有机小分子太阳能电池的效率优化及衰减性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了有机小分子太阳能电池的器件结构对电池的光电响应特性及衰减曲线的影响。通过合理设计器件结构或控制薄膜生长方式,可以制备出具有更高光电转换效率或具有更高稳定性的有机小分子太阳能电池。具体研究内容包括:
     1、研究了光激活层中体异质结的厚度、体异质结结构的共掺浓度梯度变化以及基片加热技术对基于AlPcCl/C60异质结的有机小分子太阳能电池的光电响应特性的影响。研究发现:①合理控制体异质结的厚度能够优化电池的转换效率。保持光激活层的总厚度不变,当体异质结超过一定厚度的时候,虽然电池对外输出的短路电流能够继续提高,但由于器件内部的串联电阻持续增加,使得电池的填充因子不断减小,并导致器件的转换效率下降。②390K基片温度下生长AlPcCl薄膜能够有效提高基于AlPcCl/C60平面异质结结构的电池外量子效率,通过紫外/可见/红外吸收光谱、XRD衍射分析、AFM表面形貌分析等测试分析,我们认为,器件外量子效率的提高主要源自390K基片温度下生长的AlPcCl薄膜发生结晶且AlPcCl分子呈平行于基片的方向平躺排布,有利于提高器件内部的载流子输运效率;390K基片温度下生长的AlPcCl薄膜表面粗糙度增加,有利于提高光生激子的利用和解离效率。③体异质结结构的共掺浓度梯度变化辅以基片加热技术,电池能够获得更高的功率转换效率。一方面,采用体异质结共掺浓度梯度变化,使得体异质结结构器件在原具有的高激子解离效率的基础上,自由载流子复合的几率被抑制,光生载流子传输平衡性被显著提升;另一方面,体异质结结构制备过程中辅以基片加热技术,异质结薄膜发生结晶且AlPcCl分子呈现规则排布,降低了器件内部的串联电阻及提高了电池的载流子输运。
     2、研究了有机小分子太阳能电池的衰减规律。分别研究了采用Mo03阳极缓冲层、采用不同的TCTA给体厚度、以及采用MoO3掺杂α-NPD给体的结构对电池的衰减性能的影响。研究发现:①M003阳极缓冲层的使用,能够极大的抑制持续稳定的光照工作下电池的衰减。紫外/可见/红外吸收光谱、XRD衍射谱、AFM薄膜表面形貌分析等技术表明,M003阳极缓冲层的使用对AlPcCl薄膜的成膜方式及表面形貌没有发生明显的改变,不是导致器件衰减的主要原因;XPS薄膜表面成分分析表明,ITO电极中的氧成分扩散至有机光激活层中,是导致电池衰减的重要原因之一,MoO3阳极缓冲层的使用在一定程度上抑制了ITO电极中的氧向有机层的扩散。热刺激电流分析技术表明,器件内部的载流子聚集也是导致小分子太阳能电池衰减的重要原因之一。②增加TCTA给体的厚度容易降低器件的转换效率,但他同时能提高器件的稳定性。结合前一小节的研究结果,我们推测随着给体厚度的增加,电池的衰减受到抑制的可能原因之一是,ITO中的氧成分向有机光激活层中扩散并对电池产生衰减的作用对于给体/受体接触界面或C60受体内部有重要影响,增加给体的厚度能够降低氧成分向给体/受体接触界面或C60受体内部的扩散速度,从而降低器件的衰减。③在MoO3掺杂α-NPD的结构与受体材料之间再加入一层薄的有机给体层,既能保持器件具有较高的光电转换效率,又能获得更高的器件稳定性。可能的原因之一是MoO3掺杂α-NPD的结构使得薄膜内部产生电荷传输复合物[MoO3-:α-NPD+],有利于提高器件内部的载流子输运效率;同时,M003的应用有效抑制了ITO电极中的氧成分向光激活层中扩散。④此外,我们在试验中还发现,BCP阴极缓冲层的使用会导致器件额外的衰减。
     3、研究了基于AlPcCl/C60异质结的多叠层结构有机小分子太阳能电池。我们设计了合理的子电池于子电池之间的中间连接电极BCP/Ag/MoO3的结构,在五叠层结构的电池中,我们获得了3.50V之高的天路电压和2.49%的转换效率,对应的单异质结结构的电池,开路电压和转换效率分别在0.72-0.80V及1.83-2.17%的范围;在十叠层结构的电池中,我们获得了5.89V之高的天路电压。我们采用文献介绍的方法模拟了多叠层结构电池的内部光电场强度分布,并通过理论计算优化了叠层结构电池的内部结构,例如,在三叠层结构电池中,理论计算优化的结果是,器件仅通过微小的给体和受体厚度的改变,就可提高约37%的电流输出。我们期待制备的高开路电压的多叠层电池能在无面积限制且低功耗的光电子器件中得到直接运用。
     图62幅,表14个,参考文献267篇。
This work focus on the efficiency enhancement and/or initial degradation properties of small-moleculue organic solar cells (OSCs). By optimizing OSCs device structure or control the evaporation condition of organic thin films, we can get higher power conversion efficiency (PCE) and/or higher operational stability of OSCs. Some of the interesting results have been obtained as follows.
     1. The effect of bulk-heterojunction thickness of photoactive layer, grade structure of bulk-heterojunction and substrate heating technology on the photovoltaic properties of small-molecule OSCs based on Aluminum phthalocyanine chloride (AlPcCl) as donor and C6o as acceptor has been systematicly studied. We found that PCE of OSCs can be enhanced by using bulk-heterojunction structure within an optimized thickness. While continuesly enhanced the bulk-heterojunction thickness, the series resistance of OSCs would also increase obviously which lead to a decreased PCE of the OSCs. By heating the substrate to390K during AlPcCl thin film evaporation, the quantum efficiency and PCE of AlPcCl/C6o planar heterojunction can be effectively improved, which is attributed to higher charge carrier transport efficiency inside the OSCs though a face-on molecule orientation of AlPcCl moleculars and a more effective exciton separation efficiency via a rougher surface of390K evaporated AlPcCl films. By heating the substrate to390K during grade structrure of AlPcCl:C60bulk heterojunction evaporation,we obtain significantly enhanced PCE of AlPcCl/C6o heterojunction OSCs, from about-2%to3.1%.
     2. The initial degradation properties of small-molecule OSCs under continue illumination has been investigated systematically. The impact of MoO3hole extraction buffer layer,4,4',4"-tri(N-carbazolyl)triphenylamine (TCTA) donor layer thickness, and MoO3-doped4,4'-bis[N-(1-napthyl)-N-phenyl-amino] biphenyl (a-NPD) on the initial degradation properties of OSCs have been investigated. We found that by using MoO3as a hole extraction buffer layer, the degradation properties of OSCs under continuous illumination can be greatly inhibited. After a systematical ananlisis though UV/vis/NIR absorption, XRD, AFM and HOMO-level measurements, we found that MoO3buffer layer has no impact on film morphology of AlPcCl donor layer which was exluded to be the origin of degradation. We confirm from XPS measurement results that MoO3buffer layer has great effect on inhibiting the oxygen diffusion from ITO to organic active layer, which is suggested to be one of the important mechanisms for the OSCs. degradation. Although increasing TCTA donor layer thickness decreases PCE of OSCs, it can lead to an obviously improved stability of the device. We suppose that the diffused oxygen from ITO anode has great effect on donor/acceptor interface or C60acceptor bulk layer, which lead to the degradation. While increasing the donor layer thickness, the diffuse of oxygen from ITO anode would be partly inhibited inside donor layer. Inserting a thin layer of α-NPD between doped MoO3:α-NPD structure and C60acceptor layer can approach higher device stability without significantly decreasing the PCE of the OSCs based on a-NPD/C6o heterojunction structure. In addition, we found that BCP electron extraction buffer layer would also lead to OSCs degradation.
     3. OSCs based on AlPcCl as donor and C60as acceptor with a multi-tandem structure were fabricated. We demonstrated very high open-circuit voltage (Voc) and enhanced power conversion efficiency (PCE) for the multi-tandem OSCs though the using of effective BCP/Ag/MoO3intermediate connecting electrode layer. By using fivefold structure, we obtained a PCE of2.49%with a high VOC of3.50V, in comparison with PCE of-2%and Voc of0.72-0.81V for the single device. Further, we fabricated a tenfold stacked OSC showing an extremely high VOC of5.89V. The internal optical electrical field distribution inside the multi-tandem OSCs has been simulated. We also optimized the cell performance though a series theoretical calculation. The multi-tandem OSCs with very high Voc are suggested to provide potential application in area-limited low-power electronics.
