磁控溅射SiO_2基LaB_6薄膜的制备工艺及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六硼化镧(LaB_6)是一种具有许多优异性能的陶瓷材料,广泛应用于民用和国防工业制作现代仪器中的电子元器件。国内外的科研工作者对LaB_6薄膜开展了一些研究工作,但对薄膜性能的研究主要集中于所制得薄膜的形貌、结构及其物理性能,对其光学性能研究较少,仅有的研究也是将其作为装饰材料使用。为充分研究和利用LaB_6在光学方面的独特性能,采用透明的SiO_2材料作为基体沉积LaB_6薄膜。
     采用磁控溅射法在SiO_2基片上沉积LaB_6薄膜。调整了溅射过程中的氩气气压、基片偏压、基片温度和溅射功率等工艺参数。分别采用探针轮廓仪、原子力显微镜、掠入射角X射线衍射仪、高分辨透射电镜及场发射扫描电镜,分析不同工艺参数对薄膜的沉积速率、表面形貌、结构、晶格相、断口形貌及膜基相互扩散情况的影响。系统研究了磁控溅射法沉积的LaB_6薄膜的膜基结合力、硬度、弹性模量以及薄膜的光学和电学性能。分析了工艺参数对LaB_6薄膜性能的影响。
     研究结果表明,LaB_6薄膜的沉积速率受溅射功率影响最明显,溅射功率为61.6W、氩气气压为1.5Pa、基片偏压为-100V和基片温度为室温时,沉积速率最大,为19.8nm/min。溅射功率降至17.6W,其它工艺参数不变时,沉积速率为3.22nm/min。
     原子力显微镜的结果显示,SiO_2基LaB_6薄膜表面平整,结构较为致密。有些薄膜表面存在孔洞等缺陷,但通过调整溅射工艺,可以得到致密性良好的薄膜。基片偏压对薄膜的形貌影响最大,不同偏压下制备的薄膜表面致密度相差较大,其中基片偏压为-100V、溅射功率为44.0W、氩气气压为1.5Pa、基片温度为400℃时,制备的LaB_6薄膜表面致密,没有发现明显的缺陷。薄膜表面平均粗糙度均在2nm左右,其最小值仅为1.336nm。基片温度对薄膜的平均粗糙度影响最大,其最大值与最小值之差为1.125nm。在基片加热条件下制备的LaB_6薄膜的粗糙度大于其它工艺条件下制备的薄膜的粗糙度。
     利用场发射扫描电镜观察了SiO_2基LaB_6薄膜的断口形貌以及断口表面的面元素分布。结果显示,薄膜的生长方式为柱状生长,SiO_2基片偏压绝对值的增大和温度的升高有利于薄膜的柱状结构生长,基片偏压绝对值的增大对薄膜柱状结构的影响最大。其中,溅射功率为44W、基片偏压为-150V、氩气气压为1.5Pa、基片温度为室温的LaB_6薄膜柱状结构最为明显。随着基片温度的降低和基片偏压绝对值的增大,LaB_6薄膜与SiO_2基片之间的扩散程度变弱。
     XRD结果显示,除在溅射功率为17.6W,氩气气压为1.5Pa,基片偏压为-100V,基片温度为室温以及基片温度为500℃,溅射功率为44W,基片偏压为-100V,氩气气压为1.5Pa时所制得的两个试样没有出现明显的X射线衍射图谱外,其余薄膜均得到了良好的XRD图谱,且所有晶体结构薄膜的优势结晶面均为(100)晶面,这一情况与块体材料不同。研究发现,薄膜的结晶程度受工艺参数的影响,在氩气气压为1.0Pa、基片温度为室温和氩气气压为1.5Pa、基片温度为400℃,其它参数分别为基片偏压为-100V、溅射功率为44.0W时沉积的薄膜结晶情况最好。利用X射线衍射数据,Scherrer公式计算的结果表明,本论文中制备的薄膜均为纳米结构,其平均颗粒尺寸介于10~30nm之间。这一结果与原子力显微镜和场发射扫描电镜的结果吻合的很好。
     高分辨透射电镜的结果表明,溅射功率为44W,氩气气压为1.5Pa,基片偏压为-100V,基片温度为室温的条件下制备的薄膜结晶程度良好。在其晶格相中发现了(100)(110)(111)三个晶面。其晶面间距分别为0.4051nm、0.2942nm和0.2382nm,相对于块体材料都有不同程度的畸变。
     利用划痕法测试了薄膜与基体之间的结合力。实验结果表面,SiO_2基体与LaB_6薄膜之间的结合力介于110mN到155mN之间。采用纳米压痕仪测试了薄膜的硬度及弹性模量。薄膜的载荷-位移曲线中未出现突变现象,表明薄膜的弹塑性能良好。薄膜的最大硬度和最小硬度分别为20.043GPa和8.053GPa。弹性模量的最大值和最小值分别为199.575GPa和127.988GPa。
     研究了LaB_6薄膜在紫外-可见、近红外区的光谱吸收情况。薄膜在紫外-可见波段的吸收受薄膜结构的影响不大,但近红外区的吸收情况受影响较大,出现了不同程度的蓝移或红移。利用四探针电阻法测量了LaB_6薄膜的电阻,据此得到其电阻率。薄膜的导电性能比常规LaB_6较差,其导电性能与半导体相近。
Lanthanum hexaboride(LaB_6) was widely used in electron instrument of the modern apparatus.Studies of LaB_6 films were focused on the morphology,structure and physical properties.Optical property of the LaB_6 films was studies seldomly,and it was only used as decorative materials for its special color.In order to study and utilize its special optical properties,SiO_2 was chosen as the substrate.
