医用功能性可降解聚氨酯复合体系构建的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
软骨组织无血管、无神经、无淋巴,在关节腔内仅靠滑液来获取营养,其代谢主要以无氧酵解为主,决定了其有限的自身修复能力。然而,现有的修复治疗技术无法实现从生物学环境及力学环境来进行构建,以适于软骨的再生修复,从而使得临床上关节软骨的修复至今难以取得突破性的进展。根据生物学环境及力学环境来重构是未来软骨再生修复的重要研究方向,而如何实现以可降解材料为基础构建软骨再生的生物学环境及力学环境是未来软骨修复材料研究的重点与热点。
     本研究从上述角度出发,合成了一种新型的功能性医用可降解聚氨酯(PU),在此基础上,通过改变合成PU的软硬段比例构建了不同模量的PU材料,然后采用相转变-粒子沥滤法制备了不同孔结构特性的PU多孔支架,以满足骨和软骨再生对力学环境要求的不同。同时,通过表面改性的方法构建了适于软骨及骨再生的PU表面微环境以及通过复合的方法构建了适于软骨及骨再生的功能性微球/PU复合支架,以此来满足骨和软骨再生对生物学环境要求的不同,期望应用于一体化关节软骨组织工程。
     在构建不同弹性模量的PU材料上,以赖氨酸二异氰酸乙酯为硬段,平均分子量为2000的聚己内酯二醇为软段,具有药理活性的异山梨醇为扩链剂,采用不同的软硬段比例合成了不同模量的PU。利用FTIR、1H-NMR、GPC、XRD、DSC对合成的聚合物进行了表征。FTIR、1H-NMR结果表明合成的聚合物的结构是典型PU的结构;GPC测试结果显示聚合物的数均分子量超过5万,分布指数在1.6~2.0,分子量分布较窄;DSC分析结果显示软段比例较大合成得到的聚合物在42℃存在着结晶熔融峰,而硬段比例较大合成得到的聚合物,没有结晶熔融峰;而XRD结果证明合成的聚合物存在部分结晶,但是结晶不是很完整。通过材料的拉伸力学试验,结果证明合成得到的PU材料具有很好的弹性,其断裂伸长率超过700%;同时其酶解性能也表明,相比较传统的PLGA材料的降解性能,合成得到的PU具有更慢的降解速度,且降解后溶液呈弱碱性,表现出更加理想的降解特性。该PU材料,可以满足软骨组织工程需要承受一定的负荷的要求,且解决工程支架植入到体内与自体组织相连不紧密,而在界面上产生剪切力造成植入体与自体相分离的问题,同时不至于因为材料降解而产生酸性积累,导致无菌性炎症的发生。潜在应用于骨及软骨组织工程。
     在构建适于软骨及骨再生的表面微环境上,对PU进行了一系列的表面改性。首先利用1,3-丙二胺与PU链上的酯基基团发生胺解反应,在PU的表面形成游离的胺基,然后利用产生的胺基,一是通过与Ⅰ型胶原在EDC/NHS的作用下进行化学反应,使材料的表面接枝上胶原,构建骨再生的微环境,有利于骨细胞的增殖和分化;二是将游离的胺基酸化,使材料表面带正电荷,再通过静电作用力,在材料表面进行层层自组装硫酸软骨素和Ⅰ型胶原,构建软骨再生的微环境。RBITC-Col、QCM、XPS和AFM测试结果证明胶原和硫酸软骨素成功地吸附在PU的表面,使材料的表面变得更平整,形成比较均一的纳米级形貌结构,这样的一个表面纳米结构应该有利于细胞的粘附,促进细胞的增殖和分化。
     在不同孔结构特性的PU支架制备上,采用相转变-粒子沥滤法,通过改变良溶剂和不良溶剂的比例以及造孔剂的比例等来控制PU支架的孔径、分布、孔之间的连通性以及支架的力学性能等。结果表明添加了不良溶剂和造孔剂制备得到的PU三维支架是由大小不同的孔构成,孔与孔之间连通性较好,大孔孔径可达几百微米,孔隙率超过75%,可以满足细胞在支架上生长、增殖的需要;同时,支架的抗压性能较好,具有较好的形变回复能力,通过加入不良溶剂得到的三维支架在压缩过程中不会发生崩塌的现象。当PU溶液的浓度为14.5%,良溶剂和不良溶剂的比例为2:1,造孔剂与PU的质量比为5:1时,且在37℃进行干燥除去溶剂制备得到的PU三维多孔支架的性能较好。此时得到的支架的孔隙率为84.2%,孔径大于100μm所占的比例为87.5%,且孔之间的连通性较好;压缩应变为20%时的抗压强度为0.31MPa,满足软骨组织工程的力学性能要求。
     在构建适于软骨及骨再生的功能性微球/PU复合支架上,分别采用乳化法制备了明胶/肝素微球和双乳化溶剂挥发法制备了内部具有多孔结构的PLGA/氧氟沙星载药微球。明胶浓度,乳化剂浓度,水油比对明胶/肝素微球的粒径和分布有较大的影响。通过明胶微球包裹肝素,为明胶微球吸附bFGF提供活性位点,尽量保持bFGF的活性,构建软骨再生的缓释结构体系。而在PLGA/氧氟沙星载药微球制备中,在内水相中加入介孔二氧化硅、透明质酸、多聚赖氨酸对微球的粒径、分布及载药效率和释放都有影响。内水相中添加剂的物理吸附作用和静电吸引作用可以改善高亲水性药物在内水相中的留存量,并提高药物的包封率,但静电作用也可能会影响表面活性剂的乳化效果,破坏乳液的稳定性,造成较低的包封率。内水相中添加剂的亲水性的增加改善了高分子材料整体的亲水性,提高了亲水性药物在微球表面的吸附率,造成初期爆释较高。通过PLGA微球包裹氧氟沙星,构建骨再生的缓释结构体系。通过制得的功能性微球与PU三维多孔支架相复合,考察微球在PU支架中的分布,结果表明微球较均匀地分布在支架的孔壁和孔的里面,说明了这一功能性PU复合体系构建的可行性。
     通过PU材料的生物相容性及PU材料对滑膜干细胞分化为软骨细胞实验,对PU材料的生物学性能进行了评价。结果表明不管是PU材料还是PU自组装胶原/硫酸软骨素材料,两者都没有毒性或者毒性很小,且支持细胞的生长和增殖。相比较单纯的PU材料,在PU材料表面组装上胶原和硫酸软骨素更有利于滑膜干细胞的生长及向软骨细胞分化。
     未来,单一的生物材料在复杂组织的再生中将难以起主导作用。把各种信号因子复合在材料主体结构上,以实现材料体系的多功能、多效用,将成为组织工程材料构建的发展趋势。本研究从力学环境和生物学环境角度构建了功能性PU复合支架材料体系,为一体化软骨组织工程的开发应用奠定了基础,为未来多功能复合支架材料的研究提供了一定的参考依据。
Articular cartilage is a specialized connective tissue and has a poor reparative capacitywhich lacks blood vessels, nerves, and lymphatic system. However, it is still impossible forcurrent therapy techniques to construct a biological and mechanical environment for repairingarticular cartilage defects, which makes the clinical repair of articular cartilage defects nothave gained outstanding achievements. The reconstruction of biological and mechanicalenvironment is an important research direction of regenerative repair of cartilage defects. Inaddition, it will be a focus and hotspots in future that how to use degradable materials toreconstruct the biological and mechanical environment for cartilage regeneration.
