高纯乙腈连续精制工艺模拟与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精馏塔是分离过程中应用最为广泛的一种分离混合物的设备,在石油、化工过程生产中具有举足轻重的地位。然而精馏过程是以热能的消耗来换取石油化工产品的高耗能过程,其操作的优化对于提高产品的质量、降低能耗有着重要的意义。
     过程模拟、控制与优化技术是提高石油化工企业的经济效益、降低生产成本的主要技术手段。但精馏过程的塔系优化问题属于大规模复杂系统的非线性规划问题,其中基于机理方法建立的模型因经较多假设与精简而失其精确性,并且目标函数构建复杂,决策变量多且耦合严重,可行域不易确定,优化操作困难,因此在实际应用中存在很大困难。
     本文以某化工公司直接合成法生产乙腈为案例,在熟悉乙腈合成精制的工艺基础上,分析物性方法和精馏机理,对粗乙腈三元体系分离进行工艺模拟优化和控制的研究,以寻求简易可行的优化操作方法。主要内容和结果如下:
     1、针对高纯乙腈连续精制过程,深入分析精馏原理,对乙腈三元体系进行热力学气液平衡计算,并且最终选择NRTL模型计算物质的热力学参数。然后将之应用于乙腈连续精制体系的模拟上,深入剖析,模拟结果与生产数据相接近,确定先进模拟系统、工艺知识和生产经验相结合可以较好模拟精馏过程。
     2、介绍了三元气液平衡相图,并对乙腈精馏三元共沸体系进行了研究,分析模拟数据,对模拟过程提出优化方案。主要考查进料板、压力因素、出料量和回流比等因素对乙腈产品品质及精馏过程中能耗的影响,从中找出较为可行的优化操作控制区域,并确定了最适合操作参数。
     3、将优化操作参数应用于生产,针对该化工厂蒸汽供应不稳,干扰较大,特别是对象存在大时滞,并具有非线性与时变性等特点提出了控制方案,并付诸实践,根据生产反馈信息,乙腈纯度达到99.9%以上,回收率达到90%以上,节约能耗达30%。
As separation equipments, rectification columns are widely applied in the separation process, and they play an important role in petrochemical industry. However, petrochemicals paid energy-intensively for their production in rectification process, so the optimization of operation is significant to improve the quality of the products and reduce the energy consumption.
     This article attempts to take a chemical company directly synthesising acetonitrile as a case, at the base of be familiar with synthesis process of acetonitrile, analysising material properties and the mechanism of distillation, study the process simulation, optimization and control of the separation of acetonitrile ternary system, and try to find a easy way to optimizing the operation. The main content and the results are as follows: At the base of being familiar with acetonitrile synthesis process, analysising material properties and the mechanism of distillation, the process simulation, optimization and control in the separation of acetonitrile ternary system is studied, in order to find a easy way to optimizing the operation. The main content and the results are as follows:
     1, For the continuous refining process of high purity acetonitrile, this work deeply analyzed the mechanism of distillation, and solved the gas-liquid equilibrium equation of the ternary systems (acetonitrile-water- methanol), and employed the NRTL model to get the thermodynamic parameters of material. This method was applied to the simulation of continuous refining process of acetonitrile, the simulation results were close to practical data. This result confirmed that the combination of advanced simulation system, technology and experiences can forecast the variation of operating parameters in the rectifying process.
     2, The phase diagram of ternary vapor-liquid equilibrium was applied to analysis the triple azeotropic system in the distillation of acetonitrile. This work investigates the effect of stage, pressure, out stream and reflux ratio on the properties of the concentration of acetonitrile and energy consumption during distillation process, the most appropriate operation parameters were determined by the feasible control region of optimize operation.
     3, The optimal parameters were applied to put forward control scheme in the production in chemical factory which had some problems such as the supplement of steam was unstable, especially existed larger time-delay which was nonlinear and time-variable. According to the feedback from production, the concentration and recovery of acetonitrile was 99.9% and 90%, respectively, while reduce energy consumption up to 30%.
引文
[1]孙小方,蔡亦军,夏陆岳等.高纯乙腈连续精制工艺及计算机智能控制系统设计与应用[J].化工自动化及仪表,2010, 37(4):33~35.
    [2]黄付玲.丙烷氨氧化合成乙腈的研究[D].辽宁:大庆石油学院, 2004.
    [3] Angelo Lucia. Complex Domain Chemical Process Simulation in Theory and in Practice[J]. Ind Eng Chem Res, 2000,39(6): 1713–1722.
    [4]曲平,俞裕国.化工过程模拟与优化[M].大连:大连理工大学化工学院内部教材, 1998.