引文
[1]A.E. Becquerel, Recherches sur les effets de la radiation chimique de la lumiere solaire, au moyen des courants electriques, Compt. Rend. Acad. Sci.,1839,9:145-149.
    [2]A.E. Becquerel, Memoire sur les effets electriques produits sous l'influence des rayons solaires, Compt. Rend. Acad. Sci.,1839,9:561-567.
    [3]A. Einstein, Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt, Ann. Physik,1905,17:132-148.
    [4]A.B. Arons, M. B. Peppard, Einstein's Proposal of the Photon Concept-a Translation of the Anmalen der Physik Paper of 1905, Am. J. Phys.,1965,33:367-374.
    [5]D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p-n junction photoclell for converting solar radiation into electrical power, J. Appl. Phys.,1954,25:676-677.
    [6]http://www.solarccm.com/news/1/solar17.html,2011-4-10.
    [7]林华平,何智兵,吴卫东,许华,张宝玲,宋萍,谌家军,蒋雪茵.太阳能硅薄膜电池的研究进展.材料导报网刊,2008,3:1-4.
    [8]M.A. Green, Photovoltaic principles, Physica E:Low-dimensional Systems and Nanostructures, 2002,14(1-2):11-17.
    [9]M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 39), Prog. Photovolt:Res. Appl.,2012,20:12-20.
    [10]S.K. Deb, Recent developments in high efficiency PV cells, In:Proceedings of the World Renewable Energy Congress Ⅵ, UK,2000. p.2658-2663.
    [11]熊绍珍,朱美芳.太阳能电池基础与应用.北京:科学出版社,2009.
    [12]S. Kurtz, J. Geisz, Multijunction solar cells for conversion of concentrated sunlight to electricity, Optics Express,2010,18:A73-A78.
    [13]R.F. Service, Outlook Brightens for Plastic Solar Cells, Science,2011,332:293.
    [14]M. Gratzel, Perspectives for Dye-sensitized Nanocrystalline Solar Cells, Prog. Photovolt:Res. Appl.,2000,8:171-185.
    [15]K. Tennakone, G.R.R.A. Kumara, A.R Kumarasinghe, K.G.U Wijayantha, P.M. Sirimanne, A dye-sensitized nano-porous solid-state photovoltaic cell, Semicond. Sci. Technol.1995,10(12): 1689-1693.
    [16]U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature (London),1998,395:583-585.
    [17]L.L. Kazmerski, Best Research-cell Efficiencies, National Renewable Energy Laboratory (NREL), Dec.5th,2011. http://en.wikipedia.org/wiki/File:PVeff(rev111205).jpg
    [18]H. Spanggaard, F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Sol. Energy Mater. Sol. Cells,2004,83(2-3):125-146.
    [19]http://en.wikipedia.org/wiki/Solar_spectrum.
    [20]S. Sikorski, T. Piotrowski, Photovoltaicphenomena in inhomogeneous semiconductors, Prog. Quant. Electron.,2003,27(5):295-365.
    [21]P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar Cells, J. Appl. Phys.,2003,93:3693-3723.
    [22]S.M. Sze, Physics of Semiconductor Devices (2nd ed.),Wiley, New York,1981.
    [23]V.D. Mihailetchi, P.W. M. Blom, J.C. Hummelen, M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys.,2003, 94(10):6849-6854.
    [24]B.P. Rand, D.P. Purk, S.R. Forrest, Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells, Phys. Rev. B,2007,75: 115327.
    [25]P. Kumar, S.C. Jain, H. Kumar, S. Chand, V.Kumar, Effect of illumination intensity and temperature on open circuit voltage in organic solar cells, Appl. Phys. Lett.,2009,94:183505.
    [26]F.J. Zhang, F.Y. Sun, Y.Z. Shi, Z.L. Zhuo, L.F. Lu, D.W. Zhao, Z. Xu Y.S. Wang, Effect of an Ultra-thin Molybdenum Trioxide Layer and Illumination Intensity on the Performance of Organic Photovoltaic Devices, Energy & Fuels,2010,24:3739-3742.
    [27]A. Al-Mohamad, Solar cells based on two organic layers, Energy Convers. Manage.2004, 45(17):2661-2665.
    [28]C.W. Tang, Twolayer organic photovoltaic cell, Appl. Phys. Lett.,1986,48:183-185.
    [29]G.A. Chamberlain, Organic solar cells:A review, Solar Cells,1983,8; 47-83.
    [30]P. Peumans, V. Bulovic, S.R. Forrest, Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes, Appl. Phys. Lett.,2000,76: 2650-2652.
    [31]Z.R. Hong, Z.H. Huang, X.T. Zeng, Utilization of copper phthalocyanine and bathocuproine as an electron transport layer in photovoltaic cells with copper phthalocyanine/ buckminsterfullerene heterojunctions:Thickness effects on photovoltaic performances, Thin Solid Films,2007,515(5):3019-3023.
    [32]T.H. Lee, J.C.A. Huang, GL. Pakhomov, T.F. Guo, T.C. Wen, Y.S. Huang, C.C. Tsou, C.T. Chung, YC. Lin, Y.J. Hsu,Organic-Oxide Cathode Buffer Layer in Fabricating High-Performance Polymer Light-Emitting Diodes, Adv. Funct. Mater.,2008,18:3036-3042.
    [33]M. Vogel, S. Doka, Ch. Breyer, M.Ch. Lux-Steiner, K. Fostiropoulos, On the function of a bathocuproine buffer layer in organic photovoltaic cells, Appl. Phys. Lett.,2006,89:163501.
    [34]H. Gommans, B. Verreet, B.P. Rand, R. Muller, J. Poortmans, P. Heremans, J. Genoe, On the role of bathocuproine in organic photovoltaic cells, Adv. Funct. Mater.,2008,18:3686-3691.
    [35]P. Peumans, S.R. Forrest, Very-high-efficiency double-heterostructure copper phthalocyanine/ C60 photovoltaic cells, Appl. Phys. Lett.,2001,79:126-128.
    [36]J. Xue, S. Uchida, B.P. Rand, S.R. Forrest,4.2% efficient organic photovoltaic cells with low series resistances, Appl. Phys. Lett.,2004,84:3013-3015.
    [37]S. Yoo, B. Domercq, B. Kippelen, Efficient thin-film organic solar cells based on pentacene/C60 heterojunctions, Appl. Phys. Lett.,2004,85:5427-5429.
    [38]S. Yoo, W.J. Potscavage, B. Domercq, S.-H. Han, T.-D. Li, S.C. Jones, R. Szoszkiewicz, D. Levi, E. Riedo, S.R. Marder, B. Kippelen, Analysis of improved photovoltaic properties of pentacene/C6o organic solar cells:Effects of exciton blocking layer thickness and thermal annealing, Solid-State Electron.,2007,51:1367-1375.
    [39]J.S. Yu, J. Huang, L. Zhang, Y.D. Jiang, Energy losing rate and open-circuit voltage analysis of organic solar cells based on detailed photocurrent simulation, J. Appl. Phys.,2009,106: 063103.
    [40]C.-W. Chu, Y. Shao, V. Shrotriya, Y. Yang, Efficient photovoltaic energy conversion in tetracene-C60 based heterojunctions, Appl. Phys. Lett.,2005,86:243506.
    [41]K. Schulze, C. Uhrich, R. Schiippel, K. Leo, M. Pfeiffer, E. Brier, E. Reinold, P. Bauerle, Efficient vacuum-deposited organic solar cells based on a new low-bandgap oligothiophene and fullerene C60, Adv. Mater.,2006,18:2872-2875.
    [42]H. Gommans, D. Cheyns, T. Aernouts, C. Girotto, J. Poortmans, P. Heremans, Electro-Optical Study of Subphthalocyanine in a Bilayer Organic Solar Cell, Adv. Funct. Mater.,2007,17: 2653-2658.
    [43]K.L. Mutolo, E.I. Mayo, B.P. Rand, S.R. Forrest, M.E. Thompson, Enhanced Open-Circuit Voltage in Subphthalocyanine/C60 Organic Photovoltaic Cells, J. Am. Chem. Soc.,2006,128: 8108-8109.