     In this sutdy, the reconsturction of biological and mechanical environment based onbiodegradable polyurethane for regenerative repair of cartilage defects had been made by thesynthesis of different modulus of polyurethane(PU), the preparation of3D porous scaffoldswith different pore structures and producing micro environment on PU surface andsustained-release structure suitable for the regeneration of cartilage and bone, respectively.
     In order to synthesize PU with different elastic moduli, A two-step method was used tosynthesize the PU composed by different proportions of L-lysine ethyl ester diisocyanate(LDI) hard segment, poly (ε-caprolactone) diols (PCL-diol) soft segment,1,4:3,6-dianhydro-D-sorbitol (Isosorbide) chain extender. FTIR,1H-NMR results revealed the products hadtypical PU structures. GPC results showed the synthesized polyurethane had narrow,unimodal molecular weight distribution with the number average molecular weight of morethan50000and a polydispersity of1.6~2.0. DSC results displayed the proportion of softsegment to hard segment influenced the thermal property of PU. When the materialscontained more soft segment, they showed a melting peak at42℃.There was incompletecrystal structure in PU based on the XRD result. Tensile mechanical tests proved that the PUhad good flexibility and its tensile elongation at break was more than700%. In addition, thePU could be degraded by lipase solution with slow speed and made the solution weakalkalescence. The PU can be potentially applied to cartilage tissue engineering.
     In order to build micro environment on PU surface suitable for the regeneration ofcartilage and bone respectively, PU was modified to improve its surface performance with aseries of technique. Surface aminolyzing of the PU membrane was performed by reacting itwith1,3-propanediamine under alkaline condition. Then, type I collagen was grafted on thePU surface by EDC/NHS coupling method to improve PU’s biocompatibility. The secondway was alternate deposition of type Ⅰcollagen (Col) and chondroitin sulfate (CS) on the aminolyzed PU films through layer-by-layer (LBL) assembly technology. Rhodamine Bisothiocyanate (RBITC) fluorescence spectrum presented that both amino group (-NH2) andtype I collagen were successfully introduced on the PU surface. The results of QCM,RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process, XPS and AFMpresented that the Col/CS deposited alternately on the PU surface. The surface of theassembled PU became rougher and the hydrophilicity of the PU membrane enhanced greatlythough LBL assembly of Col/CS.
     A combined salt leaching-phase inverse technique was used to produce the PU scaffoldswith different pore structure. The pore szie, pore size distribution, connectivity between thepore and mechanical properties of the scaffolds were controlled by changing the ratio of thesolvent/nonsolvent and the proportion of the solid porogen. The results showed that thescaffolds revealed multi-size distribution of pores with diameter from several microns toseveral hundred microns and high porosity (more than75%). In addition, the scaffoldsshowed good elasticity and deformability properties.
     To design the sustained-release structure suitable for the regeneration of cartilage andbone respectively, Gelatin/heparin microspheres and PLGA microspheres containingofloxacine were prepared through emulsion chemical-crossline method and double-emulsion(water-in-oil-in-water) solvent extraction/evaporation method, respectively. The resultsshowed that gelatin concentration, emulsifier dosage and ratio of water to oilphase had effecton particle size and particle size distribution of gelatin/heparin microspheres. The heparinwrapped in gelatin microspheres was to provide active sites for adsorbing and maintaining theactivity of bFGF, which was constructed sustained-release structural system for cartilageregeneration. As for PLGA microsphere containing ofloxacine, the internal aqueous phaseadded had effect on the particle size and particle size distribution of the microspheres,encapsulation efficiency, initial burst and release profile of hydrophilic drug containingmicrospheres. Promoting hydrophilic drug loading efficiency was dominated by adsorptionand electrostatic attraction mechanism between the internal aqueous phase additives and thedrug. Release profile and initial burst release was a balance between the wall materialsdegradation and the interactions between the internal aqueous phase additives and the drug.The functional PU compsoites was prepared by the microspheres added to PU scaffolds.
     The biological properties of PU were evaluated with the study of biocompatibility andchondrogenic differentiation of synovium-derived stem cells in vitro. The results displayedthat both the PU and PU-LBL-Col/CS PU had no or low cytotoxicity and could support thecells live and proliferation on them. Compared to the pure PU materials, the PU/Col/CS materials was more beneficial to the growth and differentiation to chondrocyte of synovialstem cell.
     In future, it will be impossible for a single biomaterials to play a leading role on acomplex tissue regeneration. Various signals and growth factors will be combined with thematerials to build multi-functional and multi-purpose system. It will become the developmenttrend of design for tissue engineering materials. In this paper, the functional PU compositeswas reconstructed from the biological and mechanical environment for cartilage regeneration,which proved that it was feasibility to construct a multi-functional composite scaffold systemand provided some reference for research on multi-functional composite scaffold in future.