     LaB_6 films were deposited on SiO_2 substrate by magnetron sputtering.Argon pressure,substrate bias voltage,substrate temperature and sputtering power were adjusted,respectively.Style profile,AFM,SEM,HRTEM and GIXS were used to study thickness,surface morphology,structure,fracture morphology of the films and diffusion between the LaB_6 films and SiO_2 substrate.
     Bonding strength,hardness,elastic modulus,optical properties and electron properties were studied systematically,and influence of deposition parameters on properties of the LaB_6 films was also studied.
     Results of style profile showed that the influence of sputtering power on deposition rate was obvious.Deposition rate was higher than others when the deposition parameters were:sputtering power,61.6W;argon pressure,1.5Pa;bias voltage,-100V;substrate temperature,room-temperature.Maximum value of deposition rate was 19.8nm/min.When the sputtering power decreased to 17.6W, deposition rate changed to 3.22nm/min.
     Results of AFM showed that the LaB_6 films were smooth and compact.The influence of substrate bias voltage on surface morphology of films was obvious.There was no obvious default was found on the surface of the LaB_6 films with deposition parameters as following:sputtering power,44.0W;argon pressure,1.5Pa;bias voltage, -100V;substrate temperature,400℃.Values of average roughness of the LaB_6 films were about 2nm.Minimum value of average roughness was 1.336nm.
     Fracture morphologies of the films and their corresponding plane distributions were investigated by SEM.Substrate bias voltage had a deep influence on them. Diffusion between substrate and film was found.Increasing of substrate temperature was favorable to the diffusion.
     Results of XRD showed that most of the films were crystal.However,the obvious diffraction peaks didn't turn up in the XRD patterns of the two samples prepared under the condition of sputtering power,17.6W;argon pressure,1.5Pa;bias voltage,-100V;substrate temperature,room temperature and sputtering power,44.0W; argon pressure,1.SPa;bias voltage,-100V;substrate temperature,500℃The predominate face of all the films were(100) face,and that was different from bulk LaB_6.Results of XRD exhibited that average grain sizes were 10~30nm,and the results were consistence with the result of AFM.
