基于滑模变结构控制的电液伺服系统及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对电液伺服系统的控制特点和性能要求,将滑模变结构控制策略应用到典型电液伺服控制系统中,进行了详细的理论分析和实验研究。
     实际电液伺服系统存在诸多非线性影响因素,并且存在着比较大的不确定性,此外还不可避免地存在外部负载干扰。而实际系统要求稳态误差小、快速性好、鲁棒性强,这就给控制系统的设计带来了很大的困难。为了克服这些不利因素,满足系统要求,本文将滑模变结构控制策略应用于电液伺服控制系统中。滑模变结构控制的主要特点是:当系统状态穿越状态空间的不同区域时,反馈控制器的结构按照一定的规律发生变化,使得控制器对伺服系统的内在参数变化和外在负载扰动等因素具有较强鲁棒性,从而保证系统能够达到期望的性能指标要求。
     本文首先对典型电液伺服控制系统进行了理论分析,建立了数学模型,计算出了系统的有关参数,并通过仿真验证了滑模变结构控制算法的合理性和有效性。其次,进行了实验研究,采用LabVIEW软件编制出实时控制程序,以材料试验机为被控对象进行实时控制,取得了良好的控制效果;结果表明:与PID控制相比,滑模变结构控制具有更好的动态特性。实验还分析了供油压力对动态响应特性的影响,以及控制器参数变化对系统性能的影响。从而在理论分析以及实验中均证明了应用滑模变结构控制策略时,系统具有快速性好,控制平滑,易于微机实现,动态特性良好,鲁棒性强等优点,为工程应用奠定了基础。
In accordance with control characteristics and performance demand of the electro-hydraulic servo system, a new control strategy of sliding mode variable structure control is applied in the general electro-hydraulic servo system, then a lot of simulation and experiment is done.
     There are some nonlinear factors, great indeterminacy and load disturbance in the real electro-hydraulic servo system inevitably. At the same time, we expect the steady-state error of the system is small, and the adjusting time is short. Therefore, it is very difficult for the designer to design the system. To overcome these disadvantages, and meet the demand of the system, the variable structure control with sliding mode approach is presented in this paper. The main characteristic of the sliding mode variable structure control is that: when the state of the system goes through the different areas of the state space, the structure of the feedback controller changes as some law. Thus, the system is robust to the inner parameter variation and outer environment interference and the system has better dynamic performance
     In the paper, having analyzed and studied the electro-hydraulic servo system in theory, its mathematical model is set up, and the involved parameters are calculated and determined. Further, a great number of simulation experiments verified the algorithm is effective. At last, by means of experiments, a real-time control program by LabVIEW is realized to control material testing machine. The results are proved to be satisfactory. And the influence of the supplying pressure and the control parameters with the system’s dynamic characteristics is studied. Therefore, not only on the theory and simulation but also in the real system experiments, by using the sliding mode control, the system have the characteristics such as the fast speed quality, smooth control, better dynamic performance following with that being carried out easily for microcomputer; which lay a foundation to apply them in practices and production.
引文
1 周 瑞 祥 , 蔡 军 . 液 压 舵 机 传 动 装 置 系 统 模 型 分 析 . 机 床 与 液 压 , 2007, 35(1):213-214
    2 王春行. 液压控制系统. 北京:机械工业出版社, 1998:112-113 40-47
    3 王占林. 近代电气液压伺服控制. 北京:北京航空航天大学出版社, 2005:1-3 5-10
    4 I. D. 朗道. 自适应控制-模型参考方法. 吴百凡译. 北京:国防工业出版社, 1985:58-60
    5 C. J. 哈里斯. 自校正和自适应控制-理论与应用. 李清泉译. 北京:科学出版社, 1986:24-26
    6 刘白雁. 模型跟随自适应控制理论的研究及其应用. [西安交通大学博士学位论文].1990:22-34
    7 丁崇生, 刘白雁, 史维祥. 模型跟随自适应控制新方法的理论研究及工程应用. 西安交通大学学报, 1990, (4):79-85
    8 丁崇生, 何晓佳, 王大庆, 等. 高精度高响应电液伺服系统自适应控制的工程实现. 机床与液压, 1999, (2):72-77
    9 Y. F. Xiong, S. LeQuoc and R. M. H. Cheng. Adaptive Control of A Synchronizing Servo System. Proceedings of International Off-Highway and Powerplant Congress and Exposition, Wilwaukee, WI, USA, 1992
    10 M. C. Shih , Y. R. Sheu. Adaptive Position Control of An Electro-hydraulic Servo Cylinder. Vibration, Control Engineering, Engineering for Industry, 1992, 34(3):370-376