引文
[1] Mow VC, Ratcliffe A and Poole AR. Cartilage and diarthrodial joints as paradigms forhierarchical materials and structures[J]. Biomaterials1992,13(2):67-97
    [2]中西医疗无创治疗关节炎[J]. http://gk.39.net/gjjb/091/11/757160.html
    [3]关节软骨损伤的治疗新进展[J]. http://wanghong1226.haodf.com/wenzhang/50469.htm
    [4] Mow VC, Ateshian GA and Spilker RL. Biomechanics of Diarthrodial Joints: A Reviewof Twenty Years of Progress[J]. Journal of Biomechanical Engineering1993,115(4B):460-467
    [5] Soltz MA and Ateshian GA. Experimental verification and theoretical prediction ofcartilage interstitial fluid pressurization at an impermeable contact interface in confinedcompression[J]. Journal of Biomechanics2006,39(3):594-594
    [6] Howland J. Biochemistry. Biochemical Education1990,18(4):212-212
    [7] Beris AE, Lykissas MG, and Georgoulis AD, et al. Advances in articular cartilagerepair[J]. Injury2005,36(4, Supplement1):S14-S23
    [8] Hunziker EB and Rosenberg LC. Repair of partial-thickness defects in articular cartilage:cell recruitment from the synovial membrane[J]. The Journal of bone and joint surgery.American volume1996,78(5):721-33
    [9] Akizuki S, Yasukawa Y and Takizawa T. Does arthroscopic abrasion arthroplasty promotecartilage regeneration in osteoarthritic knees with eburnation? A prospective study of hightibial osteotomy with abrasion arthroplasty versus high tibial osteotomy alone[J].Arthroscopy: The Journal of Arthroscopic&, Related Surgery1997,13(1):9-17
    [10] Beiser IH and Kanat IO. Subchondral bone drilling: a treatment for cartilage defects[J].The Journal of foot surgery1990,29(6):595-601
    [11] Jazrawi L, Sherman O and Hunt S. Arthroscopic management of osteoarthritis of theknee[J]. The Journal of the American Academy of Orthopaedic Surgeons2003,11(4):290
    [12] Steadman JR, Briggs KK, and Rodkey, et al. WG. Outcomes of microfracture fortraumatic chondral defects of the knee: Average11-year follow-up[J]. Arthroscopy: TheJournal of Arthroscopic& Related Surgery2003,19(5):477-484
    [13] O'Driscoll SW. Articular cartilage regeneration using periosteum[J]. ClinicalOrthopaedics and Related Research1999(367):S186-S203
    [14] Kish G and Hangody L. A prospective, randomised comparison of autologouschondrocyte implantation versus mosaicplasty for osteochondral defects in the knee[J].Journal of Bone and Joint Surgery-British Volume2004,86B(4):619-619
    [15] Hangody L, Feczko P and Kish G. Mosaicplasty for the treatment of articular defects ofthe knee and ankle[J]. Clinical Orthopaedics and Related Research2001(391):S328-S336
    [16] Hangody L, Kish G and Bely M. Mosaicplasty for the treatment of articular cartilagedefects: Application in clinical practice[J]. Orthopedics1998,21(7):751-756
    [17] Ghazavi MT, Pritzker KP and Gross AE. Fresh osteochondral allografts forpost-traumatic osteochondral defects of the knee[J]. Journal of Bone and JointSurgery-British Volume1997,79B(6):1008-1013
    [18] Langer R and Vacanti J. Tissue engineering[J]. Science1993,260(5110):920-926
    [19] Chaipinyo K, Oakes BW and van Damme M-PI. Effects of growth factors on cellproliferation and matrix synthesis of low-density, primary bovine chondrocytes culturedin collagen I gels[J]. Journal of Orthopaedic Research2002,20(5):1070-1078
    [20] Brodkin KR, Garc a AJ and Levenston ME. Chondrocyte phenotypes on differentextracellular matrix monolayers[J]. Biomaterials2004,25(28):5929-5938
    [21] Martin I, Suetterlin R, Freed LE, et al. Enhanced cartilage tissue engineering bysequential exposure of chondrocytes to FGF-2during2D expansion and BMP-2during3D cultivation[J]. Journal of Cellular Biochemistry2001,83(1):121-128
    [22] Gagne TA, Chappell-Afonso K, Johnson JL, et al. Enhanced proliferation anddifferentiation of human articular chondrocytes when seeded at low cell densities inalginate In Vitro[J]. Journal of Orthopaedic Research2000,18(6):882-890
    [23] Freed LE, Marquis JC, Nohria A, et al. Neocartilage formation in vitro and in vivo usingcells cultured on synthetic biodegradable polymers[J]. Journal of Biomedical MaterialsResearch1993,27(1):11-23
    [24] Donati I, Stredanska S, Silvestrini G, et al. The aggregation of pig articular chondrocyteand synthesis of extracellular matrix by a lactose-modified chitosan[J]. Biomaterials2005,26(9):987-998
    [25] Marijnissen WJCM, van Osch GJVM, Aigner J, et al. Alginate as a chondrocyte-deliverysubstance in combination with a non-woven scaffold for cartilage tissue engineering[J].Biomaterials2002,23(6):1511-1517
    [26] Yen C-N, Lin Y-R, Chang MD-T, et al. Use of Porous Alginate Sponges for SubstantialChondrocyte Expansion and Matrix Production: Effects of Seeding Density[J].Biotechnology Progress2008,24(2):452-457