    [5]屈一新.化工过程数值模拟及软件[M].北京:化学工业出版社,2006.
    [6]杨友麒,项曙光.化工过程模拟与优化[M].北京:化学工业出版社,2006.
    [7]陆思锡,张慧娟,尹清华.化工过程模拟及相关高新技术(Ⅰ)化工过程稳态模拟[J].化工进展, 1999,18(4):63-64.
    [8]胡克林,罗金生.化工过程模拟技术进展与趋势.新疆工学院学报[J].1997,18(4): 254-261.
    [9]雷培德,李端阳,汪静,等.化工过程模拟技术及HYSIM模拟系统在化工生产中的应用[J].湖北化工, 2002,6: 4-6.
    [10] Patrick J Robinso, William L Luyben. Simple Dynamic Gasifier Model That Runs in Aspen Dynamics[J]. Ind Eng Chem Res, 2008,47(20):7784-7792.
    [11]姚平经.过程系统分析与综合[M].大连:大连理工大学出版社,2004.
    [12]沈静珠,陈丙珍.过程系统优化[M].北京:清华大学出版社,1994.
    [13]梁旻,多稳态理论研究及非平衡级精馏模型在工业装置上的应用[D].北京:清华大学,2000.
    [14]钱伯章.国外炼油石化自动化技术新趋向[J].炼油化工自动化,1994,(2):3-21.
    [15]匡卓贤,郭林.乙烯装置在线优化技术分析[J].石油炼制与化工,1995,26(4):41-46.
    [16]钱伯章.世纪之交的石油化工自动化技术[J].1999,3:2-7.
    [17]钱伯章.当代石油化工自动化的技术发展要点(续)[J].1997,24(1):3-9.
    [18] Lewis W K,Matheson G L. Study in Distillation-design of rectifying columns for natural and refinery gasoline[J].Ind Eng Chem. 1932,24:494-498.
    [19] Cott B J,Durham R G,Lee P L,et al.Process model based engineering[J].Comput Chem Engng, 1989,13(9):973-984.
    [20]时钧,汪家鼎,余国琮,等.化学工程手册[M].北京:化学工业出版社,1996.
    [21] Boston J F,Sullivan S L. A New Class of Solution methods for multi-component multistage separation processes[J].The Canadian J Of Chem Eng,1974,52(1):52-63
    [22] Russell R A.A flexible and relible method solves single-tower and crude-distillation-column problems[J].Chem Eng,1983,90(21):53-59.
    [23] Box G E P.Evolutionary Operation[M].New York:John Wiley Inc,1969.
    [24] Edgar T F,Himmelbau D M.Opt.of Chem.Pro [M].New York:MeGraw-Hill,1988
    [25] Galler P W,Kisala T F.Process Optimization by Simulation[J].Chem Eng Progress, 1987,83(8):60-66
    [26] Ellingson W R.Operation Cost Optimization Using a Dynamic Process Model[J].Chem Eng Progress, 1983,79(2):50-55.
    [27] Berna T J,Locke M H,Westerberg A W.A New Approach to Optimization of Chemical Processes[J].AIChE J.1980,26(1):37-43
    [28]陈宝林.最优化理论与算法[M].北京:清华大学出版社,1989.
    [29]盛昭翰,曹忻.最优化方法基本教程[M].南京:东南大学出版社,1990.
    [30]张可村.工程优化的算法与分析[M].陕西:西安交通大学出版社,1988.
    [31]蔡宣三,刘前.低维工程优化问题的一种有效算法[J].清华大学学报,1986,26(6):57-66.
    [32]王强,邵惠鹤.遗传算法在甲醛生产过程优化中的应用[J].控制理论及应用,1998,13(4):477-581
    [33]刘士荣,俞金寿.过程控制的若干问题研讨[J]石油化工自动化,1999,(1):5-9.
    [34]万百五.大系统智能控制的进展[J].控制理论及其应用,1994,11(1):118-121.
    [35]汪涛,郑琪美,徐灿.蒸馏过程先进控制与在线优化[J].石油炼制与化工,1996,27(8):40-46.
    [36]李兵,蒋慰孙.混沌优化方法及其应用[J].控制理论与应用,1997,4(4):613-615.
    [37]陈禹六,大系统理论及其应用[M].北京:清华大学出版社,1988.
    [38]何小荣.化工过程优化[M].北京:清华大学出版社,2003.
    [39]张卫东,任钟旗,刘光虎,等.化工过程优化[M].北京:化学工业出版社,2006.
    [40] Slaby J.Rigorous On-line Modeling of an industrial Crude Unit[A].AIChE Spring National Meeting[C],Houston,Texas,March,1995:19-23.