    11 P. M. FitzSimons, J. J. Palazzolo. Part 1:Modeling of A One-Degree-of-Freedom Active Hydraulic Mount. ASME Journal of Dynamic Systems, Measurement, and Control, 2000, 118(3):439-442
    12 P. M. FitzSimons, J. J. Palazzolo. Part 2:Control of A One-Degree-of-Freedom Active Hydraulic Mount. ASME Journal of Dynamic Systems, Measurement, and Control, 1996, 118(3):443-448
    13 D. H. Sha, H. Y. Yang, J. M. Zhang. Research on Discrete Robust Variable Structure Control of Hydraulic Elevator Velocity System. Proceedings of The 4th International Conference on Fluid Power Transmission and Control. Hangzhou, China, 1998:275-278
    14 T. L. Chern, Y. C. Wu. Design of Integral Variable Structure Controller and Application to Electro-hydraulic Velocity Servo-system. IEE Proceedings-D, 1991, 138(5):439-444
    15 W. M. Huang, Y. Yang and G. F. Xiong. Adaptive Fuzzy Neural Network Control in Hydraulic Servo System. Proceedings of The 4th International Conference on Fluid Power Transmission and Control, Hangzhou, China, 1997:189-193
    16 W. X. Sheng, R. W. Dai, S. A. Wang. Electro-hydraulic Servo Control Based on Neuro-Fuzzy Technique. Proceedings of The 4th International Conference on Fluid Power Transmission and Control, Hangzhou, China, 1998:232-236
    17 王孙安. 大功率液压马达速度伺服系统的控制方法研究. [西安交通大学博士学位论文]. 1989:56-77
    18 胡佑德, 马东升, 张莉松. 伺服系统原理与设计. 北京:北京理工大学出版社, 1999:107-116
    19 李浩. 电液位置伺服系统的自适应滑模控制. [上海交通大学硕士学位论文]. 2000:3-4
    20 王占林. 近代液压控制. 北京:机械工业出版社, 1997:3-8
    21 李志刚. 电液伺服系统的分数阶 PID 控制研究. 机床与液压, 2007, 35(1):168-169
    22 吴镇顺, 王贤成, 姚建均. 电液伺服系统模型的参考自适应控制研究. 机床与液压, 2005, (10):113-11
    23 龚赤兵, 吴海峰, 曾良才. 电液位置伺服系统神经 PID 控制及仿真研究. 机床与液压, 2005, (10):146-148
    24 徐兆红, 迟疑林, 刘道玉. 三维模糊控制在电液位置伺服系统中的应用.液压与气压, 2005, (1):45-47
    25 褚键. 过程控制是艺术还是工程应用. 化工自动化及仪表, 1991,23:3-12
    26 汤青波, 张国新, 梁建伟. 液压位置伺服系统的模糊滑模控制器设计. 机床与液压,2006,(5):29-31
    27 刘金琨. 滑模变结构控制 MATLAB 仿真. 北京:清华大学出版社, 2005:1-3
    28 Utkin V I. Variable structure system with sliding modes. IEEE Transactions Automatic Control, 1997, 22(2):212-222
    29 Young K D, Utkin V I, Ozguner U. A Control Engineer’s Guide to Sliding Mode Control. IEEE Transactions on Control Systems Technology, 1997, 7(3):328-342
    30 高为炳. 变结构控制的理论及设计方法. 北京:科学出版社, 1996:34-36
    31 张小宇, 苏宏业. 滑模变结构控制理论进展综述. 化工自动化及仪表, 2006, 33(2):1-2
    32 李辉. 滑模变结构控制理论与应用研究. [上海交通大学博士学位论文].1999:7-8
    33 王丰尧. 滑模变结构控制. 北京:机械工业出版社, 1998:29-52
    34 邹伟全, 姚锡凡. 滑模变结构控制的抖振问题研究. 控制与检测, 2006, (1):53-55
    35 李忠娟, 张新政. 变结构控制理论中抖振问题的研究. 五邑大学学报(自然科学版), 2003, 17(3):66-69
    36 Slotine J J,Sastry S S. Tracking control of nonlinear system using sliding surface with application to robot manipulator. International Journal of Control, 1983, 38(2):465-492
    37 翟长连, 吴智铭. 一种离散时间系统的变结构控制方法. 上海交通大学学报, 2000, 34(5):719-722
    38 Su W C, Drakunov S V, Ozguner U, Young K D. Sliding mode with chattering reduction in sampled data system. Proceding of the 32nd IEEE Conference on Decision and Control, 1993, 2452-2457
    39 Kachroo P, Tomizuka M. Chatter reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Transactions on Automatic Control, 1996, 41(7):1063-1068
    40 Kang B P, Ju J L. Sliding mode controller with filter signal for robot manipulators using virtual plant/controller. Mechatronics, 1997, 7(3):277-286
    41 Chun-Fei Hsu, Tsu-Tian Lee, Chin-Min Lin. Robust Adaptive Fuzzy Sliding-mode Control with H ∞ Tracking Perfoumance for a Class of Nonlinear Systems.Proceedings of the 2004 International Conference on Control Applications, Taipei, Taiwan, September 2-4, 2004