    [27] Niethard M, Schneider U and Wallich R. Differential behaviour of human adultarthrotic chondrocytes under2D-and3D-cultivation set-ups in a collagen I gel[J].Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete2007,145(1):102-107
    [28] Csaki C, Schneider PRA and Shakibaei M. Mesenchymal stem cells as a potential poolfor cartilage tissue engineering[J]. Annals of Anatomy-Anatomischer Anzeiger2008,190(5):395-412
    [29] L ken S, Jakobsen R, r en A, et al. Bone marrow mesenchymal stem cells in ahyaluronan scaffold for treatment of an osteochondral defect in a rabbit model[J]. KneeSurgery, Sports Traumatology, Arthroscopy2008,16(10):896-903
    [30] Mimura T, Imai S, Kubo M, et al. A novel exogenous concentration-gradient collagenscaffold augments full-thickness articular cartilage repair[J]. Osteoarthritis and Cartilage2008,16(9):1083-1091
    [31] Chang CH, Lin HY, Fang HW, et al. Chondrogenesis from immortalized humanmesenchymal stem cells: Comparison between collagen gel and pellet culture methods[J].Artificial Organs2008,32(7):561-566
    [32] Zhou XZ, Leung VY, Dong QR, et al. Mesenchymal stem cell-based repair of articularcartilage with polyglycolic acid-hydroxyapatite biphasic scaffold[J]. InternationalJournal of Artificial Organs2008,31(6):480-489
    [33] Pelttari K, Steck E and Richter W. The use of mesenchymal stem cells forchondrogenesis[J]. Injury2008,39(1, Supplement):58-65
    [34] Jeong WK, Oh SH, Lee JH, et al. Repair of osteochondral defects with a construct ofmesenchymal stern cells and a polydioxanone/poly(vinyl alcohol) scaffold[J].Biotechnology and Applied Biochemistry2008,49:155-164
    [35] Hwang Y-S, Bishop A, Polak J, et al. Enhanced<i>In vitro</i> chondrogenicdifferentiation of murine embryonic stem cells[J]. Biotechnology and BioprocessEngineering2007,12(6):696-706
    [36] Fecek C, Yao DG, Kacorri A, et al. Chondrogenic derivatives of embryonic stem cellsseeded into3D polycaprolactone scaffolds generated cartilage tissue in vivo[J]. TissueEngineering Part A2008,14(8):1403-1413
    [37] Hwang YS, Polak JM and Mantalaris A. In Vitro Direct Chondrogenesis of MurineEmbryonic Stem Cells by Bypassing Embryoid Body Formation[J]. Stem Cells andDevelopment2008,17(5):971-978
    [38] Koay EJ and Athanasiou KA. Hypoxic chondrogenic differentiation of human embryonicstem cells enhances cartilage protein synthesis and biomechanical functionality[J].Osteoarthritis and Cartilage2008,16(12):1450-1456
    [39]陈昌红.生长因子促进关节软骨修复应用方法概述[J].国际骨科学杂志2006,27(2):117-119
    [40] Han SH, Kim YH, Park MS, et al. Histological and biomechanical properties ofregenerated articular cartilage using chondrogenic bone marrow stromal cells with aPLGA scaffold in vivo[J]. Journal of Biomedical Materials Research Part A2008,87A(4):850-861
    [41] Lee SY, Niikura T and Reddi AH. Superficial Zone Protein (Lubricin) in the DifferentTissue Compartments of the Knee Joint: Modulation by Transforming Growth FactorBeta1and Interleukin-1Beta[J]. Tissue Engineering Part A2008,14(11):1799-1808
    [42] Mohamed N. Rahaman and Jeremy J Mao. Stem cell-based composite tissue constructsfor regenerative medicine[J]. Biotechnology and Bioengineering,2005,91(3):261-284.
    [43] Tamai N, Myoui A, Hirao M, et al. A new biotechnology for articular cartilage repair:subchondral implantation of a composite of interconnected porous hydroxyapatite,synthetic polymer (PLA-PEG), and bone morphogenetic protein-2(rhBMP-2)[J].Osteoarthritis and Cartilage2005,13(5):405-417
    [44] Shintani N and Hunziker EB. Chondrogenic differentiation of bovine synovium-Bonemorphogenetic proteins2and7and transforming growth factor beta1induce theformation of different types of cartilaginous tissue[J]. Arthritis and Rheumatism2007,56(6):1869-1879
    [45] Miljkovic ND, Cooper GM and Marra KG. Chondrogenesis, bone morphogeneticprotein-4and mesenchymal stem cells[J]. Osteoarthritis and Cartilage2008,16(10):1121-1130
    [46] Fu Q, Lu M and Shen T. Experimental study of bFGF modulating rabbit articularchondrocytes cultured in vitro and seeded onto polylactic acid scaffold coated withdifferent materials[J]. Zhonghua wai ke za zhi [Chinese journal of surgery]2005,43(24):1590-3
    [47] Huang X, Yang D, Yan W, et al. Osteochondral repair using the combination offibroblast growth factor and amorphous calcium phosphate/poly(L-lactic acid) hybridmaterials[J]. Biomaterials2007,28(20):3091-3100
    [48] Fukuda A, Kato K, Hasegawa M, et al. Enhanced repair of large osteochondral defectsusing a combination of artificial cartilage and basic fibroblast growth factor[J].Biomaterials2005,26(20):4301-4308
    [49] Pei M, He F and Vunjak-Novakovic G. Synovium-derived stem cell-basedchondrogenesis[J]. Differentiation2008,76(10):1044-1056
    [50] Davies LC, Blain EJ, Gilbert SJ, et al. The potential of IGF-1and TGF beta1forpromoting "Adult'' articular cartilage repair: An in vitro study[J]. Tissue EngineeringPart A2008,14(7):1251-1261