     HRTEM was used to investigate the crystal structure of the LaB_6 film with deposition parameters as follows:sputtering power,44.0W;argon pressure,1.5Pa; bias voltage,-100V;substrate temperature,room temperature,and(100)(110)(111) face were found from the morphology.
     Bonding strength between the films and substrate were tested.Values of the bonding strength ranged from 110mN to 155mN.There was no discontinuity found in the loading-displacement curves,and the results indentified that elastic-plasticity was good.Values of the films ranged from 21GPa to 8GPa.
     UV-Vis transmitted spectrum and FT-IR absorption spectrum of the films were studied.Influence of deposition parameters on UV-Vis transmitted spectrum was not evident.There were five absorption peaks,and the wave numbers of the peaks were red shift or blue shift with the change of the deposition parameters.Resistivity of the LaB_6 films was tested.Results showed that electrical conductivity of the films was not as good as normal LaB_6.Values of resistivity ratio of LaB_6 films were from 109Ω·mm~2/m to 3609Ω·mm~2/m.Deposition parameters influenced electron conductivity of LaB_6 films obviously.
引文
[1]郑树起,闵光辉.LaB_6功能陶瓷材料的研究现状[J].材料导报,2003,14(3):50-51.
    [2]林祖伦,曹贵川,祁康成等.多晶LaB_6阴极的脉冲热发射特性[J].强激光与粒子束,2007,(05):873-876.
    [3]N Lung K.,A Pincosy P.,W Ehlers K.The directly healting LaB_6 cathodes[J].Rev Sci Instru,1986,57(7):165.
    [4]M Nakasuji,H Wade.New evaluation methode of beam shape profile for vat Aiably-shaped electron beam system[J].Vac Sci Techn,1980,17(6):73.
    [5]N Pademo V.,B Pademo Y.Features of the real structure of LaB6 single crystals[J].Alloys Comp,1995,219:228.
    [6]B Pademo Y.Some crystal chemistry relationships in eutectic crystallization of d-and f-transition metals birudes[J].Alloy Comp,1995,219:116-118.
    [7]B Pademo Y.,N Pad Emo V.,B Filippov V.Structure features of the eutectic alloys of borides with the d-and f-transition metals[J].Soviet Powder Metallurgy Metal Ceramics,1992,356(8):700-706.
    [8]B Pademo Y.,N Pademo V.,K Ostmvsky E.The peculiari-ties of electron emission characteristics of new class of ceramic materials based on rare earth metal borides[J].Doklady AN Ukraine,1992:84-87.
    [9]卢庆亮,闵光辉,于化顺.LaB_6单晶体制备方法的特点和进展[J].材料导报,2005,19(9):5-7.
    [10]高瑞兰,于化顺,于普涟等.LaB_6多晶材料的制备工艺研究[J].山东大学学报(工学版),2002,(06):593-596.
    [11]王汉斌,许州,卢和平等.单晶LaB_6热阴极直流发射特性[J].工程物理研究院科技年报,2004,(01):194.
    [12]金帅,刘丹敏,周身林.放电等离子烧结制备亚微米LaB_6块体材料[J].稀有金属,2008,32(5):631-635.
    [13]周开宇,庄炳河.LaB_6阴极在电子束曝光机中的应用研究[J].微细加工技术,1992,(3):15-20.
    [14]王汉斌,许州,卢和平等.单晶LaB_6热阴极直流发射特性实验研究[J].强激光与粒子束,2005,(06):930-934.
    [15]王家枝,李瑞红.异型六硼化镧制品的研制[J].稀土,1989,(04):28-31.
    [16]姚剑峰,陈旭,江剑平等.单晶和多晶LaB_6阴极发射性能的实验研究[J].真空电子技术,2002,(01):1-4.
    [17]郑树起,闵光辉,邹增大等.硼热还原法制备LaB_6粉末[J].硅酸盐学报,2001,(02):128-131.
