeskd, 2010,154:A2013.
    [16]Poirel L, Lagrutta E, Taylor P, et al. Emergence of metallo-β-lac-tamase NDM-1-producing multidrug-resistant Escherichia coli in Australia [J]. Antimicrob Agents Chemother,2010,54(11):4914-4916.
    [17]Deloitte Center for Health Solutions. Medical tourism:update andim-plications-2009 report. Washington (DC):The Center; 2009. A-vailable: http://www. deloitte. com/assets/Dcom-UnitedState s/Local%20Assest/ Documents/us chs Medical Tourism_102609.pdf(accessed 2010 Dec 10)
    [18]Wu HS, Chen TL, Chen IC, et al. First identification of a patient colonized with Klebsiella pneumoniae carrying blaNDM-1 in Taiwan. J Chin Med Assoc.2010, 73(11):596-598.
    [19]Chen Y, Zhou Z, Jiang Y, et al. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother,2011,66(6):1255-9. [Epub ahead of print]
    [20]Zhang H, Hao Q. Crystal structure of NDM-1 reveals a common beta-lactam hydrolysis mechanism. FASEB J,2011,25(8):2574-82. [Epub ahead of print]
    [21]Queenan A M, Bush K. Carbapenemases:the versatileβ-lactamases [J]. Clin Microbiol Rev,2007,20(3):440-458.
    [22]Sidjabat H, Nimmo GR, Walsh TR, et al. Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi Metallo-β-lactamase. Clin Infect Dis,2011, 52(4):481-484.
    [23]郭宝俊,曹小燕,何昱苇.135株鼠伤寒沙门菌耐药酶检测及药物敏感性分析[J].中华医院感染学杂志,2011,21(20):4396-4398.
    [24]田维珍,邓光荣,陈芳.不动杆菌的耐药酶检测.临床检验杂志,2005,23(2):131-132.
    [25]蔡中祥,邓光荣,全博,等.肠杆菌的耐药酶检测及分析.湖北省卫生职工医学院学报,2004,17(4):38-40.
    [26]魏衍超,肖柯玲,王敏玲,等.肺炎克雷伯菌和大肠埃希菌超广谱β-内酰胺酶检测与分析.广州医学院学报,2001,29(4):52-56.
    [27]陈巧荣.细菌耐药分析及耐药酶的检测探讨.中外医疗,2012,N0.12.
    [28]Diene SM, Bruder N, Raoult D, Rolain JM. Real-time PCR assay allows detection of the New Delhi metallo-β-lactamase (NDM-1)-encoding gene in France. Int J Antimicrob Agents,2011,37(6):544-6. Epub 2011 Apr 14.
    [29]Aebersold R, Mann M. Mass spectrometry-based proteomics [J]. Nature,2003, 422:198-206.
    [30]Sechi S, Oda Y. Quantitative proteomics using mass spectrometry [J]. Curr Opin Chem Biol,2003,7:70-77.
    [31]Griffin TJ, Aebersold R. Advances in proteome analysis by mass spectrometry [J]. Bio Chem,2001,276:45497-45500.
    [32]Peng J, Gygi SP. Proteome:the move to mixtures [J]. J Mass Spectrmetry,2001, 36:1083-1091.
    [33]Link AS, Eng J, Schieltz DM, et al. Direct analysis of protein complexes using mass spectrometry [J]. Nature Biotechnology,2002,17:676-682.
    [34]Ferguson PL, Smith RD. Proteome analysis by mass spectrometry [J]. Annu Rev Biophys Bioomol Struct,2003,32:397-424.
    [35]Wise MJ, Littlejohn TG, Humphery-Smith I. Peptide-mass fingerprinting and the ideal covering set for protein characterisation. Electrophoresis,1997,18(8): 1399-1409.
    [36]Garrels JI, McLaughlin CS, Warner JR, et al. Proteome studies of Saccharomy-ces cerevisiae:Identification and characterization of abundant proteins. Electrophoresis,1997,18(8):1347-1360.
    [37]Ogorzalek Loo RR, Mitchell C, Stevenson TI, et al. Sensitivity and mass accuracy for proteins analyzed directly from polyacrylamide gels:Implications for proteome mapping. Electrophoresis,1997,18(7):382-390.
    [38]VanBogelen R, Abshire KZ. Escherichia coli proteome analysis using the gene-protein database. Electrophoresis,1997,18 (8):1243-1251.
    [39]Hamdn M, Righet PG. Modern strategies for protein quantification in proteome analysis:advantages and limitations [J]. Mass Spectrometry Reviews,2002,21: 287-302.