    [51] Miyamoto C, Matsumoto T, Sakimura K, et al. Osteogenic protein-1with transforminggrowth factor-beta1: potent inducer of chondrogenesis of synovial mesenchymal stemcells in vitro[J]. Journal of Orthopaedic Science2007,12(6):555-561
    [52] Fan H, Liu H, Zhu R, et al. Comparison of chondral defects repair with in vitro and invivo differentiated mesenchymal stem cells[J]. Cell Transplantation2007,16(8):823-832
    [53] Lee JE, Kim KE, Kwon IC, et al. Effects of the controlled-released TGF-beta1fromchitosan microspheres on chondrocytes cultured in acollagen/chitosan/glycosaminoglycan scaffold[J]. Biomaterials2004,25(18):4163-4173
    [54] Gavenis K, Schneider U, Groll J, et al. BMP-7-loaded PGLA microspheres as a newdelivery system for the cultivation of human chondrocytes in a collagen type I gel: thecommon nude mouse model[J]. International Journal of Artificial Organs2010,33(1):45-53
    [55] Zhang X, Zheng Z, Liu P, et al. The synergistic effects of microfracture, perforateddecalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4incartilage defect repair[J]. Biomaterials2008,29(35):4616-4629
    [56] Qu FJ, Liu Y and Zhu DL. Construction of tissue-engineered cartilage with BMP7gene-transfected Chondrocytes[J]. Journal of International Medical Research2008,36(4):837-847
    [57] Lin L, Zhou C, Wei X, et al. Articular cartilage repair using dedifferentiated articularchondrocytes and bone morphogenetic protein4in a rabbit model of articular cartilagedefects[J]. Arthritis&Rheumatism2008,58(4):1067-1075
    [58] Steinert A, Karl N, Hendrich C, et al. Gene-induced chondrogenesis of primarymesenchymal stem cells in collagen hydrogel constructs[J]. Cytotherapy2006,8:59-59
    [59]鄂征.医学组织工程技术与临床运用[M].北京:北京出版社,2003
    [60] Ruecker M, Laschke MW, Junker D, et al. Angiogenic and inflammatory response tobiodegradable scaffolds in dorsal skinfold chambers of mice[J]. Biomaterials2006,27(29):5027-5038
    [61] Hak-Joon S, Meredith C, Johnson C and Galis ZS. The effect of scaffold degradation rateon three-dimensional cell growth and angiogenesis[J]. Biomaterials2004,25(26)
    [62] Uematsu K, Hattori K, Ishimoto Y, et al. Cartilage regeneration using mesenchymal stemcells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold[J]. Biomaterials2005,26(20):4273-4279
    [63] Sherwood JK, Riley SL, Palazzolo R, et al. A three-dimensional osteochondralcomposite scaffold for articular cartilage repair[J]. Biomaterials2002,23(24):4739-4751
    [64]李旭升胡蕴玉,范红彬,等.新型快速成形的三维多孔支架材料构建组织工程软骨[J].第四军医大学学报2005,26(11):978-982
    [65] Oh SH, Kang SG, Kim ES, et al. Fabrication and characterization of hydrophilicpoly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-moldingparticulate-leaching method[J]. Biomaterials2003,24(22):4011-4021
    [66] Park GE, Pattison MA, Park K, et al. Accelerated chondrocyte functions onNaOH-treated PLGA scaffolds[J]. Biomaterials2005,26(16):3075-3082
    [67] Boretos JW, Detmer DE and Donachy JH. Segmented polyurethane: a polyether polymer,II. Two years experience[J]. Journal of Biomedical Materials Research1971,5(4):373-87
    [68] Gogolewski S and Pennings AJ. An artificial skin based on biodegradable mixtures ofpolylactides and polyurethanes for full-thickness skin wound covering[J]. DieMakromolekulare Chemie, Rapid Communications1983,4(10):675-680
    [69] Gogolewski S, Galletti G and Ussia G. Polyurethane vascular prostheses in pigs[J].Colloid&Polymer Science1987,265(9):774-778
    [70] Gogolewski S, Walpoth B and Rheiner P. Polyurethane microporous membranes aspericardial substitutes[J]. Colloid&Polymer Science1987,265(11):971-977
    [71] Gogolewski S and Gorna K. Biodegradable polyurethane cancellous bone graftsubstitutes in the treatment of iliac crest defects[J]. Journal of Biomedical MaterialsResearch Part A2007,80A(1):94-101
    [72] Gogolewski S, Gorna K and Turner AS. Regeneration of bicortical defects in the iliaccrest of estrogen-deficient sheep, using new biodegradable polyurethane bone graftsubstitutes[J]. Journal of Biomedical Materials Research Part A2006,77A(4):802-810
    [73] Rohner D, Hutmacher DW, See P, et al. Individually CAD-CAM technique designed,bioresorbable3-dimensional polycaprolactone framework for experimentalreconstruction of craniofacial defects in the pig[J]. Mund-, Kiefer-undGesichtschirurgie: MKG2002,6(3):162-7
    [74] Tai NR, Salacinski HJ, Edwards A, et al. Compliance properties of conduits used invascular reconstruction[J]. British Journal of Surgery2000,87(11):1516-1524
    [75] Szycher M, Poirier VL and Dempsey DJ. Development of an Aliphatic Biomedical-Grade Polyurethane Elastomer[J]. Journal of Elastomers and Plastics1983,15(2):81-95
    [76] Gerald Scott. Polymers and the Environment [M]. The Royal Society of Chemistry,1999:38-67.