    [44]B. Verreet, S. Schols, D. Cheyns, B.P. Rand, H. Gommans, T. Aernouts, P. Heremans, J. Genoe, The characterization of chloroboron (III) subnaphthalocyanine thin films and their application as a donor material for organic solar cells, J. Mater. Chem.,2009,19:5295-5297.
    [45]D. Cheyns, B.P. Rand, P. Heremans, Organic tandem solar cells with complementary absorbing layers and a high open-circuit voltage, Appl. Phys. Lett.,2010,97:033301.
    [46]G. Wei, S. Wang, K. Renshaw, M.E. Thompson, S.R. Forrest, Solution-processed squaraine bulk heterojunction photovoltaic cells, ACS Nano,2010,4:1927-1934.
    [47]M.Y Chan, S.L. Lai, M.K. Fung, C.S. Lee, S.T. Lee, Doping-induced efficiency enhancement in organic photovoltaic devices, Appl. Phys. Lett.,2007,90:023504.
    [48]J. Huang, J.S. Yu, W. Wang, Y.D. Jiang, Organic solar cells with a multicharge separation structure consisting of a thin rubrene fluorescent dye for open circuit voltage enhancement, Appl. Phys. Lett.,2011,98:023301.
    [49]W.-B. Chen, H.-F. Xiang, Z.-X. Xu, B.-P. Yan, V.A.L. Roy, C.-M. Che, P.-T. Lai, Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer, Appl. Phys. Lett., 2007,91:191109.
    [50]Y. Kinoshita, T. Hasobe, H. Murata, Control of open-circuit voltage in organic photovoltaic cells by inserting an ultrathin metal-phthalocyanine layer, Appl. Phys. Lett.,2007,91:083518.
    [51]S. Sista, Y. Yao, Y. Yang, M.L. Tang, Z. Bao, Enhancement in open circuit voltage through a cascade-type energy band structure, Appl. Phys. Lett.,2007,91:223508.
    [52]Z.T. Liu, M.F. Lo, H.B. Wang, T.W. Ng, V.A.L. Roy, C.S. Lee, S.T. Lee, Influence of the donor/acceptor interface on the open-circuit voltage in organic solar cells, Appl. Phys. Lett., 2009,95:093307.
    [53]S.L. Lai, M.F. Lo, M.Y. Chan, C.S. Lee, S.T. Lee, Impact of dye interlayer on the performance of organic photovoltaic devices, Appl. Phys. Lett.,2009,95:153303.
    [54]J. Huang, J.S. Yu, Z.Q. Guan, Y.D. Jiang, Improvement in open circuit voltage of organic solar cells by inserting a thin phosphorescent iridium complex layer, Appl. Phys. Lett.,2010,97, 143301.
    [55]M.T. Lloyd, A.C. Mayer, A.S. Tayi, A.M. Bowen, T.G. Kasen, D.J. Herman, D.A. Mourey, J.E. Anthony, G.G. Malliaras, Photovoltaic cells from a soluble pentacene derivative, Organ. Electron.,2006,7:243-248.
    [56]M. Hiramoto, H. Fujiwara, M. Yokoyama, Three-layered organic solar cell with a photoactive interlayer of codeposited pigments, Appl. Phys. Lett.,1991,58:1062-1064.
    [57]S. Heutz, P. Sullivan, B.M. Sanderson, S.M. Schultes, T.S. Jones, Influence of molecular architecture and intermixing on the photovoltaic, morphological and spectroscopic properties of CuPc-C60 heterojunctions, Sol. Energy Mater. Sol. Cells,2004,83:229-245.
    [58]P. Sullivan, S. Heutz, S.M. Schultes, T.S. Jones, Influence of codeposition on the performance of CuPc-C60 heterojunction photovoltaic devices, Appl. Phys. Lett.,2004,84:1210-1212.
    [59]J.G Xue, B.P. Rand, S. Uchida, S.R. Forrest, A hybrid planar-mixed molecular heterojunction photovoltaic cell, Adv. Mater.,2005,17:66-71.
    [60]F. Yang, M. Shtein, S.R. Forrest, Controlled growth of a molecular bulk heterojunction photovoltaic cell, Nature Mater.,2005,4:37-41.
    [61]B. Pradhan, A.J. Pal, Organic photovoltaic devices:Concentration gradient of donor and acceptor materials in the molecular scale, Synthetic Metals,2005,155:555-559.
    [62]P. Peumans, S. Uchida, S.R. Forrest, Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films, Nature,2006,425:158-162.
    [63]L. Chen, Y. Tang, X. Fan, C. Zhang, Z. Chu, D. Wang, D. Zou, Improvement of the efficiency of CuPc/C60-based photovoltaic cells using a multistepped structure, Org. Electron.,2009,10: 724-728.
    [64]S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, K. Leo, Improved bulk heterojunction organic solar cells employing C70 fullerenes, Appl. Phys. Lett.,2009,94:223307.
    [65]R. Pandey, R.J. Holmes, Graded Donor-Acceptor Heterojunctions for Efficient Organic Photovoltaic Cells, Adv. Mater.,2010,22:5301-5305.
    [66]B.P. Rand, J. Genoe, P. Heremans, J. Poortmans, Solar Cells Utilizing Small Molecular Weight Organic Semiconductors, Prog. Photovolt.:Res. Appl.,2007,15:659-676.
    [67]J.J.M. Halls, C.A. Walsh,N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, Efficient photodiodes from interpenetrating polymer networks, Nature,1995,376: 498-500.
    [68]G. Yu, A.J. Heeger, Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions, J. Appl. Phys.,1995,78:4510-4515.
    [69]G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells:Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science,1995,270: 1789-1791.
    [70]W. Ma, C.Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology, Adv. Funct. Mater.,2005, 15:1617-1622.
    [71]G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nature Mater., 2005,4:864-868.
    [72]J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, GC. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature Mater.,2007,6:497-500.
    [73]Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son,G. Li, L. Yu, Development of new semiconducting polymers for high performance solar cells, J. Am. Chem. Soc.,2009,131: 56-57.
    [74]S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Bulk heterojunction solar cells with internal quantum efficiency approaching 100%, Nature Photonics,2009,3:297-303.
    [75]Y.Y. Liang, Z. Xu, J.B. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L.P. Yu, For the Bright Future-Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Mater., 2010,22:E135-E138.
    [76]L.J. Huo, S.Q. Zhang, X. Guo, F. Xu, Y.F. Li, J.H. Hou, Replacing Alkoxy Groups with Alkylthienyl Groups:A Feasible Approach To Improve the Properties of Photovoltaic Polymers, Angew. Chem.,2011,123:9871-9876.
    [77]K. Kawano, J. Sakai, M. Yahiro, C. Adachi, Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives, Sol. Energy Mater. Sol. Cells,2009,93:514-518.
    [78]J. Peet, C. Soci, R.C. Coffin, T.Q. Nguyen, A. Mikhailovsky, D. Moses, G.C. Bazan, Method for increasing the photoconductive response in conjugated polymer/fullerene composites, Appl. Phys. Lett.,2006,89:252105.
    [79]J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, K. Lee, GC. Bazan, A.J. Heeger, Processing additives for improved efficiency from bulk heterojunction solar cells, J. Am. Chem. Soc.,2008,130:3619-3623.
    [80]A.J. Moule, A. Tsami, T.W. Bunnagel, M. Forster, N.M. Kronenberg, M. Scharber, M. Koppe, M. Morana, C.J. Brabec, K. Meerholz, U. Scherf, Two novel cyclopentadithiophene-based alternating copolymers as potential donor components for high-efficiency bulk-heterojunction-type solar cells, Chem. Mater.,2008,20:4045-4050.
    [81]J.K. Lee, N.E. Coates, S. Cho, N.S. Cho, D. Moses,GC. Bazan, K. Lee, A.J. Heeger, Efficacy of TiOx optical spacer in bulk-heterojunction solar cells processed with 1,8-octanedithiol, Appl. Phys. Lett.,2008,92:243308.
    [82]B. Walker, A.B. Tomayo, X.-D. Dang, P. Zalar, J.H. Seo, A. Garcia, M. Tantiwiwat, T.Q. Nguyen, Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells, Adv. Funct. Mater.,2009,19:3063-3069.
    [83]S.E. Shaheen, R. Radspinner, N. Peyghambarian, GE. Jabbour, Fabrication of bulk heterojunction plastic solar cells by screen printing, Appl. Phys. Lett.,2001,79:2996-2998.
