树木风振特性试验研究与有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风害是树木损伤的主要形式之一,每年由于强风导致城市内的古树、不健康的树木出现树枝坠落、树干弯曲、折断,甚至掘根倒伏等现象时有发生,对建筑设施和人群的安全构成了威胁,因此,进行树木的安全性评估就显得尤为重要。但是,目前国内外还没有评估树木安全性的有效检测装置。本文以毛白杨为研究对象,利用振动试验和数值模拟技术研究了树干、树枝和树根在强风作用下的振动特性,为研发能够快速、准确评估树木安全性的检测装置提供基础资料和理论依据。
     本文的主要研究工作如下:
     论文利用计算机辅助设计软件Pro/Engineer中的族表与UDF功能,基于参数化建模思路和分形理论,提出了一种快速建立树木结构几何模型的方法。采用该方法所建立的树木力学几何模型,在具有自相似、自仿射的分形结构特点的同时,还能够体现树木材料的各向异性。而且,通过修改相关参数可以建立不同种类树木的几何模型。
     为了寻找一种简单有效的分析方法来研究树木在风荷载作用下的振动特性。本文以毛白杨树干和树枝作为试验对象,通过振动测试方法测量并计算了其自由振动时的自振频率和阻尼比。以离心风机作为人工风源,搭建了风振试验测试平台,对毛白杨施加强风,通过测量树木主干和树枝的运动轨迹以及同一时刻的风压强度,分析树枝对树木风振特性的影响。在分析试验结果和理论模型的基础上,把树枝与树干看作多自由度振动系统,将树木的弹性模量看作弹簧刚度,弹塑性变形以及空气阻尼看作阻尼系数,并考虑树枝与树干之间扭转刚度,初步建立了树木风振运动的微分方程。
     基于流固耦合原理,利用有限元软件ANSYS模拟并分析了树木在强风作用下的风振运动特性。研究发现,单向流固耦合法计算树干胸径处的位移比双向流固耦合法的明显增大,相位提前了约10%,但振动周期减小。与试验值对比发现,双向流固耦合法能够更准确地模拟树木风振的运动特性,而单向流固耦合法能够较准确的估算树木风振运动时的最大应力。
     最后,本文通过根系振动试验与有限元模拟分析,分别在自然状态、根土摩擦和固定端三种情况下测量了树干的自振频率。试验结果表明,在自然状态下树木自振频率大于根土摩擦,但小于固定端约束。基于试验结果和锚固理论,本文提出了根土刚性连接有限元模型,用以描述自然状态下根系与土壤间的关系。通过有限元仿真分析,并将仿真结果与试验结果进行了对比,发现根土刚性连接模型较其它两种模型能够更为准确的描述自然状态下根系与土壤间的关系。
Wind not only threatens the production rate of forests but also has a huge effect on the people who live in the city and their wealth. In order to provide a wind vibration theoretical basis of forest management and regulation after strong wind disaster, this paper study vibration characteristics of Chinese white poplars under strong wind.
     This article research Chinese white poplars which3years old grows in nursery of Beijing Forestry University. Chinese white poplars are studied by wind vibration tests, numerical simulation and mechanical vibration theoretic analysis. Main research methods are as following:
     1. The rapid modeling method for trees. This study attempts to provide three-dimensional structure model through fractal theory to study the mechanical properties of trees. Through the "family table" and "UDF library" which are the functionality of Pro/Engineer software, the results is to build a geometric structure of the model with three-dimensional and lays the foundation for analysis wind characteristic in the numerical simulation part.
     2. Wind vibration test and numerical simulation about the crown of Chinese white poplars. This article sets up finite element model of the crown of single trees which not including leaves and FEM software ANSYS Workbench had been used to analyze. Transverse view mechanical model had been used to build up multiple level branches structure model. Used centrifugal pump fan as the manual wind source, half sine gust of wind had been made to replace natural wind. Acceleration transducers had been used to measure vibration frequency of main trunk and first level branches.
     3. Established the model of trunk and crown, and simulated the dynamic characteristic by using finite element software ANSYS. The analysis results indicate that there is significant relationship between the distribution of branches and wind resistance mechanism of trees. Under strong wind, for the sake of decreasing the windward area of crown to avoid trees lodging, the stress and trunk and perpendicular to the direction of branches will be under the action of wind perpendicular to the direction of in-plane vibration occurred, when crown in perpendicular to the direction of in-plane asymmetric, trees will lateral movement, and so that the trunk root produce elliptic type rotary.
