高压直流输电线路故障解析与保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压直流输电线路保护的正确动作率一直较低,大量直流线路故障是由直流控制系统响应动作,造成直流闭锁,引起不必要的直流停运,给电网安全运行带来重大影响。一方面由于直流线路故障本身的复杂性,目前缺乏有效的理论分析体系和保护整定校验方法,单纯依赖实际直流工程数值仿真系统的研究模式难以揭示深层机理和作用边界;另一方面,线路故障后直流线路保护的暂态响应特性与控制系统强相关,而对直流系统这种特有复杂性对线路保护影响的研究较少。本文结合我国直流输电工程重大需求,在直流线路故障解析、控制保护动态响应特性与协调、保护新原理及方案改进等方面开展研究,选题具有重要的学术价值和工程实用意义。
     本文主要研究工作包括:
     1)在系统研究直流线路行波在故障点、模量间及线路末端的折反射规律的基础上,推导了基于无畸变传输线模型的单极和双极直流线路行波解析解,用以研究平波电抗器、直流滤波器、故障电阻等因素对直流线路行波的影响机理。研究表明:直流滤波器使行波波头由阶跃波变成衰减的振荡波,从而使其变化率和幅值都减小;过渡电阻和故障距离主要影响行波波头的幅值大小。基于实际直流工程的EMTDC仿真结果表明,本文提出的行波解析解可用于实际工程中的行波保护整定计算。
     2)提出了基于模量极性比较的单端行波保护新原理,有效地提高了直流线路行波保护耐受过渡电阻的能力。现有行波保护以行波波头变化率和变化幅度为判据,其定值必须大于区外故障引起的波头变化率以保证其选择性,制约了对过渡电阻和故障距离的反映能力。本文基于故障极线路与健全极线路反向行波的差异构成判据,以极性比较代替幅值比较,大大提高了对高阻接地故障的灵敏性。应用参数灵敏度分析了该保护原理的相关因素和影响机理,给出了整定原则,基于实际直流工程的EMTDC仿真结果验证了该行波保护原理的有效性。
     3)针对差动保护闭锁判据无法区别线路故障与区外故障的问题,提出了基于差流频谱特性差异的闭锁判据,EMTDC仿真结果表明,该判据能够准确识别线路故障与区外故障,且受过渡电阻,故障距离影响较小,有效地减少了差动保护动作时间。
     4)基于实际直流工程的控制系统EMTDC模型,研究了直流控制系统对线路故障的影响机理,指出整流侧低压限流的电压修正环节及暂态电流控制环节可能导致直流线路电压电流持续波动,造成线路差动保护拒动。本文提出在电压修正环节引入整流侧换流母线电压闭锁逻辑,可以有效地避免差动保护受控制系统作用的不利影响。
     5)结合现场故障录波与EMTDC仿真,研究了微分欠压保护动作特性和动作边界,提出将线路电流闭锁判据引入微分欠压保护,以防止其在区外交流系统连续故障时误动作。
     6)基于当前直流工程线路保护采样率水平和通道条件,提出了提高直流线路保护正确动作率的改进方案,在实际直流工程的详细EMTDC模型基础上,建立了包含现有方案和改进方案的EMTDC仿真平台,对比验证了改进方案的有效性。
     本文的研究工作得到了国家自然科学基金项目(50807017)与南方电网合作项目的资助,部分研究成果已在南方电网实际直流工程保护改造中得到应用,验证了本文工作的正确性与有效性,取得了重要的经济和技术效益。
A large number of unnecessary HVDC outages are induced by the HVDC line faults because of the low level of sensitivity of HVDC line protections, leading to a significant negative influence on the safety of the power system. On the one hand, there is a lack of effective analytical theory and setting calculation method due to the complexity of HVDC line faults. It is difficult to reveal the underlying principle and the border of influencing factors just by the numerical simulation of the HVDC system. On the other hand, the transient characteristics of the HVDC line fault and thus the line protections are affected by the HVDC control system, which is very complicated and still a hard nut to crush. In this paper, the analytical theory of the HVDC line fault, dynamic characteristics of the protections and the control system and their coordination are studied and an improved protection scheme is proposed to meet the significant demand of the HVDC system, which is not only valuable in the academic area but also utility in the engineer field.