    [40]Lill J. Proteomic tools for quantitation by mass spectrometry [J]. Mass spectrometry Reviews,2003,22:182-194.
    [41]Godovac ZJ, Soskic V, Poznanovic S, et al. Functional proteomics of signal transduction by membrane receptors [J]. Electrophoresis,1999,20(4-5):952.
    [42]Denzinger T, Diekmann H, Bruns K, et al. Isolation, primary structure characterization and identification of the glycosylation pattern of recombinant goldfish neurolin, a neuronal cell adhesion protein [J]. J Mass Spectrom,1999, 34(4):435.
    [43]Charlwood J, Langridge J, Camilleri P. Structural characterization of Nlinkedglycan mixtures by precursorion scanning and tandem mass spectrometric analysis [J]. Rapid Commun Mass Spectrom,1999,13(14):1522.
    [44]Wilkins MR, Gasteiger E, Gooley AA, et al. Highthroughput mass spectrometric discovery of protein post-translational modifications [J]. J Mol Biol,1999,289(3):645.
    [45]谢友红,钱元恕,刘宏,等.17种抗生素对β-内酰胺酶的稳定性比较[J].重庆医科大学学报,2000,25(4):376-379.
    [46]Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR.Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India [J]. Antimicrob Agents Chemother,2009,53(12):5046-54.
    [47]Bush K. New β-lactamases in gram-negative bacteria:diversity and impact on the selection of antimicrobial therapy [J]. Clin Infect Dis,2001,32:1085-1089.
    [1]Yew WW, Lange C, Leung CC. Treatment of tuberculosis:update 2010[J]. Eur Respir J.2011,37(2):441-462.
    [2]Tang S, Zhang Q, Yu J, et al. Extensively Drug-Resistant Tuberculosis, China [J]. Emerging Infectious Diseases,2011,17(3):558-560.
    [3]China Tuberculosis Control Collaboration. Results of directly observed short-course chemotherapy in 112842 Chinese patients with smear-positive tuberculosis [J]. Lancet,1996,347 (8998):358-362.
    [4]World Health Organization. Fifty-third World Health Assembly [R]. WHA53/ 2000/REC/1. Geneva:WHO,2000.
    [5]World Health Organization. Fifty-eighth World Health Assembly [R]. WHA58/ 2005/REC/1. Geneva:WHO,2005.
    [6]World Health Organization. Global Tuberculosis Control Surveillance, Planning, Financing [R]. WHO report 2008, WHO/HTM/TB/2008.393.
    [7]Espinal MA, Kim SJ, Suarez PG, et al. Standard short course chemotherapy for drug-resistant tuberculosis:treatment outcomes in 6 countries [J]. JAMA,2000, 283(19):2537-2545.
    [8]沈鑫,梅建,高谦.DOTS-Plus:控制耐多药结核病的有力武器[J].上海预防医学杂志,2006,18(5):225-226.
    [9]WHO:World Health Organization Facts Sheets on Tuberculosis in 2011.
    [10]中国疾病预防控制中心,结核病预防控制中心:全国结核病防治规划(2011-2015年).中国结核病预防控制.2011,10:20-23.
    [11]World Health Organization. Stop TB Strategy [EB/OL]. http://whqlibdoc.WHO. int/hq/2006/WHO-HTM-STB-2006.368-eng.Pdf,2006.
    [12]Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J]. Nature 1998,393 (6685):537-544.
    [13]Marttuke GJ, Soini H, Vyhneueskiy B. Rapid detection of rifampin resistant mycobacterium tuberculosis by Sequencing and line probe assay [J]. Scand J Infect Dis,1998,30(2):129-132.
    [14]Wade MM, Zhang Y. Mechanisms of drug resistance in Mycobacterium tuberculosis [J]. Front Biosci,2004,9:975-994.
    [15]Bolotin S, Alexander DC, Chedore P, et al. Molecular characterization of drug -resistant Mycobacterium tuberculosis isolates from Ontario, Canada [J]. J Antimicrob Chemother,2009,64(2):263-266.
    [16]Somoskovi A, Parsons LM, Salfinger M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis [J]. Respair Res,2001,2(3):164-168.
    [17]Andries K, Verhasselt P, Guilemont J, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis [J]. Science,2005,307: 223-227.
    [18]吴小林.治疗结核病新药和药物作用靶位[J].国外医药抗生素分册,2007,28(2):70-71.