     4. In order to research the influence of interaction relation between roots and soil to vibration performance of trees, the natural frequency of four Chinese white poplars had been measured through trunks vibration tests in three different constraint conditions which include natural growth and root-soil friction and fixed end. Then root-soil stiffness connection model, root-soil friction model and fixed end constrained model had been constructed to calculate the natural frequency in those conditions which were mentioned.
引文
[1]伯努瓦·B·曼德布罗特著陈守吉译.大自然的分形几何学[M].上海:上海远东出版社,1998:17-28.
    [2]陈英俊,于希哲.风荷载计算[M].北京:中国铁道出版社,北京,1998:15-25.
    [3]成俊卿.木材学[M].北京:中国林业出版社,1985:650-670.
    [4]戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论[J].固体力学学报,1990,11(04):305-312.
    [5]龚晓南.土塑性力学[M].杭州:浙江大学出版社,1997:54-73.
    [6]关德新,朱廷曜.树冠结构参数及附近风场特征的风洞模拟研究[J].应用生态学报,2000,11(02):202-204.
    [7]宫晓芳.马尾松树木力学建模及在冰雪载荷下应力分析[D].北京:北京林业大学,2009:3-11.
    [8]何昱昀.根系对土壤加劲效果之数值模拟[D].台湾:国立中兴大学,2003:37-46.
    [9]胡潇毅,陶伟明,郭乙木.考虑耦合效应的风场中摇曳树木模拟[J].浙江大学学报,2008,42(7):1123-1127.
    [10]胡潇毅.一类流固耦合问题的数值算法及风场中摇曳树木的物理仿真[D].杭州:浙江大学,2011:67-83.
    [11]黄伯舜.含根土互制行为数值模拟[D].台湾:国立中兴大学,2004:34-57.
    [12]黄显学,周建中,崔云静.林木减振控制技术研究综述[J].世界林业研究,2011,24(4):3--33.
    [13]及金楠.基于根土相互作用机理的根锚固作用研究[D].北京:北京林业大学,2007:26-41.
    [14]连士华.橡胶树风害成因问题的探讨[J].热带作物学报,1984,5(1):59-72.
    [15]林信辉.桂竹林地土-根系统力学特性及其崩塌机制之研究[D].台湾:国立中兴大学水土保持学系,2007:21-54.
    [16]李顺林.复合材料力学引论[M].上海:上海交通大学出版社,2001:97-105.
    [17]刘镇波,刘一星,于海鹏等.木材弹性模量自动检测的研究进展[J].林业科技,2004,29(01):45-48.
    [18]钱家欢,殷宗泽.土工原理及计算[M].北京:中国水利水电出版社,1996:31-45.
    [19]宋维峰,陈丽华,刘秀萍.林木根系固土作用数值分析[J].北京林业大学学报.2006,28(S2):80-84.
    [20]宋维峰,陈丽华,刘秀萍.根系与土体接触面相互作用特性试验[J].中国水土保持科学.2006,4(02):62-65.
    [21]宋维峰.林木根系与均质土间相互物理作用机理研究[D].北京:北京林业大学,2006:26-41.
    [22]宋学官,蔡林,张华.ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社,2012,53-67.
    [23]孙博玲.分形集的结构与性质[J].哈尔滨学院学报,2004,23(8):90-92.
    [24]孙立谔,鹿振友.速生毛白杨杂交新品种力学性质研究[J].北京林业大学学报.1995,17(01):68-71.
    [25]王莉娟.无损检测方法评估人工林杨树木材性质的研究[D].北京:北京林业大学,2005:49-61.
    [26]吴东霖.树木结构之形态与动力特性研究[D].台湾:台湾大学,2008:67-81.
    [27]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [28]续魁昌.风机手册[M].北京:机械工业出版社,2001:57-167.
    [29]徐杨,朱林,常明.树木三维形态结构的计算机建模[J].计算机工程与应用.2001,21(1):141-143.
    [30]杨峻.通过独立针叶树木之风场模拟研究[D].台湾:中兴大学,2010:36-57.
    [31]杨雁婷.树和树干之振动特性研究[D].台北:国立台湾大学,土木工程学研究所,2001:31-45.
    [32]赵兴华.根系力学模式之研究[D].台湾:国立成功大学,2000:12-37.
    [33]张丹.沙质海岸防护林黑松根系构筑型研究[D].山东:山东农业大学,2011:9-21.