    [84]C.N. Hoth, S.A. Choulis, P. Schilinsky, C.J. Brabec, High photovoltaic performance of inkjet printed polymer:fullerene blends, Adv. Mater.,2007,19:3973-3978.
    [85]P. Kopola, T. Aernouts, S. Guillerez, H. Jin, M. Tuomikoski, A. Maaninen, J. Hast, High efficient plastic solar cells fabricated with a high-throughput gravure printing method, Sol. Energy Mater. Sol.Cells,2010,94:1673-1680.
    [86]S.-S. Kim, S.-I. Na, J. Jo, G Tae, D.-Y. Kim, Efficient polymer solar cells fabricated by simple brush painting, Adv. Mater.,2007,19:4410-4415.
    [87]F.C. Krebs, T. Tromholt, M. J(?)rgensen, Upscaling of polymer solar cell fabrication using full roll-to-roll processing, Nanoscale,2010,2:873-886.
    [88]M. Hiramoto, M. Suezaki, M. Yokoyama, Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell, Chem. Lett.,1990,3:327-330.
    [89]J. Inoue, K. Yamagishi, M. Yamashita, Photovoltaic properties of multilayer organic thin films, J. Cryst. Growth,2007,298:782-786.
    [90]A. Yakimov, S.R. Forrest, High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters, Appl. Phys. Lett.,2002,80:1667-1669.
    [91]J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, M. Pfeiffer, High efficiency organic solar cells based on single or multiple PIN structures, Thin Solid Films, 2004,451-452:515-517.
    [92]J. Xue, S. Uchida, B.P. Rand, S.R. Forrest, Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions, Appl. Phys. Lett.,2004,85:5757-5759.
    [93]B.P. Rand, P. Peumans, S.R. Forrest, Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters, J. Appl. Phys.2004,96:7519-7526.
    [94]K. Triyana, T.Yasuda, K, Fujita, T. Tsutsui, Tandem-type organic solar cells by stacking different heterojunction materials, Thin Solid Films,2005,477:198-202.
    [95]J. Drechsel, B. Mannig, F. Kozlowski, M. Pfeiffer, K. Leo, H. Hoppe, Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers, Appl. Phys. Lett.,2005,86:244102.
    [96]D. Cheyns, H. Gommans, M. Odijk, J. Poortmans, P. Heremans, Stacked organic solar cells based on pentacene and C60, Sol. Energy Mater. Sol. Cells,2007,91:399-404.
    [97]B. Yu, F. Zhu, H.B. Wang, G Li, D.H. Yan, All-organic tunnel junctions as connecting units in tandem organic solar cell, J. Appl. Phys.2008,104:114503.
    [98]R. Schueppe, R. Timmreck, N. Allinger, T.Mueller, M. Furno, C. Uhrich, K. Leo, M. Riede, Controlled current matching in small molecule organic tandem solar cells using doped spacer layers, J. Appl. Phys.2010,107:044503.
    [99]R. Timmreck, S. Olthof, K. Leo, M.K. Riede, Highly doped layers as efficient electron-hole recombination contacts for tandem organic solar cells, J. Appl. Phys.2010,108:033108.
    [100]Heliatek, Heliatek achieves new world record for organic solar cells with certified 9.8%cell efficiency, www.heliatek.com, Dresden, Germany, Dec.-5-2011.
    [101]G Dennler, H.-J. Prall, R. Koeppe, M. Egginger, R. Autengruber, N.S. Sariciftci, Enhanced spectral coverage in tandem organic solar cells, Appl. Phys. Lett.,2006,89:073502.
    [102]A. Colsmann, J. Junge, C. Kayser, U. Lemmer, Organic tandem solar cells comprising polymer and small-molecule subcells, Appl. Phys. Lett.,2006,89:203506.
    [103]A.G.F. Janssen, T. Riedl, S. Hamwi, H.-H. Johannes, W. Kowalsky, Highly efficient organic tandem solar cells using an improved connecting architecture, Appl. Phys. Lett.,2007, 91:073519.
    [104]D.W. Zhao, X.W. Sun, C.Y. Jiang, A.K.K. Kyaw, G.Q. Lo, D.L. Kwong, Efficient tandem organic solar cells with an Al/MoO3 intermediate layer, Appl. Phys. Lett.,2008,93:083305.
    [105]F. Liu, J.-M. Nunzi, Air stable hybrid inverted tandem solar cell design, Appl. Phys. Lett., 2011,99:063301.
    [106]G. Namkoong, P. Boland, K. Lee, J. Dean, Design of organic tandem solar cells using PCPDTBT:PC61BM and P3HT:PC71BM, J. Appl. Phys.2010,107:124515.
    [107]K. Kawano, N. Ito, T. Nishimori, J. Sakai, Open circuit voltage of stacked bulk heterojunction organic solar cells, Appl. Phys. Lett.,2006,88:073514.
    [108]J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient Tandem Polymer Solar Cells Fabricated by All-Solution Processing, Science,2007,317: 222-225.
    [109]S. Sista, H.-H. Park, Z. Hong, Y. Wu, J. Hou, W.L. Kwan, G. Li, Y. Yang, Highly efficient tandem polymer photovoltaic cells, Adv. Mater.,2010,22:380-383.
    [110]D.W. Zhao, X.W. Sun, C.Y. Jiang, A.K.K. Kyaw, G.Q. Lo, D.L. Kwong, An Efficient Triple-Tandem Polymer Solar Cell, IEEE Elect. Device Lett.,2009,30:490-492.
    [111]J. Gilot, M.M. Wienk, R.A.J. Janssen, Double and triple junction polymer solar cells processed from solution, Appl. Phys. Lett.,2007,90:143512.
    [112]M. Hirade, C. Adachi, Small molecular organic photovoltaic cells with exciton blocking layer at anode interface for improved device performance, Appl. Phys. Lett.,2011,99:153302.
    [113]D. Fujishima, H. Kanno, T. Kinoshita, E. Maruyama, M. Tanaka, M. Shirakawa, K. Shibata, Organic thin-film solar cell employing a novel electron-donor material, Sol. Energy Mater. Sol. Cells,2009,93:1029-1032.
    [114]V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Accurate Measurement and Characterization of Organic Solar Cells, Adv. Funct. Mater.,2006,16:2016-2023.
    [115]F.C. Krebs, H. Spanggard, T. Kjaer, M. Biancardo, J. Alstrup, Large area plastic solar cell modules, Materials Science and Engineering B,2007,138:106-111.
    [116]C. Lungenschmied, G. Dennler, H. Neugebauer, S.N. Sariciftci, M. Glatthaar, T. Meyer, A. Meyer, Flexible, long-lived, large-area, organic solar cells, Sol. Energy Mater. Sol. Cells,2007, 91:379-384.
    [117]M. Niggemann, B.'Zimmermann, J. Haschke, M. Glatthaar, A. Gombert, Organic solar cell modules for specific applications-From energy autonomous systems to large area photovoltaics, Thin Solid Films,2008,516:7181-7187.
    [118]R. Tipnis, J. Bernkopf, S. Jia, J. Krieg, S. Li, M. Storch, D. Laird, Large-area organic photovoltaic module-Fabrication and performance, Sol. Energy Mater. Sol. Cells,2009,93: 442-446.
    [119]C. Xirouchaki, G Kiriakidis, T.F. Pedersen, H. Fritzsche, Photoreduction and oxidation of as-deposited microcrystalline indium oxide, J. Appl. Phys.,1996,79(12):9349-9352.
    [120]J.S. Kim, M. Granstrom, R.H. Friend, N. Johansson, W.R. Salaneck, R. Daik, W.J. Feast, F. Cacialli, Indium-tin oxide treatments for single-and double-layer polymeric light-emitting diodes:The relation between the anode physical, chemical, and morphological properties and the device performance, J. Appl. Phys.,1998,84(12):6859-6870.
    [121]M. G Helander, Z. B. Wang, J. Qiu, M. T. Greiner, D. P. Puzzo, Z. W. Liu,Z. H. Lu, Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility, Science,2011,332(6032):944-947.
    [122]Z.Q. Xu, J. Li, J.P. Yang, P.P. Cheng, J. Zhao, S.T. Lee, Y.Q. Li, J.X. Tang, Enhanced performance in polymer photovoltaic cells with chloroform treated indium tin oxide anode modification, Appl. Phys. Lett.,2011,98:253303.
    [123]G. Li, V. Shrotriya, Y. Yao, Y. Yang, Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene), J. Appl. Phys.,2005,98: 043704.