    [41] WEI Shanbi,CHAI Yi,DING Baocang. Distributed model predictive control for multiagent systems with improved consistency[J]. Journal of Control Theory and Applications,2010,(1): 117-122
    [42] Locke M H,Edahl R,Westerberg A W.Improved Successive Quadratic Programming Optimizat- ion Algorithm for Engineering Design Problems[J].AIChE J,1983,29(5):871-874.
    [43] Biegler L T,Hughes R R.Infeasible Path Optimization with Sequential Modular Simulator[J]. AIChE J,1982,28(6):994-1002.
    [44] Chen H S,Stadtherr M A.A simultaneous-Modular Approach to Process Flowsheeting and Optimization-PartⅠ:Theory and Implementation[J].AICcE J,1985a,31(11):1843-1856.
    [45] Chen H S,Stadtherr M A. A simultaneous-Modular Approach to Process Flowsheeting and Optimization-PartⅡ:Performance on Optimization Problems[J].AIChE J, 1985b, 31(11):1857-1868.
    [46] Chen H S,Stadtherr M A. A simultaneous-Modular Approach to Process Flowsheeting and Optimization-PartⅢ: Performance on Optimization Problems [J]. AIChE J , 1985c, 31(11):1868-1881.
    [47] Biegler L T.Tailoring Optimization Algorithms to Process Applications[J].European Symposium on Computer Aided Process Engineering,ESCAPE-1,Computers Chem.,1992,16:81-96.
    [48] Biegler L T,Nocedal J,Blau G E.A Reduced Hessian Method for Large-scale Constrained Optimization.[J].SIM J. Optimization,1995,5(2):314-347.
    [49]Schmid C,Biegler L T.Acceleration of Reduced Hessian Methods for Largescale Nonlinear Programming[J].Comput.Chem.Engng,1993,17(5):451-463.
    [50] Schmid C,Biegler L T.A Simultaneous Approach for Flowsheet Optimization with Existing Modeling Procedures[J].Trans.IchemE,1994,7:382-388.
    [51] Schmid C,Biegler L T.Quadratic Programming Methods for Reduced Hessuan SQP[J].Comput.Chem.Engng,1994,18:817-832.
    [52] Vasantharajan S,Biegler L T.Large-scale Decomposition for Successive Quadratic Programming[J].Comput.Chem.Engng,1988,12(11):1087-1101.
    [53] Vasantharajan S,Biegler L T.Simultaneous Solution of Reactor Models within Flowsheet Optimization[J].Chem.Eng.Res,1988,66:396-406.
    [54] Vasantharajan S,Viswanathan J,Biegler L T.Reduced Successive Quadratic Programming Implementation for Large-scale Optimization Problems with Smaller Degrees of Freedom[J]. Comput Chem Engng 1990,14:907-915.
    [55]陈丙珍,何小荣,沈静珠.逐次二次规划法求解化工流程优化问题的研究[J].清华大学学报,1988,28(3):33-41.
    [56] Cuter C,Perry R T.Real Time Optimization with Multivariable Control is Required to Maximize Profits[J].Comp.Chem,Engng,1983,7(5):663-667.
    [57] Lauks U E,Vanbinder R J,et al.On-Line Optimization of an Ethylene Plant,European Sym[J].On Computer Aided Process Engineering,ESCAPE-1 Supplement to Comput. Chem Engng, 1992, 16:213-220.
    [58] Lucia A,Xu J,Layn K M.Nonconvex process optimization[J].Comp Chem Engng, 1996, 20(12): 1375-1398.
    [59]邓正龙.化工中的优化方法[J].北京:化学工业出版社,1995,57-69.
    [60]张凡.常减压蒸馏装置的优化操作[J].石油炼制, 1990 ,(8):47-52.
    [61] Shinskey F G.Distillation control for productivity and energy conservation [M].New York: McGraw-Hill,1984.
    [62] Luyben W L.Multicomponent batch distillation.Ternary systems with slop recycle[J]. Industrial & Engineering Chemistry Research,1988,27:642-647.
    [63]徐用懋.微型计算机在过程控制中的应用[M].北京:清华大学出版社,1989.
    [64]苏永宏.微型计算机及其在蒸馏控制中的应用[M].北京:中国石油化工出版社,1990.
    [65]张杰,阳宪惠.多变量统计过程控制[M].北京:化学工业出版社,2000.
    [66] Hu Y C,Ramirez W F.Application of Modern Control Theory to Distillation Columns[J].AIChE J,1972,18(3):479-486.