    [18]王力衡,黄运添.薄膜技术[M].北京:清华大学出版社,1991.10.
    [19]L埃克托瓦.薄膜物理学[M].北京:科学出版社,1986.68.
    [20]Tamerlan T.Magkoev,Georgij G.vladimirov gennadij A.Rump.Coadsorption of lanthanum with boron and gadolinium with boron on Mo(110)[J].2008,602:1705-1711.
    [21]E.A.Kafadaryan,S.I.Petrosyan,G.R.Badalyan,S.r.Harutyunyan A.s.Kuzanyan.Optical characteristics of(La,Ce)B_6 films deposited on silicon substrates by e-beam evaporation process[J].The Solid Films,2002,416:218-223.
    [22]李建军,林祖伦,时晴暄等.硼化镧薄膜的发射特性研究[J].真空电子技术,2006,(06):31-34.
    [23]时晴暄,林祖伦,李建军等.电子束蒸发法制备六硼化镧薄膜及其特性研究[J].电子器件,2007,(03):745-747.
    [24]毛祖遂,魏赛珍.在GaAs上用电子束蒸发沉积LaB_6薄膜及界面的电学特征[J].真空科学与技术,1992,12(5):384-389.
    [25]朱炳金,陈泽祥,张强.六硼化镧薄膜的制备及发射特性的研究[J].真空电子技术,2007,(05):44-47.
    [26]朱炳金,陈泽祥,张强等.六硼化镧薄膜场致发射的特性[J].发光学报,2008,29(3):561-566.
    [27]朱炳金:陈泽祥:张强.LaB_6薄膜的制备工艺研究[J].真空,2008,45(1):37-40.
    [28]Schmidbauer S.,Klose H.,Ehrlich A.,et al.Vacuum arc deposition of thin films from an LaB_6 cathode[J].Surface and Coatings Technology,1996,82(3):247-253.
    [29]Late Dattatray J.,More Mahendra A.,Misra Pankaj,et al.Field emission studies of pulsed laser deposited LaB_6 films on W and Re[J].Ultramicroscopy,2007,107(9):825-832.
    [30]Late Dattatray J.,Date Kalyani S.,More Mahendra A.Enhanced field emission from LaB_6thin films with nanoprotrusions grown by pulsed laser deposition on Zr foil[J].Applied Surface Science,2008,254:3601-3605.
    [31]Craciun V.,Craciun D.Pulsed laser deposition of crystalline LaB_6 thin films[J].Applied Surface Science,2005,247(1-4):384-389.
    [32]杨烈宇,关文铎.材料表面薄膜技术[M].北京:人民交通出版社,1991.
    [33]卢进军,潘永强.直流磁控溅射Cr-Cr_2O_3复合金属陶瓷薄膜光学特性研究[J].应用光学,2008,29(5):665-669.
    [34]刘壮,林晶,孙智慧等.磁控溅射陶瓷薄膜(SiOx)阻隔性机理的研究[J].2008,29(10):12-14.
    [35]潘永强:Y.yin.直流磁控溅射Cr/Cr203金属陶瓷选择吸收薄膜的研究[J].真空科学与技术学报,2006,26(6):517-521.
    [36]常天海.磁控溅射陶瓷靶制备氧化铟锡薄膜的XPS和AFM研究[J].真空与低温,2003,9(2):98-101.
    [37]杨伟方,梁展鸿,侯亚奇等.氧化锌铝(ZAO)陶瓷靶材制备及其薄膜性能[J].2008, 28(1):59-63.
    [38]陈祝,张树人,杜善义等.ZnO陶瓷靶制备及其薄膜RF溅射工艺研究[J].无机材料学报,2006,21(4):1011-1017.
    [39]夏冬林,杨晟,王树林等.直流磁控溅射陶瓷靶制备ITO薄膜及性能研究[J].人工晶体学报,2006,35(2):272-275,232.