    42 Wei-Der Chang, Rey-Chue Hwang, Jer-Guang Heieh. Application of Auto-Tuning Neuron to Sliding Mode Contol, IEEE Transactions On Systems, Man, And Cybernetics-Part C: Applications And Reviews, Vol.32, NO.4, November 2002,517-522
    43 Sarpturk S Z, Istefanopulos Y, Kaynak O. On the stability of discrete-time sliding mode control system. IEEE Transaction on Automatic Control, 1987, 32(10):930-932
    44 Furuta. sliding mode control of a discrete system. System & Control Letters, 1990, 14(2):145-152
    45 Gao W B, Wang Y F, Homaifa A. Discrete-time variable structure control systems. IEEE Transactions on Industrial Electronics, 1995, 42(2):117-122
    46 Sira R H, Llanes S O. Adaptive dynamic sliding mode control via backstepping. Proceding of the 32nd IEEE Conference on Decision and Control, 1993, 2:1422-1427
    47 Bolivar M R, Zinober A S I, Sira-Ramirez H. Dynamic Adaptive dynamic sliding mode output tracking control of a class of nonlinear systems. International Journal of Robust and Nonlinear Control, 1997, 7(4):387-405
    48 Chern T L, Wu Y C. Design of integral variable structure controller and application to electro-hydraulic velocity servosystem. IEE Proceedings-D, 1991, 138(5):439-444
    49 Chern T L, Wu Y C. Integral variable structure control approach for robot manipulators. IEE Proceedings-D, 1992, 139(2):161-166
    50 Wang J D, Lee T L, Juang Y T. New methods to design an integral variable structure controller. IEEE Trans, on Automatic Control, 1996, 41(1):140-143
    51 Perruquetti W, Barbot J P. Sliding mode control in engineering. Marcel Dekker Inc.,New York, 2002
    52 Utkin A, Guldner J, Shi J X. Sliding Mode Control in Electromechanical System. Taylor & Franics, 1999
    53 Yu X H, Xu J X. Advance in Variable Structure Systems. World Scientific Publishing, Singapore, 2000
    54 Edward C, Spurgeon S K. Sliding Mode Control, Theory and Applications. Taylor & Francis, 1998
    55 Zhou D, Mu C D, Xu W L. Adaptive sliding mode guidance of a homing missile. Journal of guidance, control and dynamics, 1999, 22(4):589-592
    56 Grossimon P G, Baribieri E, Drakunov S. Sliding mode control of an inverted pendulum. Proceedings of the Twenty-Eighth Southeastern Symposium on System theory, 1996, 248-252
    57 Chen Y P, Chang J L, Chu S R. PC-based sliding-mode control applied to parallel-type double inverted pendulum system, Mechatronics, 1999, 9:553-564
    58 张克勤, 苏宏业, 庄开宇, 等. 三级倒立摆系统基于滑模的鲁棒控制. 浙江大学学报, 2002, 36(4):404-409
    59 苏晓生. MATLAB 5.3 实例教程. 北京:国防工业出版社, 2000:15-27
    60 卜匀. 大型轧机液压 AGC 伺服缸试验台加载控制系统仿真. 机床与液压, 2007, 35(1):153-154
    61 张金才. 电液位置控制系统中液固耦合分析以及其稳定性鲁棒性的实验研究. [燕山大学工学硕士学位论文].1990:28-33
    62 刘劲军. 利用管道特性改善电液控制系统响应能力的研究. [燕山大学工学硕士学位论文].1995:27-30
    63 曹静. 基于神经网络控制的电液速度伺服系统的研究. [燕山大学工学硕士学位论文].1997:42-46
    64 冯三军. 应用管道特性改善电液速度控制系统性能的研究. [燕山大学工学硕士学位论文].1994:22-26
    65 杨铁林. 恒应变速率压缩试验机液压控制系统的实验研究. [燕山大学工学硕士学位论文].1989:32-39
    66 闻新, 周露, 李翔, 张宝伟, 等. MATLAB 神经网络仿真与应用. 北京:科学出版社, 2003:22-23
    67 冯志君. 电液伺服系统容错控制研究. [兰州理工大学硕士学位论文]. 2005:28-29
    68 陶永华. 新型 PID 控制及其应用. 北京:机械工业出版社, 2003:2-4
    69 张凯, 周陬, 郭栋. LabVIEW 虚拟仪器工程设计与开发. 北京:国防工业出版社,2004:6-7
    70 杨乐平, 李海涛, 杨磊. LabVIEW 程序设计与应用. 北京:电子工业出版社, 2005:1-2
    71 Robert H. Bishop. LabVIEW7 实用教程 乔瑞萍, 林欣等译. 北京:电子工业出版社, 2005:28-29
    72 刘君华. 基于 LabVIEW 的虚拟仪器设计. 北京: 电子工业大学出版社, 2003:9-10
    73 李春玲. 电液控制系统在线辨识的研究与实践. [燕山大学工学硕士学位论文].1998:46-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700