电液式振动台计算机控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电液式振动台以其优良的性价比在工业中获得了广泛的应用,一直是研究领域关注的一个重点,伺服控制器作为其控制核心尤显重要。大多电液式振动台的控制操作是仪表式的,在系统维护、扩展和升级等方面受到极大地限制。论文采用计算机控制系统对振动台进行控制操作,满足了当今数字化的需求。
     论文以现有的电液式振动台液压传动系统为基础,搭建控制系统并对其进行研究。首先,建立电液式振动台的线性化数学模型,对电液伺服控制系统的动态特性进行分析,得出其非线性本质的特点;其次,结合现有的电液式振动台研究对象,提出其控制系统的设计要点和伺服控制器的设计指标,对控制器的控制策略进行具体研究,设计出两类控制器,即基于Ziegler-Nichols参数整定经验公式的PID控制器和模糊控制器;对控制系统的动态响应特性及跟踪能力进行MATLAB数字仿真,对PID控制器和模糊控制器的控制行为分别做仿真实验并进行比较;最后,采用计算机结合数据采集卡、伺服放大器等组成伺服控制器的硬件系统,使用Visual C++6.0作为开发工具编写控制软件,对电液伺服控制系统进行联机调试,对系统进行测试实验,得到伺服控制系统的动态特性等参数并对实验结果进行分析。
Electro-hydraulic vibration platform has a wide range of applications in the actual industrial applications for its excellent cost-effective, which has always been a focus of attention in application fields. And Servo controller is particularly significant as its control center. Most of electro-hydraulic vibration table is basically the instrument control operations style, which is greatly restricted in system maintenance, expansion and upgrade, etc. The computer control system used in this paper meets the development trend of control operation.
     In this paper, we build electro-hydraulic vibration’s control system and study it based on its existing hydraulic drive system. Firstly, establishing the linear mathematical model of electro-hydraulic vibration table, analysing electro-hydraulic servo control system’s dynamic characteristics, and then obtain the characteristics of its nonlinear nature. Secondly, proposing the design features of its control system and the design specifications of servo controller, combined with the existing electro-hydraulic vibration table. Then study the control strategy of the servo controller, we design two controllers, which is fuzzy controller and PID controller based on Ziegler-Nichols parameters-adjust empiric formula.Thirdly, we simulate the adjust stability of the controlling system and its tracking performance by MATLAB, which compares the simulation results of the behavior of PID controller and fuzzy controller. Finally, we establish the hardware of servo controller, combined with computer, data acquisition card, servo amplifier and so on; and development the control software by Visual C++6.0, then debug the electro-hydraulic servo control system online; at last we do some experiment to test the system and get the dynamic characteristics parameters of the servo control system and analysis the experimental results.
引文
[1]王占林.液压伺服系统的近期研究发展动向.流体控制工程[M],1994, (1): 3-11.
    [2]骆涵秀.电液振动台的发展趋势[J].试验机与材料实验,1995, (6): 1-6.
    [3] Y.B.He,H.Zhao, Y.Zhu&W.Sheng. Neural Network Self-learning Variable-Robustness Adaptive Tracking Control for Electro-hydraulic Servo System.3rd InternationalSymposium on Test and Measurement[J]. Xian, 1999.
    [4] Schneider, Martin.Nonlinear Motion Control of hydraulically Driven Large Redundant Manipulators[J].IFAC Proc. on Motion Control,1995,269-278.
    [5] P.M.FitzSimons,J.J.Palazzolo. 1995 Part 2: modeling of A One-Degree-of-Freedom Active Hydraulic Mount[J],ASME Journal of Dynamic Systems,Measurement,and Control,1996, 118(3):439-442.
    [6]刘燕秋.参数自校正Fuzzy-PI控制器及其在电液伺服结构实验系统中的应用[D],硕士学位论文.西安交通大学,1997, 49-57.
    [7]周其节,徐建闽.神经网络控制系统的研究与展望[J].控制理论与应用,1992, (6):569-577.
    [8]何玉彬,李新忠.神经网络控制技术及其应用[M].科学出版社,2000: 176-199.
    [9] A.R.Plummer,N.D.Vaughan Robust.Adaptive Control for Hydraulic Servosystems[J]. ASME Journal of Dynamic Systems,Measurement, and Control,1996,118(2):237-244.