    [40]龙涛,朱德贵,王良辉等.高导电性ZAO陶瓷靶材及薄膜的制备[J].电子元件与材料,2004,23(2):31-34.
    [41]赵大庆,杨锋.TiO_2陶瓷在磁控溅射中电导率改变机理研究[J].压电与声光,2003,1(25):81-83.
    [42]鲁燕萍.AIN陶瓷的薄膜金属化及其与金属的焊接研究[J].真空科学与技术,2000,3(20):190-193.
    [43]倪星元.平面磁控溅射氧化锌(ZnO)薄膜的几个问题[J].硅酸盐通报,1996,15(5):15-17.
    [44]余凤斌,陈莹,曾海军等.Al基上偏压磁控溅射Cu薄膜的工艺研究[J].稀有金属快报,2008,27(9):35-38.
    [45]高丽,花银群,陈瑞芳等.铜薄膜的直流磁控溅射制备与表征[J].微细加工技术,2008,(3):21-24,49.
    [46]王瑞,周灵平,汪明扑等.磁控溅射Cu-W薄膜的组织与结构[J].材料科学与工程学报,2008,26(4):582-584,598.
    [47]孙兴林,姜宏伟,贾新峰等.磁控溅射超薄金属膜在太赫兹波段的光学特性[J].功能材料,2007,38(A08):3116-3118.
    [48]孙玉,孙治湖,朱三元等.MnxGel-x稀磁半导体薄膜的结构研究[J].物理学报,2007,56(9):5471-5475.
    [49]张剑锋,郭云,秦晓刚等.陶瓷电路板表面聚四氟乙烯薄膜制备工艺研究[J].真空与低 温,2007,(4):195-197,233.
    [50]Waldhauser W.,Mitterer C.,Laimer J.,et al.Sputtered thermionic hexaboride coatings[J].Surface and Coatings Technology,1998,98(1-3):1315-1323.
    [51]Mitterer C.,Komenda-stallmaier J.,Losbichler P.,et al.Decorative boride coatings based on LaB_6[J].Surface and Coatings Technology,1995,74-75(Part 2):1020-1027.
    [52]Mitterer C.,Ott H.-m,Komenda-stallmaier J.,et al.Sputtered decorative hard coatings within the system LaB6---ZrB2[J].Journal of Alloys and Compounds,1996,239(2):183-192.
    [53]王丽玲,刁训刚,舒远杰.六硼化镧薄膜的制备及其物理特性表征[J].薄膜与表面材料,2007:250-254.
    [54]Winsztal S.,Majewska-minor H.,Wisniewska M.,et al.Preparation and investigation of LaB_6 films[J].Materials Research Bulletin,1973,8(12):1329-1335.
    [55]Bessaraba V.I.,lvanchenko L.A.,Paderno Yu B.The preparation and properties of thin film rare earth borides[J].Journal of the Less Common Metals,1979,67(2):505-509.
    [56]Ociepa J.G.,Mr S.Properties of very thin La-B films deposited onto tantalum[J].Thin Solid Films,1981,85(1):43-51.
    [57]Ociepa J.G.Effect of annealing of La-B films investigated by Auger electron spectroscopy[J].Thin Solid Films,1984,120(2):123-131.
    [58]N Lung K.,A Pincosy P.,W Ehlers K.The directly healting LaB_6 cathodes[J].Rev Sci Instru,1986,57(7):165.
    [59]李学丹,万英超.直流二极溅射制备LaB_6簿膜及薄膜分析[J].浙江大学学报(工学版),1986,(01).
    [60]Kinbara A.,Nakano T.,Kobayashi A.,et al.LaBx thin films prepared by magnetron sputtering[J].Applied Surface Science,1993,70-71(Part 2):742-745.
    [61]Yutani Akie,Kobayashi Akihiko,Kinbara Akira.Work functions of thin LaB_6 films[J]. Applied Surface Science,1993,70-71(Part 2):737-741.