    [19]Rustomjee R, Diacon AH, Allen J, et al. Early bactericidal activity and pharmaco-kinetics of the diarylquinoline TMC 207 in pulmonary tuberculosis [J]. Antimicr-obial Agents and Chemotherapy,2008,10:1128.
    [20]Ashtekar DR, Costa-Perira R, Nagrajan K, et al. Invitro and in vivo activities of the nitroimidazole CGI 17341 against Mycobacterium tuberculosis.[J]. Antimicrob Agents Chemother,1993,37(2):183.
    [21]Stover CK, Warrener P, Van Devanter DR, et al. A small-molecule nitroimi-dazopyran drug candidate for the treatment of tuberculosis [J]. Nature,2000, 405:962.
    [22]LenaertsA J, Gruppo V, Marietta K.S, et al. Preclinical testing of the nitroim idazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and in vivo models [J]. Antimicrob Agents Chemother,2005, 49(6):2294.
    [23]Tyagi S, Nuermberger E, Yoshimatsu T, et al. Bactericidal activity of the nitro-imidazopyran PA-824 in amurine model of tuberculosis [J]. Antimicrob Agents Chemother,2005,49(6):2289.
    [24]Nuermberger, Sandeep Tyag, i Rokeya T asneen, et al. Powerful bactericidal and sterilizing activity of a regimen containing PA-824, moxifloxacin, and pyrazinamide in a murine model of tuberculosis [J]. Antimicrobial Agents and Chemotherapy,2008,52(4):1522.
    [25]Barry CE, Boshoff HI, Dowd CS. Prospects for clinical introduction of Nitroimidazole antibiotics for the treatment of tuberculosiss [J]. Curr Pharm Des, 2004,10(26):3239.
    [26]John E, Conte Jr, Jeffrey A, et al. Intrapulmonary pharmacokinetics of linezolid [J]. An timicrobial Agents and Chemotherapy,2002,46(5):1475-1480.
    [27]Jesus Fortun, Pilar Martin-Davila,Enrique Navas, et al. Linezolid for the treatment of multidrug-resistant tuberculosis [J]. J Antimicrob Chemother,2005, 56(1):180-5.
    [28]Park IN, Hong SB, Oh YM, et al. Efficacy and tolerability of daily-half dose linezolid in patients with intractable multidrug-resistant tuberculosis [J]. J Antimicrob Chemother,2006,58(3):701-4.
    [29]Richter E, Riisch-Gerdes S, Hillemann D. First linezolid-resistant clinical isolates of Mycobacterium tuberculosis [J]. Antimicrob Agents Chemother, 2007,51(4):1534-6.
    [30]Cynamon MH, Klemens SP, Sharpe CA, et al. Activities of several novel oxzaolidinones against Mycobacterium tuberculosis in a marine model [J]. Antimicrob Agents Chemother,1999,43:1189.
    [31]Arima K, Imanaka H, Kousaka M, et al. Studies on pyrrolnitrin, a new antibiotic isolation and properties of pyrrolnitrin [J]. J Antibiot (Tokyo),1965, 18:201.
    [32]Deidda D, Lampis G, Fioravanti R, et al. Bactericidal activities of the pyrrold-erivative BM212 against multidrug-resistant Intramacrophagic Mycobacterium tuberculosis strain [J]. Antimicrob Agents Chernother,1998,42:3035.
    [33]Biava M, Porretta GC, Poce G, et al. Novel diarylpyrrole derivatives of BM 212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity [J]. Medicinal Chemistry,2006,49(16):4946.
    [34]Nacer Lounis, Nicolas Veziris, Aurelie Chauffou r, et al. Combinations of R207910 with drugs used to treat multidrug-resistant tuberculosis have the potential to shorten treatment duration [J]. Antimicrobial Agents and Chemotherapy,2006,50(11):3543-3547.
    [35]Ibrahim M, Andries K, Lounis N, et al. Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis [J]. Antimicrobial Agents and Chemotherapy,2007,51(3):1011.
    [36]母连军.结核病的现行疗法和新药开发进展[J].国外医药抗生素分册,2007,28(2):77.
    [37]Zhang YF, Chen XY, Zhong DF, et al. Pharmacokinetics of loratadine and its active metabolite descarbo ethoxyloratadine in healthy Chinese subjects [J]. Acta Pharmacol Sin,2003,24(7):715-718.