    [77] Daka JN and Chawla AS. Release of chemicals from polyurethane foam in the Memebreast implant[J]. Biomaterials, artificial cells, and immobilization biotechnology:official journal of the International Society for Artificial Cells and ImmobilizationBiotechnology1993,21(1):23-46
    [78] Gorna K and Gogolewski S. Biodegradable polyurethanes for implants. II. In vitrodegradation and calcification of materials from poly(-caprolactone)–poly(ethyleneoxide) diols and various chain extenders[J]. Journal of Biomedical Materials Research2002,60(4):592-606
    [79] Gorna K and Gogolewski S. In vitro degradation of novel medical biodegradablealiphatic polyurethanes based on [epsilon]-caprolactone and Pluronics with varioushydrophilicities[J]. Polymer Degradation and Stability2002,75(1):113-122
    [80] Gorna K and Gogolewski S. Molecular stability, mechanical properties, surfacecharacteristics and sterility of biodegradable polyurethanes treated with low-temperatureplasma[J]. Polymer Degradation and Stability2003,79(3):475-485
    [81] Gorna K, Polowinski S and Gogolewski S. Synthesis and characterization ofbiodegradable poly(-caprolactone urethane)s. I. Effect of the polyol molecular weight,catalyst, and chain extender on the molecular and physical characteristics[J]. Journal ofPolymer Science Part A: Polymer Chemistry2002,40(1):156-170
    [82] Gorna K, Polowinski S and Gogolewski S. Synthesis and characterization ofbiodegradable Poly(epsilon-caprolactone urethane(s).1. Effects of the polyol molecularweight, catalyst, and chain extender on the molecular and physical characteristics (vol40,pg156,2002)[J]. Journal of Polymer Science Part a-Polymer Chemistry2002,40(5):729-729
    [83] Zdrahala RJ and Zdrahala IJ. Biomedical applications of polyurethanes: A review of pastpromises, present realities, and a vibrant future[J]. Journal of Biomaterials Applications1999,14(1):67-90
    [84] Boissard CIR, Bourban PE, Tami AE, et al. Nanohydroxyapatite/poly(ester urethane)scaffold for bone tissue engineering[J]. Acta Biomaterialia2009,5(9):3316-3327
    [85] Dong Z, Li YandZou Q. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering[J]. AppliedSurface Science2009,255(12):6087-6091
    [86] Wang L. Porous bioactive scaffold of aliphatic polyurethane and hydroxyapatite fortissue regeneration[J]. Biomedical Materials2009,4(2):025003
    [87] Chuang T-W and Masters KS. Regulation of polyurethane hemocompatibility andendothelialization by tethered hyaluronic acid oligosaccharides[J]. Biomaterials2009,30(29):5341-5351
    [88] Chen H, Zhang Y, Li D, et al. Surfaces having dual fibrinolytic and protein resistantproperties by immobilization of lysine on polyurethane through a PEG spacer[J]. Journalof Biomedical Materials Research Part A2009,90A(3):940-946
    [89] Lee PC, Huang LLH, Chen LW, et al. Effect of forms of collagen linked to polyurethaneon endothelial cell growth[J]. Journal of Biomedical Materials Research1996,32(4):645-653
    [90] Sartori S, Rechichi A, Vozzi G, et al. Surface modification of a synthetic polyurethane byplasma glow discharge: Preparation and characterization of bioactive monolayers[J].Reactive and Functional Polymers2008,68(3):809-821
    [91] Hung WC, Shau MD, Kao HC, et al. The synthesis of cationic polyurethanes to study theeffect of amines and structures on their DNA transfection potential[J]. Journal ofControlled Release2009,133(1):68-76
    [92] Werkmeister JA, Adhikari R, White JF, et al. Biodegradable and injectablecure-on-demand polyurethane scaffolds for regeneration of articular cartilage[J]. ActaBiomaterialia2010,6(9):3471-3481
    [93] Grad S, Kupcsik L, Alini M, et al. The use of biodegradable polyurethane scaffolds forcartilage tissue engineering: potential and limitations[J]. Biomaterials2003,24(28):5163-5171
    [94] Buma P, Ramrattan NN, van Tienen TG, et al. Tissue engineering of the meniscus[J].Biomaterials2004,25(9):1523-1532
    [95] Chia S-L, Gorna K, Gogolewski S, et al. Biodegradable elastomeric polyurethanemembranes as chondrocyte carriers for cartilage repair[J]. Tissue Engineering2006,12(7):1945-1953
    [96] Eglin D, Grad S, Gogolewski S,et al. Farsenol-modified biodegradable polyurethanes forcartilage tissue engineering[J]. Journal of Biomedical Materials Research Part A2010,92A(1):393-408
    [97] Lee CR, Grad S, Gorna K, et al. Fibrin-polyurethane composites for articular cartilagetissue engineering: A preliminary analysis[J]. Tissue Engineering2005,11(9-10):1562-1573
    [98] Karbasi S. Evaluation of Hydrostatic Pressure on Metabolism of the ArticularChondrocytes Seeded on Biodegradable Polyurethane as Tissue Engineering Scaffold. In:Kim SISTS, ed. World Congress on Medical Physics and Biomedical Engineering2006,Vol14, Pts1-6;2007:3382-3385.
    [99] Rücker M, Laschke MW, Junker D, et al. Angiogenic and inflammatory response tobiodegradable scaffolds in dorsal skinfold chambers of mice[J]. Biomaterials2006,27(29):5027-5038
    [100] Sung H-J, Meredith C, Johnson C, et al. The effect of scaffold degradation rate onthree-dimensional cell growth and angiogenesis[J]. Biomaterials2004,25(26):5735-5742
    [101] Heijkants RGJC, van Calck RV, van Tienen TG, et al. Polyurethane scaffold formationvia a combination of salt leaching and thermally induced phase separation[J]. Journal ofBiomedical Materials Research Part A2008,87A(4):921-932
    [102]李保强,方征平.组织工程用聚氨酯的研究进展[J].高分子通报2003,(2):1-7