    [62]Mitterer C.,Komenda-stallmaier J.,Losbichler P.,et al.Decorative boride coatings based on LaB_6[J].Surface and Coatings Technology,1995,74-75(Part 2):1020-1027.
    [63]Kher Shreyas S.,Spencer James T.Chemical vapor deposition of metal borides:the relatively low temperature formation of crystalline lanthanum hexaboride thin films from boron hydride cluster compounds by chemical vapor deposition[J].Journal of Physics and Chemistry of Solids,1998,59(8):1343-1351.
    [64]Mushiaki M.,Akaishi K.,Funato Y.,et al.Pumping down characteristics of LaB_6 and TiN coated vacuum vessels prepared by magnetron sputtering[J].Vacuum,1996,47(6-8):657-659.
    [65]江关辉,谢舒.LaB_6/GaAs肖特基势垒研究[J].固体电子学研究与进展,1987,(04):63-68.
    [66]Dehlinger A.S.,Pierson J.F.,Roman A.,et al.Properties of iron boride films prepared by magnetron sputtering[J].Surface and Coatings Technology,2003,174-175:331-337.
    [67]J.F.Pierson,C.Rousselot.Amorphous Fe-B-N films deposited by reactive of a FeB target[J].Coatings technology,2004,180-181:44-48.
    [68]黄永章,谢家麟.单晶LaB_6阴极在微波电子枪中的应用[J].强激光与粒子束,1993,(02):228-232.
    [69]金晓,刘锡三,黄孙仁等.单晶LaB_6热阴极稳定性研究[J].强激光与粒子束,1995,(04):555-560.
    [70]王汉斌,许州,卢和平等.单晶LaB_6热阴极直流发射特性实验研究[J].强激光与粒子束,2005,(06):930-934.
    [71]Losbichler P.,Mitterer C.Non-reactively sputtered TiN and TiB_2 films:influence of activation energy on film growth[J].Surface and Coatings Technology,1997,97(1-3):567-573.
    [72]Kryshtab T.G.,Gomez J.Palacios,Lytvyn P.m.,et al.The influence of TiB_2-Thin film thickness on metal-GaAs structural characteristics[J].The Solid films,2000,(373):79-83.
    [73]Sade G.,Pelleg J.,Ezersky V.Titanium silicide formation in TiSi_2/TiB_2 bilayer barrier structure[J].Microelectronic Engineering,1997,33:317-323.
    [74]Guziewicz M.,Piotrowska A.,Kaminska E.,et al.Characteristics of sputter-deposited TiN,ZrB_2 and W_2B diffusion barriers for advanced metallizations to GaAs[J].Solid-State Electronics,1999,43(6):1055-1061.
    [75]曲喜新.薄膜物理[M].上海:上海科学技术出版社,1986.20.
    [76]张龙,朱健,吴璟等.磁控溅射制备低应力金属膜的工艺研究[J].中国机械工程,2005,16(14):1313-1315.
    [77]任雪勇,谢泉,杨吟野等.溅射功率对Ca2Si薄膜性质的影响[J].功能材料,2007,38(A04):1519-1521.
    [78]王文静,萧淑琴,刘宜华等.射频溅射功率对FeZrBCu软磁合金薄膜巨磁阻抗效应的影响[J].物理学报,2005,54(4):1821-1825.
    [79]职利,徐华蕊,周怀营等.Ar气氛下直流磁控溅射ITO薄膜的结构和性能[J].功能材料与器件学报,2007,13(2):177-180.
    [80]宋登元,王永青,孙荣霞等.Ar气压对射频磁控溅射铝掺杂ZnO薄膜[J].半导体学报,2002,23(10):1078-1082.
    [81]任丙彦,刘晓平,李彦林等.工作气压对磁控溅射ITO薄膜性能的影响[J].人工晶体学报,2007,36(4):798-801.