    [38]李佐军,刘世坤,裴奇.HPLC-MS法研究阿奇霉素干混悬剂相对生物利用度及药动学[J].药物分析杂志,2006,26(6):726
    [39]Dear GJ, Ayrton J, Plumb R, et al. The rapid identification of drug metabolites using capillary liquid chromatography coupled to an ion trap mass spectrometer [J]. Rapid Commun Mass Spectrom,1999,13(5):456-463.
    [40]Lu T, Liang Y, Song J, et al. Simultaneous determination of berberine and palmatine in rat by HPLC-ESI-MS after oral administration of traditional Chinese medicinal preparation Huand-Lian-Jie-Du decoction and the pharmacokinetic application of the method [J]. J Pharm Biomed Anal,2006,40: 1218.
    [41]FDA, US Department of Health and Human Services, Food and Drug Administration Center for Drug Evaluation and Research, Guidance for Industry Bioanalytical Method Validation, May 2001.
    [42]国家食品药品监督管理局,化学药物非临床药代动力学研究技术指导原则[S],2005.
    [43]孔琦,张振清,药物代谢转化和样品前处理技术的研究进展[J],国际药学研究杂志,2008,35:124-127.
    [44]C. Cote, A. Bergeron, J.N. Mess, M. Furtado, F. Garofolo, Matrix effect elimination during LC-MS/MS bioanalytical method development. Bioanalysis, 2009,1:1243-1257.
    [45]McCourtie AS, Merry HE, Farivar AS, et al. Alveolar macrophage secretory products augment the response of rat pulmonary artery endothelial cells to hypoxia and reoxygenation [J]. Ann Thorac Surg,2008,85(3):1056-1060.
    [46]Naidu BV, Krishnadasan B, Byrne K, et al. Regulation of chemokine expression by cyclosporine A in alveolar macrophages exposed to hypoxia and reoxygenation [J]. Ann Thorac Surg,2002,74(3):899-905.
    [47]姚庆强,王琰,杨树民,等.大鼠肝微粒体温孵体系中(+)(-)-黄皮酰胺及其代谢产物的LC-MS分析[J].药物分析杂志.2000,20(1):3-6.
    [48]李晓海,张金兰,周同惠,等.左旋一叶荻碱的代谢转化[J].药学学报,2002,37(4):288-293.
    [49]Shigeki M, Yasushi Y. Involvement of multiple human cytochromes P450 in the liver microsomal metabolism of astemizole and comparison with terfenadine. Br J Clin Pharmacol.2001; 51(2):133-42.
    [50]Bogaards JJ, Venekamp JC, van Bladeren PJ. The biotransformation of isoprene and the two isoprene monoepoxides by human cytochrome P450 enzymes, compared to mouse and rat liver microsomes. Chem Biol Interact.1996, 20; 102(3):169-82.
    [51]李慧义,罗淑荣,周同慧.液相色谱-质谱联用技术及其在药物代谢研究中的应用.国外医学药学分册.1997,24(5):257-261.
    [52]马广慈主编.药物分析方法与应用.第一版.科学出版社.2000:444-486.
    [53]李雪庆,钟大放,宋明,等.液相色谱-质谱联用法检测体液中三哇仑及其代谢产物.沈阳药科大学学报.2001,18(2):120-123.
    [54]杜宗敏,黄海华,陈笑艳,等.人尿中苯丙哌林羟基化代谢产物的研究.药学学报.2000,35(12):916-920.
    [55]阿基业,王广基,柳晓泉,等.高效液相-质谱联用法对盐酸关附甲素在大鼠尿中代谢物的研究.药学学报.2002,37(4):283-287.
    [56]崔颖,张永旺.P450酶的研究进展[J].中国新技术新产品.2009,7(16):7.
    [57]许黎君,居文政,陈为烤,等.灯盏细辛注射液对小鼠肝微粒体细胞色素P450含量的影响[J].中国临床药理学与治疗学,2008,13(10):1122-1126.
    [58]王德才,高允生,齐永秀,等.葛根素对小鼠和大鼠肝微粒体细胞色素P450的影响[J].中国药理学通报,2004,20(10):1194-1195.
    [59]FDA, Drug Interaction Studies-Study Design, Data Analysis, and Implications for Dosing and Labeling, (2006).
    [60]D. Hickman, J.P. Wang, Y. Wang, J.D. Unadkat, Evaluation of the selectivity of In vitro probes and suitability of organic solvents for the measurement of human cytochrome P450 monooxygenase activities. Drug Metab Dispos,1998, 26:207-215.
    [1]常雁,王慕邹.串联质谱新技术及其在药物代谢研究中的应用进展.药学学 报,2000,35(1):76.