    [34]张珺.数学的混沌之美——对分形几何的初步认识[J].太原大学教育学院学报,2007,25(S1):117-118.
    [35]Ancelin P, Courbaud B, Fourcaud T Y. Development of an individual tree-based mechanical model to predict wind damage within forest stands[J]. FOREST ECOLOGY AND MANAGEMENT.2004,203(1-3):101-121.
    [36]Anderson C J, Campbell D J, Ritchie R M, et al. Soil shear strength measurements and their relevance to windthrow in Sitka spruce[Z]. Blackwell Publishing Ltd,1989,5(2):62-66.
    [37]Baker C J. The development of a theoretical model for the windthrow of plants [J]. TheoretBiol,1995,175(1):355-372.
    [38]Barry Gardiner, Bryan Marshall, Alexis Achim. The stability of different silvicultural systems:a wind-tunnel investigation[J]. Forestry,2005,78 (5):471-484.
    [39]Blom F J. A monolithical fluid-structure interaction algorithm applied to the piston problem[J]. Computer Methods in Applied Mechanics and Engineering,1998,167(3-4): 369-391.
    [40]Bodig. J, and B.A.Jayne. Mechanics of Wood and Wood Composites[M]. NY:Van Nostr and Reinhold,1982:110-118.
    [41]Coutts M P. Components of Tree Stability in Sitka Spruce on Peaty Gley Soil[J]. Forestry, 1986,59(2):173-197.
    [42]Cian J Desmona,Simon Watson. Wind Flow around a Single Tree a Study on the Sensitivity of CFD Models [Z].
    [43]Dupuy L, Fourcaud T, Stokes A. A Numerical Investigation into the Influence of Soil Type and Root Architecture on Tree Anchorage[J]. Plant and Soil,2005,278(1-2):119.
    [44]Dupuy L X, Fourcaud T, Lac P, et al. A generic 3D finite element model of tree anchorage integrating soil mechanics and real root system architecture[J]. American Journal of Botany American Journal of Botany,2007,94(9):1506.
    [45]A.H.England,C. A.Baker.S.E.T.Saunderson. Dynamic Analysis of Windthrow of Trees[J]. Forestry,2001,2000,73(3):225-237.
    [46]Erb R T. The effect of roots on the shearing strength of soil[D]. Ohio State University,1985.
    [47]Flesch TK, Wilson J D. Wind and remnant tree sway in forest cut blocks. Ⅱ. Relating measured tree sway to wind statistics [J]. Agricultural and Forest Meteorology,1999,93(4): 243-258.
    [48]GaffreyD. Stress distribution in a stem of a 64-year old Douglasfir simulated with a 3D-tree and load model [C]. BERLIN,PlantBiomechanics2000 Proc. of the 3rd plant biomechanics conference,2000(1):425-431.
    [49]Gardiner B A. Mechanical characteristics of Sitka spruce [J]. Forestry Commission Occasional Paper,1989,24(1):1-11.
    [50]Godin C, Caraglio Y. A Multiscale Model of Plant Topological Structures[J]. Journal of Theoretical Biology,1998,191(1):1-46.
    [51]Guitard D G E, Castera P. Experimental analysis and mechanical modeling of wind-induced tree sways[M]//Coutts M P, Grace J(ed.). Wind and trees. Cambridge:Cambridge University Press,1995:182-194.
    [52]Hu X Y, Tao W M, Guo Y M. Using FEM to predict tree motion in a wind field[J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A,2008,9(7):907-915.
    [53]Jonsson M, Foetzki A, Kalberer M, et al. Root-soil rotation stiffness of Norway spruce (<i>Picea abies</i> (L.) Karst) growing on subalpine forested slopes[J]. Plant and Soil,2006,285(1):267-277.
    [54]Kerzenmacher T, Gardiner B A. A mathematical model to describe the dynamic response of a spruce tree to the wind [J].Trees,1998,12(6):385-394.
    [55]Kane B, James K R. Dynamic properties of open-grown deciduous trees[J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE,2011,41(2):321-330.
    [56]JAMES.K, N.HARITOS, ADES.P.K. Mechanical stability of trees under dynamic loads [J]. AMERICAN JOURNAL OF BOTANY,2006,93 (10):1522-1530.
    [57]JAMES.K. Dynamic loading of trees[I].http://www.treelink.org/joa/2003/may/06James.pdf, 2003.