    [124]M. Ramuz, L. Burgi, C. Winnewisser, P. Seitz, High sensitivity organic photodiodes with low dark currents and increased lifetimes, Organ. Electron.,2008,9(3):369-376.
    [125]H. Kageyama, H. Ohishi, M. Tanaka, Y. Ohmori, Y. Shirota, High performance organic photovoltaic devices using amorphous molecular materials with high charge-carrier drift mobilities, Appl. Phys. Lett.,2009,94:063304.
    [126]D. Yokoyama, Z.Q. Wang, Y.J. Pu, K. Kobayashi, J. Kido, Z. Hong, High-efficiency simple planar heterojunction organic thin-film photovoltaics with horizontally oriented amorphous donors, Sol. Energy Mater. Sol. Cells,2012,98:472-475.
    [127]J. Wagner, M. Gruber, A. Hinderhofer, A. Wilke, B. Broker, J. Frisch, P. Amsalem, A. Vollmer, A. Opitz, N. Koch, F. Schreiber, W. Brutting, High Fill Factor and Open Circuit Voltage in Organic Photovoltaic Cells with Diindenoperylene as Donor Material, Adv. Funct. Mater.,2010, 20:4295-4303.
    [128]http://www.lumtec.com.tw/productl.asp?id=80.
    [129]N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science,1992,258:1474-1476.
    [130]N.S. Sariciftci, Polymeric photovoltaic materials, Curr. Opin. Solid St. Mater. Sci.,1999,4(4): 373-378.
    [131]J.L. Yang, S. Schumann, R.A. Hatton, T.S. Jones,Copper hexadecafluorophthalocyanine (F16CuPc) as an electron accepting material in bilayer small molecule organic photovoltaic cells, Organ. Electron.,2010,11(8):139-1402.
    [132]Y. He, H.Y. Chen, J. Hou, Y. Li, Indene-C60 Bisadduct:A New Acceptor for High-Performance Polymer Solar Cells, J. Am. Chem. Soc.,2010,132(4):1377-1382.
    [133]B.E. Lassiter, G Wei, S. Wang, J.D. Zimmerman, V.V. Diev, M.E. Thompson, S.R. Forrest, Organic photovoltaics incorporating electron conducting exciton blocking layers, Appl. Phys. Lett.,2011,98:243307.
    [134]F.J. Zhang, D.W. Zhao, Z.L. Zhuo, H. Wang, Z. Xu, Y.S. Wang, Inverted smallmoleculeorganicsolarcells with Ca modified ITO as cathode and MoO3 modified Ag as anode, Sol. Energy Mater. Sol. Cells,2010,94(12):2416-2421.
    [135]D.Y. Kim, G. Sarasqueta, F. So, SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer, Sol. Energy Mater. Sol. Cells,2009,93(8):1452-1456.
    [136]A.G.F. Janssen, T. Riedl, S. Hamwi, H.H. Johannes, W. Kowalsky, Highly efficient organic tandem solar cells using an improved connecting architecture, Appl. Phys. Lett.,2007,91: 073519.
    [137]I. Hancox, L.A. Rochford, D. Clare, P. Sullivan, T.S. Jones, Utilizing n-type vanadium oxide films as hole-extracting layers for small molecule organic photovoltaics, Appl. Phys. Lett.,2011, 99:013304.
    [138]N. Sun, G Fang, P. Qin, Q. Zheng, M. Wang, X. Fan, F. Cheng, J. Wan, X. Zhao, Bulk heterojunction solarcells with NiO hole transporting layer based on AZO anode, Sol. Energy Mater. Sol. Cells,2010,94(12):2328-2331.
    [139]N. Wang, J. Yu, Y. Zang, J. Huang, Y. Jiang, Effect of buffer layers on the performance of organic photovoltaic cells based on copper phthalocyanine and C60, Sol. Enery Mater. Sol. Cells, 2010,94:263-266.
    [140]J. Yu, N. Wang, Y. Zang, Y. Jiang, Organic photovoltaic cells based on TPBi as a cathode buffer layer, Sol. Energy Mater. Sol. Cells,2011,95:664-668.
    [141]N.N. Wang, J.S. Yu, Y. Zang, YD. Jiang, Photocurrent analysis of organic photovoltaic cells based on CuPc/C60 with Alq3 as a buffer layer, Chin. Phys. B,2010,19:038602.
    [142]C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, P. Denk, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett.,2002,80(7):1288-1290.
    [143]Y. Zou, Z. Deng, L. Yu, H. Du, Y. Yin, M. Zhou, Y. Wang, Effect of 8-hydroxyquinolatolithium buffer layer on the performance of polymer photovoltaic cells, Thin Solid Films (2012), doi:10.1016/j.tsf.2012.03.024.
    [144]C.J. Brabec, Organic photovoltaics:technology and market, Sol. Energy Mater. Sol. Cells, 2004,83:273-292.
    [145]M. Jorgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Sol. Energy Mater. Sol. Cells,2008,92:686-714.
    [146]H. Neugebauer, C. Brabec, J.C. Hummelen, N.S. Sariciftci, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Sol. Energy Mater. Sol. Cells, 2000,61:35-42.
    [147]F.C. Krebs, J.E. Carle, N. Cruys-Bagger, M. Andersen, M.R. Lilliedal, M.A.Hammond, S. Hvidt, Lifetimes of organic photovoltaics:Photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices, Sol. Energy Mater. Sol. Cells,2005,86: 499-516.
    [148]P. Madakasira, K. Inoue, R. Ulbricht, S.B. Lee, M. Zhou, J.P. Ferraris, A.A. Zakhidov, Multilayer encapsulation of plastic photovoltaic devices, Synthetic Metals,2005,155:332-335.
    [149]K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant, Degradation of organic solar cells due to air exposure, Sol. Enery Mater. Sol. Cells,2006,90:3520-3530.
    [150]W.J. Potscavage, S. Yoo, B. Domercq, B. Kippelen, Encapsulation of pentacene/C60 organic solar cells with Al2O3 deposited by atomic layer deposition, Appl. Phys. Lett.,2007,90: 253511.
    [151]M. Hermenau, M. Riede, K. Leo, S.A. Gevorgyan, F.C. Krebs, K. Norrman, Water and oxygen induced degradation of small molecule organic solar cells, Sol. Enery Mater. Sol. Cells, 2011,95:1268-1277.
    [152]Q.L. Song, F.Y. Li, H. Yang, H.R. Wu, X.Z. Wang, W. Zhou, J.M. Zhao, X.M. Ding, C.H. Huang, X.Y. Hou, Small-molecule organic solar cells with improved stability, Chem. Phys. Lett.,2005,416:42-46.
    [153]Q.L. Song, M.L. Wang, E.G Obbard, X.Y. Sun, X.M. Ding, X.Y. Hou, C.M. Li, Degradation of small-molecule organic solar cells, Appl. Phys. Lett.,2006,89:251118.
    [154]M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer, Appl. Phys. Lett.,2006,89:143517.
    [155]C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S.A. Choulis, C.J. Brabec, Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact, Appl. Phys. Lett.,2006,89:233517.
    [156]C.-Y. Li, T.-C. Wen, T.-H. Lee, T.-F. Guo, J.-C.-A. Huang, Y.-C. Lin, Y.-J. Hsu, An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers, J. Mater. Chem.,2009,19:1643-1647.
    [157]K. Norrman, M.V. Madsen, S. A. Gevorgyan, F.C. Krebs, Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell, J. Am. Chem. Soc.,2010,132:16883-16892.
    [158]Y. Sun, C.J. Takacs, S.R. Cowan, J.H. Seo, X. Gong, A. Roy, A.J. Heeger, Efficient, Air-Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer, Adv. Mater.,2011,23:2226-2230.
    [159]N. Chawdhury, A. KGhleP, M.G. Harrisonh, D.H. Hwangc, A.B. Holmesc, R.H. Friend, The Effects of H2O and O2 on the Photocurrent Spectra of MEH-PPV, Synthetic Metals,1999,102: 871-872.
    [160]B.M. Henry, F. Dinelli, K.-Y. Zhao, C.R.M. Grovenor, O.V. Kolosov, G.A.D. Briggs, A.P. Roberts, R.S. Kumar, R.P. Howson, A microstructural study of transparent metal oxide gas barrier films, Thin Solid Films,1999,355-356:500-505.