    [2]庞焕,文允鎰.质谱联用技术研究进展及其在药物分析中的最新应用[J].中国药学杂志,2001,36(7):433.
    [3]Liu X D, Liang Q L, Luo G A, etal. The application of Liquid Chromatography-mass Spectrometry in the field of Medicine(液-质联用技术在医药领域中的应用)Chin J Pharm Anal(药物分析杂志),2005,25(1):110-115.
    [4]卿大放.液相色谱-质谱联用法在药物研究中的应用[J].世界科学技术-中医药现代化.2003,5(5):44-47.
    [5]朱良漪,孙亦梁,陈耕燕编.分析仪器手册.北京:化学工业出版社,1997.
    [6]孙毓庆.现代色谱法及其在药物分析中的应用.北京:科学出版社.
    [7]许海棠,高效液相色谱-质谱法在中成药分析中的应用研究[D].广西大学硕士学位论文,2008.
    [8]Aebersold R, Mann M. Mass spectrometry-based proteomics [J]. Nature,2003, 422:198-206.
    [9]Sechi S, Oda Y. Quantitative proteomics using mass spectrometry [J]. Curr Opin Chem Biol,2003,7:70-77.
    [10]Griffin TJ, Aebersold R. Advances in proteome analysis by mass spectrometry [J]. Bio Chem,2001,276:45497-45500.
    [11]Morrison RS, Kinoshita Y, Conrads TP, et al. Proteomics in the postgenomic age [J]. Adv Protein Chem,2003,65:1-23.
    [12]Blackstock WP, Weir MP. Proteomics:quantitative and physical mapping of cellular proteins. Trends Biotechnol,1999,17(3):121-127.
    [13]Roepstorff P. Mass spect rometry in protein studies from genome to function. Curr Opin Biotechnol,1997,8:6-13.
    [14]Peng J, Gygi SP. Proteome:the move to mixtures [J]. J Mass Spectrmetry,2001, 36:1083-1091.
    [15]Link AS, Eng J, Schieltz DM, et al. Direct analysis of protein complexes using mass spectrometry [J]. Nature Biotechnology,2002,17:676-682.
    [16]Ferguson PL, Smith RD. Proteome analysis by mass spectrometry [J]. Annu Rev Biophys Bioomol Struct,2003,32:397-424.
    [17]Wise MJ, Littlejohn TG, Humphery-Smith I. Peptide-mass fingerprinting and the ideal covering set for protein characterisation. Electrophoresis,1997,18(8): 1399-1409.
    [18]Garrels JI, McLaughlin CS, Warner JR, et al. Proteome studies of Saccharomy- ces cerevisiae:Identification and characterization of abundant proteins. Electrophoresis,1997,18(8):1347-1360.
    [19]Ogorzalek Loo RR, Mitchell C, Stevenson TI, et al. Sensitivity and mass accuracy for proteins analyzed directly from polyacrylamide gels:Implications for proteome mapping. Electrophoresis,1997,18(7):382-390.
    [20]VanBogelen R, Abshire KZ. Escherichia coli proteome analysis using the gene-protein database. Electrophoresis,1997,18 (8):1243-1251.
    [21]Hamdn M, Righet PG. Modern strategies for protein quantification in proteome analysis:advantages and limitations [J]. Mass Spectrometry Reviews,2002,21: 287-302.
    [22]Lill J. Proteomic tools for quantitation by mass spectrometry [J]. Mass spectrometry Reviews,2003,22:182-194.
    [23]Godovac ZJ, Soskic V, Poznanovic S, et al. Functional proteomics of signal transduction by membrane receptors [J]. Electrophoresis,1999,20(4-5):952.
    [24]Denzinger T, Diekmann H, Bruns K, et al. Isolation, primary structure characterization and identification of the glycosylation pattern of recombinant goldfish neurolin, a neuronal cell adhesion protein [J]. J Mass Spectrom,1999, 34(4):435.
    [25]Charlwood J, Langridge J, Camilleri P. Structural characterization of Nlinkedglycan mixtures by precursorion scanning and tandem mass spectrometric analysis [J]. Rapid Commun Mass Spectrom,1999,13(14):1522.
    [26]Wilkins MR, Gasteiger E, Gooley AA, et al. Highthroughput mass spectrometric discovery of protein post-translational modifications [J]. J Mol Biol,1999,289(3):645.
    [27]Zhang YF, Chen XY, Zhong DF, et al. Pharmacokinetics of loratadine and its active metabolite descarbo ethoxyloratadine in healthy Chinese subjects [J]. Acta Pharmacol Sin,2003,24(7):715-718.