    [10] J.E.bobrow,K.lum. Adaptive High Bandwidth Control of Hydraulic Actuator[J]. ASME Journal of Dynamic Systems, Measurement, and Control,1996, 118(4):714-720.
    [11] H.Zhang , P.N.Nikiforuk&P.R.Ukrainetz.A Neural Network Approach for MIMO Electro-hydraulic Servo system Control[J].Proceedings of the 3rd International Conference on Fluid Power Transmission and Control,Shanghai,China, 1995.
    [12] A.Luo, H.Hun.Intelligent Control for Electro-hydraulic Proportional Position[J]. Servo system.Proceedings of the 4th International Conference on Fluid Power Transmission and Control,Hangzhou, China 1997,24-250.
    [13]骆涵秀.试验机的电液伺服系统[M].机械工业出版社,1991 :261-274.
    [14]何晓佳.电液伺服板簧试验机控制策略的研究[D],硕士学位论文.西安交通大学,1992, 25-37.
    [15]丁崇生,何晓佳,王大庆等.高精度高响应电液伺服系统自适应控制的工程实现[J].机床与液压,1995, (2): 72-77.
    [16]汤志勇.神经网络变结构控制及其在电液伺服结构实验系统中的应用[D],博士学位论文.西安交通大学,1997: 17-22.
    [17]王孙安,林廷沂,史维祥.液压伺服控制的新发展[J].机床与液压,1991, (1): 8-14.
    [18]何玉彬,刘燕秋,徐立勤等.电液伺服系统的神经网络在线自学习自适应控制[J].中国电机工程学报,1998, 18 (6): 434-437.
    [19]尚增温,孙虹.高频电液伺服系统的发展趋势与新的应用领域[J].液压与气动,2001,(6):4-5.
    [20]王钰.电液伺服系统的智能控制[D].硕士学位论文.重庆大学,1985,34-39.
    [21]李兵.高响应电液伺服系统动态特性的研究与控制分析[D].硕士论文.西安交通大学.1991:29-32.
    [22] W.X.Shi, How to solve the uncertainty problems in hydraulic servo system,Proceedings of 95 ICFP[J], Shanghai,China,l-6,1995.
    [23]邹家祥,徐乐江.冷连轧机系统振动控制[M].北京-冶金工业出版社.1998:89-196.
    [24]金钰,胡佑德,李向春.伺服系统设计指导[M].北京-北京理工大学出版社.2000,146-190.
    [25]王正良.微机电液控制技术[M].大连理工大学出版社,1993:205-214.
    [26]季建华,都志杰,吴勤勤.智能仪表原理、设计与调试[M].上海-华东理工大学出版社.1994:51-84.
    [27]陈明,摩托车道路模拟试验装置的设计理论及研制,硕士论文.重庆大学,1988,90-93.
    [28]薛定宇.反馈控制系统设计与分析[M].北京-清华大学出版社.2000:250-260.
    [29]吴振顺.液压系统仿真与CAD[M].哈尔滨-哈尔滨工业大学出版社.2000:150-180.
    [30]重庆大学自动化系智能控制研究室[D].仿人智能控制理论研究论文集.重庆人学,1992, 28-38.
    [31]曾光奇.模糊控制理论与工程应用[M].武汉-华中科技大学出版社,2006:56—85.
    [32]吴振顺.液压控制系统[M].北京-高等教育出版社,2008:129-147.
    [33]龚尚福.微机原理与接口技术[M].西安-西安电子科技大学出版社,2003:128-175.
    [34]北京中泰研创科技有限公司[M].PCI-8333用户手册.
    [35]北京机床所精密机电有限公司[M].SVA-II伺服放大器说明书.
    [36]候俊杰.深入浅出MFC[M].武汉-华中科技大学出版社,2001(2):13-45.
    [37]张立科. Visual C++ 6.0 MFC类库参考手册[M].北京-人民邮电出版社,2005 (3).
    [38]梁晓峰,刘乔,吴新跃,孙义. PCI27484数据采集卡在某伺服阀试验台中的应用[J].机床与液压,2009,37(2):94-95.
    [39]雷天觉.液压工程手册[M].北京-机械工业出版社,1989:160-166.
    [40]陈静.地震模拟振动台的模糊控制研究.硕士论文.武汉理工大学,2004:46-47.
    [41]张亮.基于双缓冲技术的VC++图形刷新技术的原理和实现[J].福建电脑,2010:110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700