    [103] Zhang JY, Beckman EJ, Piesco NP, etal. A new peptide-based urethane polymer:synthesis, biodegradation, and potential to support cell growth in vitro[J]. Biomaterials2000,21(12):1247-1258
    [104] Capper R, Guo L, Pearson JP, et al. Effect of nitric oxide donation on mucin productionin vitro[J]. Clinical Otolaryngology2003,28(1):51-54
    [105] Jamal SA, Cummings SR, et al. Isosorbide mononitrate increases bone formation anddecreases bone resorption in postmenopausal women: A randomized trial[J]. Journal ofBone and Mineral Research2004,19(9):1512-1517
    [106] Agrawal CM PJ, Lin ST, editors. Synthetic bioresorbable polymers for implants[J].2000,(9):39–57
    [107]胡剑青,涂伟萍,瞿金清,等.聚酯型水性聚氨酯合成工艺[J].华南理工大学学报(自然科学版)2002,30(4):73-76
    [108]山西省化工研究所编.聚氨酯弹性体[M].北京:化学工业出版社,1985
    [109]韩健,叶霖,张爱英,等.聚(ε-己内酯)/赖氨酸二异氰酸酯基可降解聚氨酯的合成与表征及其电纺丝研究[J].生物医学工程杂志2010,27(6):1274-1279
    [110] Wilhelm C and Gardette JL. Infrared analysis of the photochemical behaviour ofsegmented polyurethanes.1.Aliphatic poly(ester-urethane)[J]. Polymer1997,38(16):4019-4031
    [111]刘清泉,潘春跃,黄拥理.亲水涂层表面结晶度的测定及其对亲水性的影响[J].中南工业大学学报2002,33(5):484-487
    [112]於秋霞,梁国正,杜宗刚,等.聚ε-己内酯的合成、性能及应用进展[J].高分子材料科学与工程2004,20(5):5
    [113] Edwin J. P. Jansen JP, Marion J. J., et al. PEOT/PBT based scaffolds with lowmechanical properties improve cartilage repair tissue formation in osteochondraldefects[J]. Journal of Biomedical Materials Research Part A2008,(89A):444–452
    [114] Grad S, Zhou L, Gogolewski S, et al. Chondrocytes seeded onto poly (L/DL-lactide)80%/20%porous scaffolds: A biochemical evaluation[J]. Journal of BiomedicalMaterials Research Part A2003,66A(3):571-579
    [115] Liu W and Cao Y. Application of scaffold materials in tissue reconstruction inimmunocompetent mammals: Our experience and future requirements[J]. Biomaterials2007,28(34):5078-5086
    [116] Williams SK, Carter T, Park PK, et al. Formation of a multilayer cellular lining on apolyurethane vascular graft following endothelial cell sodding[J]. Journal of BiomedicalMaterials Research1992,26(1):103-117
    [117] Ciardelli G, Rechichi A, Sartori S, et al. Bioactive polyurethanes in clinicalapplications[J]. Polymers for Advanced Technologies2006,17(9-10):786-789
    [118] Hess F, Jerusalem R, Reijnders O, et al. Seeding of enzymatically derived andsubcultivated canine endothelial cells on fibrous polyurethane vascular prostheses[J].Biomaterials1992,13(10):657-663
    [119] Xu F, Nacker JC, Crone WC, et al. The haemocompatibility of polyurethane-hyaluronicacid copolymers[J]. Biomaterials2008,29(2):150-160
    [120] Zheng L, Fan HS, Sun J, et al. Chondrogenic differentiation of mesenchymal stem cellsinduced by collagen-based hydrogel: An in vivo study[J]. Journal of BiomedicalMaterials Research Part A2010,93A(2):783-792
    [121] Shirley Ayad RB-H, Martin Humphries, Karl Kadler, et al. The ExtracellularMatrix-Facts Book[M].1998(San Diego:Academic Press):300
    [122] Nishimoto S, Takagi M, Wakitani S, et al. Effect of chondroitin sulfate and hyaluronicacid on gene expression in a three-dimensional culture of chondrocytes[J]. Journal ofBioscience and Bioengineering2005,100(1):123-126
    [123] Hwang NS, Varghese S, Lee HJ, et al. Response of zonal chondrocytes to extracellularmatrix-hydrogels[J]. FEBS Letters2007,581(22):4172-4178
    [124] Varghese S, Hwang NS, Canver AC, et al. Chondroitin sulfate based niches forchondrogenic differentiation of mesenchymal stem cells[J]. Matrix Biology2008,27(1):12-21
    [125] Gong Y, Zhu Y, Liu Y, et al. Layer-by-layer assembly of chondroitin sulfate andcollagen on aminolyzed pOly(L-lactic acid) porous scaffolds to enhance theirchondrogenesis[J]. Acta Biomaterialia2007,3(5):677-685
    [126]徐新宇.胶原的提取、改性、交联及其应用[J].透析与人工器官2004,15(4):38-45
    [127] Huang X-J, Yu A-G, Jiang J, et al. Surface modification of nanofibrouspoly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipaseimmobilization[J]. Journal of Molecular Catalysis B: Enzymatic2009,57(1-4):250-256
    [128]龚逸鸿.博士学位论文[J].浙江大学2006
    [129] Liu L, Guo S, Chang J, et al. Surface modification of polycaprolactone membrane vialayer-by-layer deposition for promoting blood compatibility[J]. Journal of BiomedicalMaterials Research Part B-Applied Biomaterials2008,87B(1):244-250
    [130] Ma L, Gao C, Mao Z, et al. Collagen/chitosan porous scaffolds with improvedbiostability for skin tissue engineering[J]. Biomaterials2003,24(26):4833-4841
    [131] Rodahl M, Hook F, Krozer A, et al. Quartz crystal microbalance setup for frequencyand Q-factor measurements in gaseous and liquid environments[J]. Review of ScientificInstruments1995,66(7)
    [132] Iruthayaraj J, Olanya G and Claesson PM. Viscoelastic properties of adsorbedbottle-brush polymer layers studied by quartz crystal microbalance-Dissipationmeasurements[J]. Journal of Physical Chemistry C2008,112(38):15028-15036
    [133] Saltzman WM. Weaving cartilage at zero g: the reality of tissue engineering in space[J].Proceedings of the National Academy of Sciences of the United States of America1997,94(25):13380-13382
    [134]胡江,陶祖莱.组织工程研究进展[J].生物医学工程学杂志2000,17(01):75-79
    [135] Gorna K and Gogolewski S. Biodegradable porous polyurethane scaffolds for tissuerepair and regeneration[J]. Journal of Biomedical Materials Research Part A2006,79A(1):128-138
    [136] Lee JB, Lee SH, Yu SM, et al. PLGA scaffold incorporated with hydroxyapatite forcartilage regeneration[J]. Surface and Coatings Technology2008,202(22-23):5757-5761