    [28]李佐军,刘世坤,裴奇.HPLC-MS法研究阿奇霉素干混悬剂相对生物利用度及药动学.药物分析杂志,2006,26(6):726.
    [29]Dear GJ, Ayrton J, Plumb R, et al. The rapid identification of drug metabolites using capillary liquid chromatography coupled to an ion trap mass spectrometer [J]. Rapid Commun Mass Spectrom,1999,13(5):456-463.
    [30]Lu T, Liang Y, Song J, et al. Simultaneous determination of berberine and palmatine in rat by HPLC-ESI-MS after oral administration of traditional Chinese medicinal preparation Huand-Lian-Jie-Du decoction and the pharmacokinetic application of the method. J Pharm Biomed Anal,2006,40: 1218.
    [31]Oscar Nunez, Encarnacion Moyano, Maria Teresa Galceran. LC-MS/MS analysis of organic toxics in food spectrometry [J]. J Trends in Analytical Chemistry,2005,24(7):683-703.
    [32]冯薇,王伯初,米鹏程,等.适用于LC-MS的三聚氰胺检测新方法[J].广东农业科学,2008(4):62-64.
    [33]仲岳桐,柳其芳,罗若荣.高效液相色谱-质谱联用法检测果汁中的展青霉素[J].中国卫生检验杂志,2007,17(10):1778-1779.
    [34]陈波,靳保辉,谢丽琪,等.液相色谱-串联质谱法对植物源性食品中4种吡啶类除草剂残留量的测定[J].分析测试学报,2008,27(10):1080-1083.
    [35]张志斐.高效液相色谱-质谱联用技术在药学研究中的应用.河北医科大学学报,2005,3(26):226.
    [36]Fan X H, Wang Y, Cheng Y Y. LC/M S fingerprinting of shenmai injection:a novel approach to quality control of herbal medicines. J Pharm Biomed Anal, 2006,40:591.
    [37]Ye M, Guo D, Ye G, et al. Analysis of homoisoflavonoids in Ophiopogon japonicus by HPLC-ES I-MS. J Am Soc Mass Spectrom,2005,16:234.
    [38]荆晶,陈西敬,任伟超.LC-MS法测定人血浆中的甘草次酸.药物分析杂志,2007,27(5):673.
    [39]Bringmann G, Messer K, Wohifarth M, et al. HPLC-CD on-line coupling in combination with HPLC-NMR and HPLC-MS/MS for the determination of the full absolute stereostructure of new metabolites in plant extracts. Analytical chemistry,1999,71(14):2678-2686.
    [40]McLoug hlin DA, Olah TV, Gilbert JD. A direct technique for the simultaneous determination of 10 drug candidates in plasma by liquid chromatography-atmospgeric pressure chemical ionization mass spectrometry interfaced to a Prospekt solid-phase extraction system [J]. J Pharm Biomed Anal,1997,15: 1893-1901.
    [41]Cailleux A, Lebouil A, Bonsergent G, et al. Determination of Opiates and Cocaine and Its Metabolites in Biological Fluids by High-Performance Liquid Chromatography with Electrospray Tandem Mass Spectrometry [J]. J Anal Toxicol,1999,23:620-624.
    [42]Slawson M H, Crouch D J, Andrenyak D M, et al. Determination of Morphine, Morphine-3-glucuronide, and Morphine-6-glucuronide in Plasma after Intravenous and Intrathecal Morphine Administration Using HPLC with Electrospray Ionization and Tandem Mass Spectrometry [J]. J Anal Toxicol, 1999,23:468-473.
    [43]Singh G, Arora V, Fenn P T, et al. A Validated Stable Isotope Dilution Liquid Chromatography Tandem Mass Spectrometry Assay for the Trace Analysis of Cocaine and Its Major Metabolites in Plasma [J]. Anal Chem,1999,71: 2021-2027.
    [44]Orhan H, Vermeulen NPE, Tump C. Simultaneo us determination of tyrosine, phenylalanine and deoxyguanosine oxidation products by liquid chromatography-tandem mass spectrometry as non-invasive biomarkers for oxidative damage. J Chromatogr B,2004,799(2):245.
    [45]Schulze A, Kohlmueller D, Mayatepek E. Sensitivity of electrospray-tandem-mass spectrometry using the phenylalanine-tyrosine-ratio for differential diagnisis of hyperpheny lalaninemia in neonates [J]. Clin Chim Acta,1999,283 (1-2):15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700