    [58]Lan C. Analysis of soil-root interaction[D]. Ohio:Ohio State University,1985:27-45.
    [59]Lin D G, Huang B S, Lin S H.3-D numerical investigations into the shear strength of the soil-root system of Makino bamboo and its effect on slope stability[J]. Ecological Engineering,2010,36(8):992-1006.
    [60]Lundstrom T, Jonas T, Stockli V, et al. Anchorage of mature conifers:resistive turning moment, root-soil plate geometry and root growth orientation[J]. Tree Physiology Tree Physiology,2007,27(9):1217.
    [61]Milne R. Dynamics of swaying of Picea sitchensis.[J]. Tree Physiol,1991,9(3):383-399.
    [62]Moore JR. Differences in maximum resistive bending moments of Pinus radiata trees grown on a range of soil types[J]. Forest Ecology and Management,2000,135(1-3):63-71.
    [63]Moore J R. Mechanical behavior of coniferous trees subjected to wind loading [D]. Oregon: Oregon State University,2002:34-51.
    [64]Moore JR, Maguire D A. Natural sway frequencies and damping ratios of trees:influence of crown structure[J]. Trees,2005,19(4):363-373.
    [65]Moore JR, Maguire D A. Simulating the dynamic behavior of Douglas-fir trees under applied loads by the finite element method [J]. Tree Physiol,2008,28(1):75-83.
    [66]NEILD.S.A.WOOD.C.J. Estimating stem and root-anchorage flexibility in trees[J]. Tree Physiology,1999,19(3):141-151.
    [67]Newnham R M. A variable form taper function:Inf Rep PI-X-83 [R]. Petawawa:Petawawa National Forest Institute,1988:57-67.
    [68]Nishimura H, Taniike Y. Aerodynamic characteristics of fluctuating forces on a circular cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics,2001,89(7-8): 713-723.
    [69]Peltola H. Studies on the mechanism of wind induced damage of Scots pine [D] Finland: University of Joenssu,1995:46-64.
    [70]Peltola H. Swaying of trees as caused by wind:analysis of field measurements[J]. Silva Fennica,1993,27(2):113-126.
    [71]Perez D N, Burthart H E, Stiff C T. A variable-form taper function for Pinus ocarpa schiede in Central Honduras [J]. Forest Science,1990,36(1):186-191.
    [72]Putz F E, Coley P D, Lu K, Montalvo A and Aiello A. Uprooting and snapping of trees: structural determinants and ecological consequences[J]. Canadian Journal of Forest Research,1983,13(5):1011-1020.
    [73]Ruel J C. Factors influencing windthrow in balsam fir forests:from landscape studies to individual tree studies[J]. Forest Ecol and Management,2000,135(1-3):169-178.
    [74]Saunderson SE T, England A H, Baker C J. A dynamic model of the behaviour of Sitka spruce in high winds [J]. Journal of Theoretical Biology,1999,200(3):249-259.
    [75]SellierD, FourcaudT, Lac P. A finite element method for investigating effects of aerial architecture on tree oscillations[J]. Tree Physiol,2006,26:799-806.
    [76]Spatz H C. Greenhill's formula for the critical Euler buckling length revisited[C]//SpatzH C, Speck T(ed.). Plant Biomechanics 2000:Proc. of the 3rd plant biomechanics conference. Stuttgart:Georg Thieme Verlag,2000:403-412.
    [77]Sugden M J. TREE SWAY PERIOD—A POSSIBLE NEW PARAMETER FOR CROWN CLASSIFICATION AND STAND COMPETITION[J]. The Forestry Chronicle,1962,38(3): 336-344.
    [78]Van Wassenaer E B P. Trees and Statics:Non-Destructive Failure Analysis [Z].
    [79]Vollsinger S, Mitchell S J, Byrne K E, et al. Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species[J]. CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE,2005,35(5):1238-1249.
    [80]Whitlow R. Basic Soil Mechanics[M]. London:Addison-Wesley Pub Co. Butterworths, 2001:132-241.
    [81]YangY B, YangY T, Su H H. Behavior of the tree branches, trunk, and root anchorage by Nonlinear Finite Element Analysis[J]. Advances in structural Engineering,2005,8(1):1-14.
    [82]Yang Z, Jeremic B. Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2002,26(14):1385-1406.
    [83]Zha G, Yang M, Fahroo F. High Cycle Fatigue Prediction for Mistuned Bladed Disks with Fully Coupled Fluid-Structural Interaction[Z].2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700