    [82]付恩刚,庄大明,张弓等.工作气压对磁控溅射ZAO薄膜性能的影响[J].功能材料,2003,34(5):543-545.
    [83]刘著光,杨伟锋,吕英等.氩气压强对射频磁控溅射ZnO:Al薄膜结构和性能的影响[J].光谱实验室,2005,25(3):425-427.
    [84]段玲珑,吴卫东,何智兵等.负偏压对磁控溅射Ti膜沉积速率和表面形貌的影响[J].强 激光与离子束,2008,20(3):505-508.
    [85]曾昱嘉,叶志镇,吕建国等.衬底温度对Al+N共掺P-ZnO薄膜性能的影响[J].无机材料学报,2005,20(3):750-754.
    [86]刘新胜,周灵平,门海泉等.衬底温度对直流磁控溅射沉积AIN薄膜组织结构的影响[J].矿冶工程,2007,27(3):82-85.
    [87]JianEr-mei,YeZhi-zhen,LiuWei-chang.P-type ZnO Thin Films Fabricated by dc M agnetron Reactive Sputtering M ethod at Diferent Substrate Temperatures[J].发光学报,2008,29(3):491-494.
    [88]劳技军,韩增虎,胡晓萍等.基片温度对Cr薄膜微结构和力学性能的影响[J].电子显微学报,2002,21(5):639-640.
    [89]蔡雅雅,赖珍荃,王震东等.基底温度对磁控溅射制备氮化钛薄膜的影响[J].南昌大学学报(理科版),2007,31(6):545-549.
    [90]范雄.X射线金属学[M].北京:机械工业出版社,1980.
    [91]蔡珣,石玉龙.现代薄膜材料与技术[M].上海:华东理工大学出版社,2007.264.
    [92]孙大明,孙兆奇.金属陶瓷薄膜及其在光电子技术中的应用[M].北京:科学出版社,2002.
    [93]沈淑娟,方绮云.波谱分析的基础理论及应用[M].北京:高等教育出版社,1998.
    [94]朱贤方,LimLc.物理气相淀积薄膜的微结构和内应力[J].物理,1998,27(1):37-40,47.
    [95]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001.
    [96]Mitterer C.,Ott H.-m,Komenda-stailmaier J.,et al.Sputtered decorative hard coatings within the system LaB_6-ZrB_2[J].Journal of Alloys and Compounds,1996,239(2):183-192.
    [97]Waldhauser W.,Mitterer C.,Lalmer J.,et al.Structure and electron emission characteristics of sputtered lanthanum hexaboride films[J].Surface and Coatings Technology,1995,74-75(Part 2):890-896.
    [98]卢柯,刘学东.纳米晶体材料的Hall-Petch关系[J].材料研究学报,1994,8(5):385-391.
    [99]郑修麟.材料的力学性能[M].西安:西北工业大学出版社,1990.
    [100]常明,常皓.纳米晶体微观畸变与弹性模量的模拟研究[J].物理学报,1999,48(7):1215-1222.
    [101]Schelm S.,Smith G.B.Tuning the surface-plasmon resonance in nanoparticales for glazing applications[J].Applied Physics,2005,97:12314-1-8.
    [102]于普涟.六硼化镧多晶材料的制备及应用[D].济南:山东大学,2001.
    [103]高瑞兰.LaB_6-ZrB_2复合材料的制备与性能研究[D].济南:山东大学,2004.
    [104]林祖伦,陈泽祥,郭靖扬.LaB_6在低压氮气和氦气中的放电特性[J].强激光与离子束,2006,18(10):1745-1748.
    [105]夏绍喜,陈丽清,肖丹.六硼化镧(LAB_6)铜离子敏感电极的初步研究[J].化学传感器,1994,14(4):265-266.
    [106]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [107]王从曾.材料性能学[M].北京:北京工业大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700