     The work is summarized as following:
     (1) Analytical treatment is applied to indicate the reflection principles at the fault position, between the modal quantities and at the terminals of the HVDC line. Based on the distortionless line model, the analytical solutions of the traveling waves on both the monopole system and the bipolar system are developed to reveal effects of the smoothing reactor, DC filters, fault resistance on the traveling waves caused by the line fault. It is shown that the wave-front of the voltage at the terminal is consist of a exponential decay component and a sinusoidal component and thus the amplitude and the derivative of the wave-front both attenuate, although the initial incident wave has a step waveform. The initial amplitude mainly depends on the fault resistance. Furthermore, the change rate of the voltage which is the dominating discriminant of the existing traveling wave protection can be obtained for setting calculation of the traveling wave protections of the HVDC line. The simulation results obtained from the EMTDC model of the real HVDC system shows the effectiveness and credibility of the setting method.
     (2) A novel protection principle based on the polarity comparison of modal back waves is proposed in the paper, which is effective to improve the capability of detecting the high resistance line faults. The threshold of the change rate of the traveling waves which is the dominating discriminant of the existing traveling wave protection must be greater than the ones caused by the external faults. Thus, the response of the existing traveling wave protections to the high resistance and the far distance line faults. The polarity comparison instead of amplitude comparison is used to improve sensitivity of the traveling wave protection. The simulation results based on the EMTDC show the effectiveness of the proposed protection principle.
     (3) The operation time of the existing DC Line Differential Protection (DLDP) is too long as the blocking criterion can’t distinguish the DC line fault from the AC system failure. A novel blocking criteria, according to different spectrum of the differential currents between the DC line fault and the AC system failure, is presented. Simulation results obtained by the EMTDC show that the proposed criteria can discriminate the line fault and the faults in the AC system availably and rarely affected by the fault impedance and the fault distance, while it does shorten the operation time of the DLDP.
     (4) The effect of the control system on the HVDC line faults is studied using the EMTDC model of real HVDC system. It is shown that the continuous fluctuation of HVDC line current may be induced by voltage adjusting function and transient current control function of the Voltage Dependent Current Limit (VDCL) at the rectifier, which leads to miss-trip of DLDP. For this issue, a criterion using the voltage of the commutation bus at the rectifier is proposed to avoid the unfavorable influence of the control system on the DLDP.
     (5) The dynamic characteristics of the Derivative and Under Voltage Protection (DUVP) is presented by means of the analysis of field data and the simulation results. The DUVP may mal-operate because of the harmonic distortion of DC voltage and in-coordination between the AC main protection and the DUVP when the cascading failure happens in the AC system. To address the problem, the DC current criteria is added to the DUVP.
     (6) A novel HVDC line protection scheme, based on the sampling frequency and channels of the existing HVDC line protection. A simulation system including both the existing scheme and the proposed one is developed based on the EMTDC models of an real HVDC system. The comparison of the two schemes shows the validity of this paper’s effort.
     This work was supported by the National Natural Science Foundation of China (50337010) and the co-operative researches with China Southern Power Grid(CSG). Some of the results has been applied in the modification of the HVDC projects in CSG, which shows effectiveness and credibility of this paper’s efforts.
引文
[1]舒印彪.中国直流输电的现状及展望[J].高电压技术, 2004, 30(11): 1-2.
    [2]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术, 2004, 3(11):11-12.
    [3]黄万永,霍继安,曾南超,等.跨省电网以直流相联是全国联网的最佳模式[J].电网技术, 1999, 23(1): 59-62.
    [4]陈红军,孟庆东.高压直流输电技术的发展及其在电网中的作用[J].中国电力, 2001, 34(12): 68-71.
    [5]丁钊,韩伟强.天广直流输电系统双极运行情况总结[J].电网技术. 2003, 27(9): 49-54.
    [6]任达勇.天广直流工程历年双极闭锁事故分析[J].高电压技术, 2006, 32(9): 173-176.
    [7]艾琳.高压直流输电线路行波保护的研究[D].北京:华北电力大学, 2002.
    [8]赵婉君.高压直流输电工程技术[M].北京:中国电力出版社, 2004.
    [9] Nnaidoo D., Ijumba N.M. HVDC Line Protection for the Proposed Future HVDC System [C]. Proceedings, IEEE PowerCon Conference on Power System Technology, Singapore, 2004, Vol. 2, pp: 1327-1332.
    [10] Naidoo D., Ijumba N. M. A protection system for long hvdc transmission lines[C]. in proc. Power Engineering Society Inaugural Conference and Exposition in Africa, Durban, 2005. pp. 150-155.
    [11]李爱民,蔡泽祥,任达勇,等.高压直流输电控制与保护对线路故障的动态响应特性分析[J].电力系统自动化, 2009, 33(11): 72-75.