    [137] Witte van de P, Dijkstra PJ, Berg van den JWA, et al. Phase separation processes inpolymer solutions in relation to membrane formation[J]. Journal of Membrane Science1996,117(1-2):1-31
    [138]金艳.肝素/硫酸类肝素与蛋白质的相互作用[J].食品与药品2005,7(8A):23-25
    [139]林佳声.BMP/bFGF对关节软骨损伤修复的作用[J].中国伤残医学2009,17(2):13-15
    [140] A.J. Kuijpers PBVW, M.J.A. van Luyn,et al. In vivo and in vitro release of lysozymefrom cross-linked gelatin hydrogels: a model system for the delivery of antibacterialproteins from prosthetic heart valves[J]. Journal of Controlled Release2000(67):323-336
    [141] Hu Z, Liu Y, Yuan W, et al. Effect of bases with different solubility on the releasebehavior of risperidone loaded PLGA microspheres[J]. Colloids and Surfaces B:Biointerfaces2011,86(1):206-211
    [142] Choi YS, Hong SR, Lee YM, et al. Studies on gelatin-containing artificial skin: II.Preparation and characterization of cross-linked gelatin-hyaluronate sponge[J]. Journalof Biomedical Materials Research1999,48(5):631-639
    [143]段维勋.博士学位论文[D].第四军医大学2005
    [144] Zheng W. Effects of the process parameters on the initial burst release ofpoly(lactide-co-glycolide) microspheres containing bovine serum albumin by thedouble-emulsion solvent evaporation/extraction method[J]. Journal of Applied PolymerScience2010,115(5)
    [145] Yoshimura H, Muneta T, Nimura A, et al. Comparison of rat mesenchymal stem cellsderived from bone marrow, synovium, periosteum, adipose tissue, and muscle[J]. Celland Tissue Research2007,327(3):449-462
    [146] Jun Q, Anmin C, Hongbo Y, et al. Proliferation and Chondrogenic Differentiation ofCd105-positive Enriched rat Synovium-derived Mesenchymal stem Cells inThree-dimensional Porous Scaffolds[J]. Biomedical Materials2011,6(1)
    [147] Li Q TJ, Wang R, et al. Comparing the chondrogenic potential in vivo of autogeneicmesenchymal stem cells derived from different tissues.[J]. Artif Cells Blood SubstitImmobil Biotechnol,2011,39(1):31-38
    [148] Fan JB RL, Liang RS, et al. Chondrogenesis of synovium-derived mesenchymal stemcells in photopolymerizing hydrogel scaffolds[J]. J Biomater Sci2010,21(12):1653-1667
    [149] Varshney RV ZR, Hao JH, et al. Chondrogenesis of synoviumderived mesenchymalstem cells in gene-transferred co-culture system[J]. Biomaterials2010,31(26):6876-6891
    [150] Fan J, Gong Y, Ren L, et al. In vitro engineered cartilage using synovium-derivedmesenchymal stem cells with injectable gellan hydrogels[J]. Acta Biomaterialia2010,6(3):1178-1185
    [151] Sakao K TK, Arai Y, et al. Induction of chondrogenic phenotype in synovium-derivedprogenitor cells by intermittent hydrostaticpressure[J]. Osteoarthritis Cartil2008,16(7):805-814
    [152] Koga H MT, Ju YJ, et al.. Synovial stem cells are regionally specified according tolocal microenvironments after implantation for cartilage regeneration[J]. Stem Cells andDevelopment2007,25(3):689-696
    [153] Pei M HF, Vunjak-Novakovic G, et al.. Synovium-derived stem cellbasedchondrogenesis[J]. Differentiation2008(76):10
    [154] Ju YJ MT, Yoshimura H, et al. Synovial mesenchymal stem cells accelerate earlyremodel ing of tendon-bone healing.[J]. Cell Tissue Res2008,332(3):469-478
    [155] Shi XT, WY, Varshney RR, et al. In-vitro osteogenesis of synovium stem cells inducedby controlled release of bisphosphate additives from microspherical mesoporous sil icacomposite[J]. Biomaterials2009,30(23-24):3996-4005
    [156] Pike CJ, Overman MJ and Cotman CW. Amino-terminal deletions enhance aggregationof beta-amyloid peptides in vitro[J]. The Journal of biological chemistry1995,270(41):23895-8
    [157] Kirshenbaum LA and Schneider MD. Adenovirus E1A represses cardiac genetranscription and reactivates DNA synthesis in ventricular myocytes, via alternativepocket protein-and p300-binding domains[J]. The Journal of biological chemistry1995,270(14):7791-4
    [158] Sontheimer H, Fernandez-Marques E, Ullrich N, et al. Astrocyte Na+channels arerequired for maintenance of Na+/K(+)-ATPase activity[J]. The Journal of neuroscience:the official journal of the Society for Neuroscience1994,14(5Pt1):2464-75
    [159] Cubells JF, Rayport S, Rajendran G, et al. Methamphetamine neurotoxicity involvesvacuolation of endocytic organelles and dopamine-dependent intracellular oxidativestress[J]. The Journal of neuroscience: the official journal of the Society forNeuroscience1994,14(4):2260-71
    [160] Hauser JM, Buehrer BM and Bell RM. Role of ceramide in mitogenesis induced byexogenous sphingoid bases[J]. The Journal of biological chemistry1994,269(9):6803-9
    [161] Jacobsen MD, Weil M and Raff MC. Role of Ced-3/ICE-family proteases instaurosporine-induced programmed cell death[J]. The Journal of cell biology1996,133(5):1041-51
    [162] Weil M, Jacobson MD, Coles HS, et al. Constitutive expression of the machinery forprogrammed cell death[J]. The Journal of cell biology1996,133(5):1053-9
    [163] Wang XM, Terasaki PI, Rankin GW, et al. A new microcellular cytotoxicity test basedon calcein AM release[J]. Human immunology1993,37(4):264-70
    [164] Tominaga H, Ishiyama M, Ohseto F, et al. A water-soluble tetrazolium salt useful forcolorimetric cell viability assay[J]. Analytical Communications1999,36(2):47-50
    [165]侯春梅,叶伟亮,曹曦元,等. MTT法和CCK28法检测悬浮细胞增殖的比较[J].军事医学科学院院刊2009,33(4):400-401
    [166]熊建文,张镇西. MTT法和CCK28法检测细胞活性之测试条件比较[J].激光生物学报2007,16(5):559-562

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700