    [67] Coppus G W,Shah S L,Wood R K.Robust Multivariable control of a Binary Distillation Column[J].IEE Proceedings,1983,130(5):15-45.
    [68] Dartt S R.A Survey on Process control on Applicaton Needs[J].Chem Eng Progress, 1985, 81(11):24-55.
    [69] Tolliver T L,Waggoner R C.Distillation Column Control:A Review and Perspective from the CPI[J].Adv.In Instrumentation, 1980,35(1):83-106.
    [70] Deshpande P B.Distillation Dynamics and control[M].Instr Soci of American:Research Triangle Park,NC,1985.
    [71] Kane L.Handbook of Advance Process Control and Instrumentation[M]. Houston:Gulf Publishing Company,1987.
    [72] Edgar T F,Schwanke C D.A Review of Chemical Processes[M].New York: McGraw-Hill,1977.
    [73] Waller K V.An Experimental comparison of four control structures for two-point control of distillation[J].Ind Eng Chem Res,1988,27(4):624-630.
    [74] Rys R A.Advanced Control Techniques for Distillation Columns[J].Chem Eng, 1984,91(25):75-81.
    [75] (美)卢伊本著.张竹波,王开正译.化学工程师使用的过程模型化、模拟和控制[M].北京:原子能出版社,1987.
    [76]谢扬,沈庆扬.ASPEN PLUS化工模拟系统在精馏过程中的应用[J].化工生产与技术, 1999, 6(3):17-24.
    [77]刘雨虹.ASPEN PLUS化工模拟系统在精馏过程中的应用[J].石油化工腐蚀与环护, 2003,20(4):56-59.
    [78] Jens-Uwe Repke, Andreas Klein, Fiorian Forner et al. Pressure Swing Distillation for Separation of Homogeneous Azeotropic Mixtures in a Mass- and Heat- Integrated Column System:Operation Performance. Computer Aided Chemical Engineering,2004,18:757-762.
    [79] Jens-Uwe Repke, Andreas Klein. Homogeneous azeotropic pressure swing distillation: continuous and batch process. Computer Aided Chemical Engineering, 2005, 20(1): 721-726
    [80] Jens-Uwe Repke, Florian Forner,and Andreas Klein. Separation of Homogeneous Azeotropic Mixtures by Pressure Swing Distillation-Analysis of the Operation Performance. Chemical Engineering and Technology, 2005,28(10):1151-1157.
    [81] Kejin Huang,Lan Shan,Qunxiong Zhu,et al. Adding rectifying/stripping section type heat integration to a pressure-swing distillation(PSD)process. Appl Therm Eng,2007.
    [82] Ivonne Rodriguez-Donisc,Viktoria Vargaa b,Vincent Gerbaudb. Feasibility study of heterogeneous batch extractive distillation.Computer Aided Chemical Engineering, 2005, 20(1): 895-900.
    [83]王晓艳.萃取精馏分离乙腈一水体系的研究[D].辽宁:沈阳药科大学,1998.
    [84]周金波.共沸混合物的间歇萃取精馏分离研究[D].天津:天津大学,2005.
    [85]何桃吉.乙腈-水共沸物分离的模拟与实验研究[D].天津:天津大学,2005.
    [86]白鹏,庄琼红.一种分离甲醇乙腈共沸物的方法[P].中国,CN: 101134736, 2008.
    [87]崔现宝,李杨,冯天扬等.加盐萃取精馏分离乙腈-水物系[J].石油化工, 2007,36(12): 1229~1233.
    [88] Repke J U,Kein A,B ogle D,et al.Pressure Swing Batch Distillation for HomogeneousAzeotropic Separation [J]. Chem Eng Res Des, 2007, 85(4): 492~501.
    [89]孙建平,屈颖,施壮.大纯滞后系统的模糊-Smith控制及参数优化[J].仪器仪表学报,2006, 27(4):427-429.
    [90]史旭华.带积分的模糊-smith预估器在电加热温度控制中的应用[J].工业仪表与自动化装置, 2004, (2): 33-35.
    [91] Li Hong-xing, Miao Zhi-hong, Lee E S. Variable universe stable adaptive fuzzy control of a nonlinear system[J]. Computers and Mathematics with Applications , 2002,22(5):799-815.
    [92]薛美盛,祁飞,吴刚等.精馏塔控制与节能优化研究综述[J].化工自动化及仪表, 2006,33(6):1~6.
    [93]孙小方,潘海天,蔡亦军等.大时滞过程新型模糊控制策略研究进展[J].工业仪表与自动化装置, 2007,36(5): 14-17.
    [94]李伟,张申.基于IFIX的配煤自动化设计[J].电气传动, 2008,38(3): 43-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700