    [12]周翔胜,林睿.高压直流输电线路保护动作分析及校验方法[J].高电压技术, 2006, 32(9): 33-49.
    [13]高锡明,张鹏,贺智.直流输电线路保护行为分析[J].电力系统自动化, 2005, 29(14): 96-99.
    [14]胡宇洋,黄道春.葛南直流输电线路故障及保护动作分析[J].电力系统自动化. 2008, 32(8): 102-107.
    [15]周红阳,余江,黄佳胤,等.直流线路纵联差动保护的相关问题[J].南方电网技术, 2008, 2(3): 17-21.
    [16]张楠,陈潜,王海军,等.直流线路纵差保护算法的改进及仿真验证[J].南方电网技术, 2008, 2(3): 17-21.
    [17]黄佳胤,周红阳,余江.“3?21”天广直流线路高阻抗接地故障的分析与仿真[J].广东电力, 2005, 18(11): 15-17.
    [18]余江,周红阳,黄佳胤,等.交流系统故障导致直流线路保护动作的分析[J].南方电网技术, 2009, 3(3): 20-23.
    [19]郭琦,韩伟强,黄立滨,等.直流低电压保护延时定值校核RTDS仿真研究[J].南方电网技术, 2009, 3(2): 32-34.
    [20] Liu Xiaolei, Osman Malik A. H., O. P.. Hybrid traveling wave/boundary protection for monopolar HVDC line[J]. IEEE Trans. Power Del., April 2009, 24(2): 569-578,
    [21] Liu Xiaolei, Osman A. H., Malik O. P.. Hybrid traveling wave/boundary protection for bipolar HVDC line[J]. IEEE Trans. Power Del., April 2009, 24(2): 1-8.
    [22] Shang L., Herold G., Jaeger J., et al. High-speed fault identification and protection for HVDC line using wavelet technique[C]. IEEE Porto Power Tech. Conf. , Porto, Portugal, 2001, vol.3, pp. 1-5, pt 3.
    [23]全玉生;李学鹏;马彦伟;等.基于小波变换的HVDC线路行波距离保护[J].电力系统自动化, 2005, 29(18): 52-56.
    [24]朱韬析,彭武.天广直流输电系统线路高阻接地故障研究[J].电力系统保护与控制, 2009, 37(23):137-140.
    [25]王一宇,周于邦译.电力系统暂态[M].北京:中国电力出版社, 2003.
    [26] Jr Branin, F. H. Transient analysis of lossless transmission lines[J]. Proc. IEEE, Nov. 1967, vol. 55: 2012-2013.
    [27] Dommel H. W. Digital computer solution of electromagnetic transients in single and multiphase networks[J]. IEEE Trans. on PAS. Apr. 1969, 88(4): 388-399.
    [28] Bunder A.. Introduction of frequency-dependent line parameters into an electromagnetic transients program[J]. IEEE Trans. on PAS. Jan. 1970, 89(1): 88-97.
    [29] Snelson J. K.. Propagation of travelling waves on transmission lines - frequency dependent parameters[J]. IEEE Trans. on PAS. Jan. 1973, 91(1): 85-91.
    [30] Meyer W. S., Dommel H.W.. Numerical modelling of frequency-dependent transmission-line parameters in an electromagnetic transients program[J]. IEEE Trans. on PAS. Nov. 1973, 93(5): 1401-1409.
    [31] Nakanishi H., Ametani A., Eng C.. Transient calculation of a transmission line usingsoperposition law[J] IEE Proc. July. 1986, 33(5): 263-269.
    [32] Semlyen A., Dabuleanu A.. Fast and accurate swithcing transient calculation on transmission lines with ground rentern using recursive convolutions[J] IEEE Trans. on PAS. Mar. 1975, 94(2): 561-671.
    [33] Marti J. R.. Accuarte Modelling of Frequency-Dependent Transmission Lines in Electromagnetic Transient Simulations[J] IEEE Trans on PAS, April 1982, 101(1): 147-157.
    [34] Gustavsen B., Semlyen A.. Rational approximation of frequency domain responses by vector fitting[J] IEEE Trans on Power Delivery, ,July 1999, 14(3): 1052-1061.
    [35] Gustavsen B., Semlyen A. Combined phase and modal domain calculation of transmission line transients base on vector fitting[J] IEEE Trans on Power Delivery, April 1998, 13(2): 605-614.
    [36] Gustavsen B., Semlyen A.. Simulation of transmission line transients using vector fitting and modal decomposition[J]. IEEE Trans on Power Delivery, July, 1999., 14(3): 596-604.