    [161]A.G. Erlat, B.M. Henry, J.J. Ingram, D.B. Mountain, A. McGuigan, R.P. Howson, C.R.M. Grovenor, G.A.D. Briggs, Y. Tsukahara, Characterisation of aluminium oxynitride gas barrier films, Thin Solid Films,2001,388:78-86.
    [162]M. Yanaka, B.M. Henry, A.P. Roberts, C.R.M. Grovenor, G.A.D. Briggs, A.P. Sutton, T. Miyamoto, Y. Tsukahara, N. Takeda, R.J. Chater, How cracks in SiOx-coated polyester films affect gas permeation, Thin Solid Films,2001,397:176-185.
    [163]A.P. Roberts, B.M. Henry, A.P. Sutton, C.R.M. Grovenor, G.A.D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, M. Yanaka, Gas permeation in silicon-oxide/polymer (SiOx/PET) barrier films:role of the oxide lattice, nano-defects and macro-defects, J. Membr. Sci.,2002,208: 75-88.
    [164]A.G. Erlat, B.M. Henry, C.R.M. Grovenor, A.G.D. Briggs, R.J. Chater, Y. Tsukahara, Mechanism of Water Vapor Transport through PET/AlOxNy Gas Barrier Films, J. Phys. Chem. B,2004,108:883-890.
    [165]K. Norrman, F.C. Krebs, Photodegradation of poly(ether sulphone)-Part 2. Wavelength and atmosphere dependence, Surf. Interface Anal.,2004,36:1542-1549.
    [166]K. Norrman, F.C. Krebs, Lifetimes of organic photovoltaics:Using TOF-SIMS and 18O2 isotopic labeling to characterise chemical degradation mechanisms, Sol. Energy Mater. Sol. Cells,2006,90:213-227.
    [167]K. Norrman, N.B. Larsen, F.C. Krebs, Lifetimes of organic photovoltaics:Combining chemical and physical characterisation techniques to study degradation mechanisms, Sol. Energy Mater. Sol. Cells,2006,90:2793-2814.
    [168]M. Lira-Cantu, K. Norrman, J.W. Andreasen, F.C. Krebs, Oxygen Release and Exchange in Niobium Oxide MEHPPV Hybrid Solar Cells, Chem. Mater.,2006,18:5684-5690.
    [169]K. Norrman, F.C. Krebs, Chemical degradation mechanisms of organic photovoltaics studied by TOF-SIMS and isotopic labeling, Proc. of SPIE,2005,5938:59380D.
    [170]F.C. Krebs, K. Norrman, Analysis of the Failure Mechanism for a Stable Organic Photovoltaic During 10000 h of Testing, Prog. Photovol. Res. Appl.,2007,15:697-712.
    [171]K. Norrman, J. Alstrup, M. Jorgensen, N.B. Larsen, M. LiraCantu, F.C. Krebs, Three-dimensional chemical and physical analysis of the degradation mechanisms in organic photovoltaics, Proc. of SPIE,2006,6334:633400.
    [172]N. Dam, R.D. Scurlock, B. Wang, L. Ma, M. Sundahl, P.R. Ogilby, Singlet Oxygen as a Reactive Intermediate in the Photodegradation of Phenylenevinylene Oligomers, Chem. Mater., 1999,11:1302-1305.
    [173]B.H. Cumpston, K.F. Jensen, Photooxidative Stability of Substituted Poly(Phenylene Vinylene) (PPV) and Poly(Phenylene Acetylene) (PPA), J. Appl. Polym. Sci.,1998,69:2451-2458.
    [174]R.F. Bianchi, D.T. Balogh, M. Tinani, R.M. Faria, E.A. Irene, Ellipsometry Study of the Photo-Oxidation of Poly[(2-methoxy-5-hexyloxy)-p-phenylenevinylene], J. Polym. Sci. Part B: Polym. Phys.,2004,42:1033-1041.
    [175]H. Neugebauer, C.J. Brabec, J.C. Hummelen, R.A.J. Janssen, N.S. Sariciftci, Stability Studies and Degradation Analysis of Plastic Solar Cell Materials by FTIR Spectroscopy, Synth. Met.,1999,102:1002-1003.
    [176]H. Neugebauer, C.J. Brabec, J.C. Hummelen, N.S. Sariciftci, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Sol. Energy Mater. Sol. Cells, 2000,61:35-42.
    [177]A.M. Peiro, G. Doyle, A. Mills, J.R. Durrant, Freestanding Polymer-Metal Oxide Nanocomposite Films for Light-Driven Oxygen Scavenging, Adv. Mater.,2005,17:2365-2368.
    [178]A.M. Peiro, C. Colombo, G Doyle, J. Nelson, A. Mills, J.R. Durant, Photochemical Reduction of Oxygen Adsorbed to Nanocrystalline TiO2 Films:A Transient Absorption and Oxygen Scavenging Study of Different TiO2 Preparations, J. Phys. Chem. B,2006,110:23255-23263.
    [179]M. Lira-Cantu, F.C. Krebs, Hybrid solar cells based on MEH-PPV and thin film semiconductor oxides (TiO2, Nb2O5, ZnO, CeO2 and CeO2-TiO2):Performance improvement during long-time irradiation, Sol. Energy Mater. Sol. Cells,2006,90:2076-2086.
    [180]M. Lira-Cantu, K. Norrman, J.W. Andreasen, N. Casan-Pastor, F.C. Krebs, Detrimental Effect of Inert Atmospheres on Hybrid Solar Cells Based on Semiconductor Oxides, J. Electrochem. Soc.,2007,154:B508-B513.
    [181]D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Hybrid photovoltaic devices of polymer and ZnO nanofiber composites, Thin Solid Films,2006,496:26-29.
    [182]W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles, Adv. Funct. Mater.,2006,16:1112-1116.
    [183]R. de Bettignies, J. Leroy, S. Chambon, M. Firon, C. Sentein, L. Sicot, L. Lutzen, Lifetime analysis and degradation study of polymer solar cells, Proc. of SPIE,2004,5464:122-129.
    [184]R. de Bettignies, J. Leroy, S. Chambon, M. Firon, C. Sentein, L. Sicot, L. Lutzen, Lifetime analysis and degradation study of polymer solar cells, Proc. of SPIE,2004,5520:216-223.
    [185]F.C. Krebs, R.B. Nyberg, M. J(?)rgensen, Influence of Residual Catalyst on the Properties of Conjugated Polyphenylenevinylene Materials:Palladium Nanoparticles and Poor Electrical Performance, Chem. Mater.,2004,16:1313-1318.
    [186]M. Fahlman, D. Beljonne, M. Logdlund, R.H. Friend, A.B. Holmes, J.L. Bredas, W.R. Salaneck, Experimental and theoretical studies of the electronic structure of Na-doped poly (para-phenylenevinylene), Chem. Phys. Lett.,1993,214:327-332.
    [187]M. Logdlund, J.L. Bredas, Theoretical studies of the interaction between aluminum and poly(p-phenylenevinylene) and derivatives, J. Chem. Phys.,1994,101:4357-4364.
    [188]H. Antoniadis, B.R. Hsieh, M.A. Abkowitz, S.A. Jenekhe, M. Stolka, Photovoltaic and photoconductive properties of aluminum/poly(p-phenylene vinylene) interfaces, Synth. Met., 1994,62:265-271.
    [189]M. Fahlman, P. Broms, D.A. dos Santos, S.C. Moratti, N. Johansson, K. Xing, R.H. Friend, A.B. Holmes, J.L. Bredas, W.R. Salaneck, Electronic structure of pristine and sodium-doped cyano-substituted poly(2,5-dihexyloxy-p-phenylenevinylene):A combined experimental and theoretical study, J. Chem. Phys.,1995,102:8167-8174.
    [190]C. Melzer, V.V. Krasnikov, G. Hadziioannou, Organic donor/acceptor photovoltaics:The role of C60/metal interfaces, Appl. Phys. Lett.,2003,82:3101-3103.
    [191]J. Nishnaga, T. Aihara, H. Yamagata, Y. Horikoshi, Mechanical and optical characteristics of Al-doped C60 films, J. Cryst. Growth,2005,278:633-637.
    [192]C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, Effect of LiF/metal electrodes on the performance of plastic solar cells, Appl. Phys. Lett.,2002,80,1288-1290.
    [193]N. Karst, J.C. Bernede, On the improvement of the open circuit voltage of plastic solar cells by the presence of a thin aluminium oxide layer at the interface organic/aluminium, Phys. Stat. Sol. A,2006,203:R70-R72.
    [194]K. Kawano, C. Adachi, Reduced initial degradation of bulk heterojunction organic solar cells by incorporation of stacked fullerene and lithium fluoride interlayers, Appl. Phys. Lett.,2010, 96:053307.
    [195]S.O. Jeon, J. Y. Lee, Improved lifetime in organic solar cells using a bilayer cathode of organic interlayer/Al, Sol Energy Mater. Sol. Cells,2012, doi:10.1016/j.solmat.2012.01.036.
    [196]D. Gao, M.G. Helander, Z.-B. Wang, D.P. Puzzo, M.T. Greiner, Z.-H. Lu, C60:LiF Blocking Layer for Environmentally Stable Bulk Heterojunction Solar Cells, Adv. Mater.,2010,22: 5404-5408.
    [197]M.F. Lo, T.W. Ng, S.L. Lai, F.L. Wong, M.K. Fung, S.T. Lee, C.S. Lee, Operation stability enhancement in organic photovoltaic device by a metal doped organic exciton blocking layer, Appl. Phys. Lett.,2010,97:143304.
    [198]M.P. de Jong, L.J. van IJzendoorn, M.J.A. de Voigt, Stability of the interface between indium-tin-oxide and poly 3,4-ethylenedioxythiophene/poly/styrenesulfonate in polymer light-emitting diodes, Appl. Phys. Lett.,2000,77:2255-2227.
    [199]R. Pacios, A.J. Chatten, K. Kawano, J.R. Durrant, D.D.C. Bradley, J. Nelson, Effects of Photo-oxidation on the Performance of Poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene]:[6,6]-Phenyl C61-Butyric Acid Methyl Ester Solar Cells, Adv. Funct. Mater.,2006,16:2117-2126.
    [200]K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, J.R. Durrant, Degradation of organic solar cells due to air exposure, Sol. Energy Mater. Sol. Cells,2006,90:3520-3530.
    [201]S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen, D. Vanderzande, J. Manca, A. Senes, A. Bonfiglio, Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells, Sol. Energy Mater. Sol. Cells,2007,91:385-389.
    [202]K. Kawano, C. Adachi, Evaluating Carrier Accumulation in Degraded Bulk Heterojunction Organic Solar Cells by a Thermally Stimulated Current Technique, Adv. Funct. Mater.,2009,19: 3934-3940.
    [203]C.J. Brabec, A. Cavino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J C. Hummelen, Origin of the Open Circuit Voltage of Plastic Solar Cells, Adv. Funct. Mater. 2001,11:374-380.
    [204]S.J. Yun, Y.-W. Ko, J.W. Lim, Passivation of organic light-emitting diodes with aluminum oxide thin films grown by plasma-enhanced atomic layer deposition, Appl. Phys. Lett.,2004,85: 4896-4898.
    [205]W. Huang, X. Wang, M. Sheng, L. Xu, F. Stubhan, L. Luo, T. Feng, X. Wang, F. Zhang, S. Zou, Low temperature PECVD SiNx films applied in OLED packaging, Mater. Sci. Engineer. B, 2003,98:248-254.
    [206]S.-H.K. Park, J. Oh, C.-S. Hwang, J.-I. Lee, Y.S. Yang, H.Y. Chu, Ultrathin film encapsulation of an OLED by ALD, Electrochem. Solid-State Lett.,2005,8:H21-H23.
    [207]A.P. Ghosh, L.J. Gerenser, C.M. Jarman, J.E. Fornalik, Thin-film encapsulation of organic light-emitting devices, Appl. Phys. Lett.,2005,86:223503.
    [208]N. Kim, W.J. Potscavage, B. Domercq, B. Kippelen, S. Graham, A hybrid encapsulation method for organic electronics, Appl. Phys. Lett.,2009,94:163308.
    [209]C.-Y. Chang, C.-T. Chou, Y.-J., Lee, M.-J. Chen, F.-Y. Tsai, Thin-film encapsulation of polymer-based bulk-heterojunction photovoltaic cells by atomic layer deposition, Organ. Electron.,2009,10:1300-1306.
    [210]F.C. Krebs, Encapsulation of polymer photovoltaic prototypes, Sol. Energy Mater. Sol. Cells, 2006,90:3633-3643.
    [211]R.F. Bailey-Salzman, B.P. Rand, S.R. Forrest, Near-infrared sensitive small molecule organic photovoltaic cells based on chloroaluminum phthalocyanine, Appl. Phys. Lett.,2007,91: 013508.
    [212]D.Y. Kim, F. So, Y. Gao, Aluminum phthalocyanine chloride/C60 organic photovoltaic cells with high open-circuit voltages, Sol. Energy Mater. Sol. Cells,2009,93:1688-1691.
    [213]D.Y. Kim, J. Subbiah, G. Sarasqueta, F. So, H. Ding, Irfan, Y. Gao, The effect of molybdenum oxide interlayer on organic photovoltaic cells, Appl. Phys. Lett.,2009,95:093304.
    [214]N. Li, S.R. Forrest, Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition, Appl. Phys. Lett.,2009,95:123309.
    [215]K. Harada, T.Edura, C. Adachi, Nanocrystal Growth and Improved Performance of Small Molecule Bulk Heterojunction Solar Cells Composed of a Blend of Chloroaluminum Phthalocyanine and C70, Appl. Phys. Express,2010,3:121602.
    [216]K. V. Chauhan, P. Sullivan, J. L. Yang, T. S. Jones, Efficient Organic Photovoltaic Cells through Structural Modification of Chloroaluminum Phthalocyanine/Fullerene Heterojunctions, J. Phys. Chem. C,2010,114(7):3304.
    [217]T.D. Heidel, D. Hochbaum, J.M. Sussman, V. Singh, M.E. Bahlke, I. Hironi, J. Lee, M.A. Baldo, Reducing recombination losses in planar organic photovoltaic cells using multiple step charge separation, J. Appl. Phys.,2011,109:104502.
    [218]R.R. Lunt, V. Bulovic, Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications, Appl. Phys. Lett.,2011,98:113305.
    [219]B.Verreet, R. Muller, B.P. Rand, K. Vasseur, P. Heremans, Structural templating of chloro-aluminum phthalocyanine layers for planar and bulk heterojunction organic solar cells, Organ. Electron.,2011,12(12):2131-2139.
    [220]N.M. Bamsey, A.P. Yuen, A.M. Hor, R. Klenkler, J.S. Preston, R.O. Loutfy, Integration of an M-phthalocyanine layer into solution-processed organic photovoltaic cells for improved spectral coverage, Sol. Energy Mater. Sol. Cells,2011,95(7):1970-1973.
    [221]T. Kaji, M. Zhang, S. Nakao, K. Iketakil, K. Yokoyamal, C.W. Tang, M. Hiramoto1,Co-evaporant Induced Crystalline Donor:Acceptor Blends in Organic Solar Cells, Adv. Mater.,2011,23:3320-3325.
    [222]J. Kalinowski, G. Giro, N. Camaioni, V. Fattori, P. DiMarco, Photoconduction in solid films of C60, Synthetic Metals,1996,77(1-3):181-188.
    [223]J. Huang, Y. Yang, Origin of photomultiplication in C60 based devices, Appl. Phys. Lett.,2007, 91:203505.
    [224]A.J. Moule, J.B. Bonekamp, K. Meerholz, The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells, J. Appl. Phys.2006,100: 094503.
    [225]T. Taima, M. Chikamatsu, Y. Yoshida, K. Saito, K. Yase, Effects of intrinsic layer thickness on solar cell parameters of organic p-i-n heterojunction photovoltaic cells, Appl. Phys. Lett.,2004, 85(26):6412-6414.
    [226]Z. Zhuo, F. Zhang, J. Wang, J. Wang, X. Xu, Z. Xu, Y. Wang, W. Tang, Efficiency improvement of polymer solar cells by iodine doping, Solid State Electron.,2011,63:83-88.
    [227]J.D. Servaites, S. Yeganeh, T.J. Marks, M.A. Ratner, Efficiency Enhancement in Organic Photovoltaic Cells:Consequences of Optimizing Series Resistance, Adv. Funct. Mater.,2010, 20:97-104.
    [228]J. Sakai, T. Taima, T. Yamanari, K. Saito, Annealing effect in the sexithiophene:C7o small molecule bulk heterojunction organic photovoltaic cells, Sol. Enery Mater. Sol. Cells,2009,93: 1149-1153.
    [229]P. Sullivan, T.S. Jones, A.J. Ferguson, S. Heutz, Structural templating as a route to improved photovoltaic performance in copper phthalocyanine/fullerene (C60) heterojunctions, Appl. Phys. Lett.,2007,91:233114.
    [230]C. H. Cheng, J. Wang, G. T. Du, S. H. Shi, Z. J. Du, Z. Q. Fan, J. M. Bian, M. S. Wang, Organic solar cells with remarkable enhanced efficiency by using a Cul buffer to control the molecular orientation and modify the anode, Appl. Phys. Lett.,2010,97:083305.
    [231]S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, K. Leo, Thick C6o:ZnPc bulk heterojunction solar cells with improved performance by film deposition on heated substrates, Appl. Phys. Lett., 2009,94:253303.
    [232]L. Li, W. Hu, H. Fuchs, L. Chi, Controlling Molecular Packing for Charge Transport in Organic Thin Films, Adv. Energy Mater.1 (2011) 188-193.
    [233]K.J. Wynne, Crystal and molecular structure of chloro(phthalocyaninato)gallium(III), Ga(Pc)Cl, and chloro(phthalocyaninato)aluminum(III), Al(Pc)Cl, Inorg. Chem.,1984,23(26): 4658-4663.
    [234]H. Yanagi, H. Kataura, Y. Ueda, Improved photovoltaic properties for Au/AlPcCl/n-Si solar cells with morphology-controlled AlPcCl deposition, J. Appl. Phys.,1994,75:568-576.
    [235]I. Hancox, P. Sullivan, K.V. Chauhan, N. Beaumont, The effect of a MoOx hole-extracting layer on the performance of organic photovoltaic cells based on small molecule planar heterojunctions, Organ. Electron.,2010,11:2019-2025.
    [236]Y. Kanai, T. Matsushima, H. Murata, Improvement of stability for organic solar cells by using molybdenum trioxide buffer layer, Thin Solid Films,2009,518:537-540.
    [237]R. Pandey, R.J. Holmes, Organic Photovoltaic Cells Based on Continuously Graded Donor-Acceptor Heterojunctions, IEEE J. Sel. Top. Quant. Electron.,2010,16(6):1537-1543.
    [238]H. Aziz, G Xu, A degradation mechanism of organic light-emitting devices, Synthetic Metals, 1996,80:7-10.
    [239]H. Aziz, Z.D. Popovic, N.X. Hu, A.M. Hor, G. Xu, Degradation Mechanism of Small Molecule-Based Organic Light-Emitting Devices, Science,1999,283:1900-1902.
    [240]H. Aziz, Z.D. Popovic, Degradation Phenomena in Small-Molecule Organic Light-Emitting Devices, Chem. Mater.,2004,16:4522-4532.
    [241]Y. Hoshino, Thermally stimulated current measurements on the trapping levels in a Cu-phthalocyanine binder photoreceptor, J. Appl. Phys.,1981,52(9):5655-5658.
    [242]T. Enokida, S. Yamamoto, R. Hirohashi, The thermally stimulated current of β-form oxotitanium phthalocyanine dispersed in polyester, J. Appl. Phys.,70(9):5000-5003.
    [243]H. Gommans, T. Aernouts, B. Verreet, P. Heremans, A. Medina, C.G. Classens, T. Torres, Perfluorinated Subphthalocyanine as a New Acceptor Material in a Small-Molecule Bilayer Organic Solar Cell, Adv. Funct. Mater.,2009,19:3435-3439.
    [244]D. Fujishima, H. Kanno, T. Kinoshita, E. Maruyama, M. Tanaka, M. Shirakawa, K. Shibata, Organic thin-film solar cell employing a novel electron-donor material, Sol. Enery Mater. Sol. Cells,2009,93:1029-1032.
    [245]H. Yan, S. Swaraj, C. Wang, I. Hwang, N.C. Greenham, C. Groves, H. Adde, C.R. McNeill, Influence of Annealing and Interfacial Roughness on the Performance of Bilayer Donor/Acceptor Polymer Photovoltaic Devices, Adv. Funct. Mater.,2010,20:4329-4337.
    [246]V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen, M.T. Rispens, Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells, J. Appl. Phys.,2003, 94:6849-6854.
    [247]J.W. Kang, S.H. Lee, H.D. Park, W.I. Jeong, K.M. Yoo, Y.S. Park, J.J. Kim, Low roll-off of efficiency at high current density in phosphorescent organic light emitting diodes, Appl. Phys. Lett.,2007,90:223508.
    [248]J. Lee, J.I. Lee, K.I. Song, S.J. Lee, H.Y. Chu, Effects of interlayers on phosphorescent blue organic light-emitting diodes, Appl. Phys. Lett.,2008,92:203305.
    [249]Y. Kinoshita, R. Takenaka, H. Murata, Independent control of open-circuit voltage of organic solar cells by changing film thickness of MoO3 buffer layer, Appl. Phys. Lett.,2008,92: 243309.
    [250]N. Li, B.E. Lassiter, R.R. Lunt, G. Wei, S.R. Forrest, Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells, Appl. Phys. Lett.,2009,94:023307.
    [251]T. Oyamada, Y. Sugawara, Y. Terao, H. Sasabe, C. Adachi, Top Light-Harvesting Organic Solar Cell Using Ultrathin Ag/MgAg Layer as Anode, Jpn. J. Appl. Phys.,2007,46:1743-1735.
    [252]M. Zhang, H. Wang, C.W. Tang, Effect of the highest occupied molecular orbital energy level offset on organic heterojunction photovoltaic cells, Appl. Phys. Lett.,2010,97:143503.
    [253]M. Zhang, H. Wang, C.W. Tang, Hole-transport limited S-shaped Ⅰ-Ⅴ curves in planar heterojunction organic photovoltaic cells, Appl. Phys. Lett.,2011,99:213506.
    [254]W.-J. Shin, J.-Y. Lee, J.C. Kim, T.-H. Yoon, T.-S. Kim, O.-K. Song, Bulk and interface properties of molybdenum trioxide-doped hole transporting layer in organic light-emitting diodes, Organ. Electron.,2008,9:333-338.
    [255]F. Wang, X. Qiao, T. Xiong, D. Ma, The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes, Organ. Electron.,2008,9:985-993.
    [256]T. Matsushima, H. Murata, Observation of space-charge-limited current due to charge generation at interface of molybdenum dioxide and organic layer, Appl. Phys. Lett.,2009,95: 203306.
    [257]M. Hirade, H. Nakanotani, M. Yahiro, C. Adachi, Formation of Organic Crystalline Nanopillar Arrays and Their Application to Organic Photovoltaic Cells, ACS Appl. Mater. Int., 2011,3:80-83.
    [258]H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photon.,2009,3:649-653.
    [259]K. Kawano, N. Ito, T. Nishimori, J. Sakai, Open circuit voltage of stacked bulk heterojunction organic solar cells, Appl. Phys. Lett.,2006,88:073514.
    [260]D.W. Zhao, X.W. Sun, C.Y. Jiang, A.K.K. Kyaw, G.Q. Lo, D.L. Kwong, An Efficient Triple-Tandem Polymer Solar Cell, IEEE Elect. Device Lett.,2009,30:490-492.
    [261]V. Shrotriya, E.H.E. Wu, G. Li, Y. Yao, Y. Yang, Efficient light harvesting in multiple-device stacked structure for polymer solar cells, Appl. Phys. Lett.,2006,88:064104.
    [262]J. Gilot, M.M. Wienk, R.A.J. Janssen, Double and triple junction polymer solar cells processed from solution, Appl. Phys. Lett.,2007,90:143512.
    [263]A. Hadipour, B. de Boer, P.W.M. Blom, Organic Tandem and Multi-Junction Solar Cells, Adv. Funct. Mater.,2008,18:169-181.
    [264]L.A.A. Pettersson, L. S. Roman, O. Inganas, Modeling photocurrent action spectra of photovoltaic devices based on organic thin films, J. Appl. Phys.,1999,86:487-496.
    [265]O.S. Heavens, Optical Properties of Thin Solid Films, Dover, New York,1965.
    [266]Z. Knittl, Optics of Thin Films, Wiley, London,1976.
    [267]C. Breyer, M. Vogel, M. Mohr, B. Johnev, K. Fostiropoulos, Influence of exciton distribution on external quantum efficiency in bilayer organic solar cells, Phys. Stat. Sol. b,2006,243(13): 3176-3180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700