    [37] Dounavis A., Achar R., Nakhla M.. A general class of passive macromodels for lossy multiconductor transmission lines[J]. IEEE Transactions on Microwave Theory and Techniques, Oct. 2001, 49(10): 1686-1696.
    [38] Dounavis A., Li Xin, Nakhla M. S., et al. Passive closed-form transmission-line model for general-purpose circuit simulators[J]. IEEE Transactions on Microwave Theory and Techniques, Dec. 1999, 47(12): 2450-2459.
    [39] Dufour, C., Le-Huy H. Highly accurate modeling of frequency-dependent balanced transmission lines[J]. IEEE Trans on Power Del. 15(2): 610-615.
    [40] Desilva H. M. J., Gole A.M., Wedepohl L.M.. Accurate electromagnetic transient simulation of HVDC cable and overhead transmission lines[C]. presented at the International Conf. on Power System Transients(IPST’07), Lyon, France Jun, 2007.
    [41] Wedepohl L.M.. Application of matrix methods to the solution of travelling-wave phenomena in polyphase systems[J]. IEE Proc., Dec, 1963, 110(12): 2200-2212.
    [42] Noda T., Nagaoka N., Ametan A.. Phase domain modeling of frequency-dependent transmission lines bymeans of an ARMA model[J] IEEE Trans. on Power Del., Jan, 1996., 11(1): 401-411.
    [43] Noda T., Nagaoka N., Ametan A.. Further improvements to a phase-domain ARMA line model in terms of convolution, steady-state initialization, and stability[J] IEEE Trans. on Power Del., July, 1997, 12(3): 1327-1334.
    [44] Morched A., Gustavsen B., Tartibi M.. A universe model for calculation of electromagenetic transients on overhead lines and underground cables[J]. IEEE Trans. on Power Del., July, 1999, 14(3): 1032-1037.
    [45] Gustavsen B., Irwin G., Magnar R. et al. Transmission line models for the simulation of interaction phenomena between AC and DC overhead lines[C]. presented at the International Conf. on Power System Transients(IPST’99), pp: 61-65. Budapest, Jun., 1999.
    [46] Barthold L. O., Carter G. K. Digital traveling-wave solutions I: single-phase equivalents[J] AIEEE on PAS.,Apr., 1961, 80(3): 812-818.
    [47] McElroy A. J., Smith H. M. Propagation of switching-surge wave-fronts on EHV transmission lines[J] AIEEE on PAS., Feb. 196381(3): 983-995.
    [48] Stanek, E. K., Lewis, W. A computation of reflection and transfer coefficient matrices for switching transient studies[J] IEEE on PAS. May. 1970, 90(3): 1017-1024.
    [49] Hedman, D E. Propagation on overhead transmission lines I-Theory of modal analysis[J] IEEE on PAS. Mar. 1965, 84(3): 200-205.
    [50] Hedman, D E. Propagation on overhead transmission lines II-Earth-conduction effects and practical results[J] IEEE on PAS. Mar. 1965, 84(3): 205-211.
    [51] Uram.R., Miller R. W. Mathematical analysis and solution of transmission line transients I-Theory[J] IEEE on PAS. Nov. 1964, 83(3): 1116-1123.
    [52] Uram.R., Miller R. W. Mathematical analysis and solution of transmission line transients II-Applications[J] IEEE on PAS. Nov. 1964, 83(3): 1123-1137.
    [53] Deri A., Tevan G., Semlyen A. et al. The Complex Ground Return Plane a Simplified Model for Homogeneous and Multi-Layer Earth Returns[J]. IEEE Trans on Power Apparatus and Systems, April. 1981, 100(8): 3686-3693.
    [54] Semlyen A, Abdel-Rahman M H. Transmission Line Modelling By Rational Transfer Functions[J]. IEEE Trans on Power Apparatus and Systems, Sep. 1982, 101(9): 3576-3584.
    [55] Semlyen A., Abdel-Rahman M. H. A state variable approach for the calculation of switching transients on a power transmission line[J]. IEEE Trans on Power Apparatus and Systems, Sep. 1982, 29(9): 624-632.
    [56]李学鹏.高压直流输电线路行波保护及其故障定位的研究[D].北京:华北电力大学大学, 2005.
    [57]孙韬,刘宗行,江泽佳.无畸变传输线方程的解析解[J].电路与系统学报, 2007, 12(6):70-74.
    [58] Kimbark, E.W. Transient Overvoltage on a Bipolar HVDC Overhead Line Caused by DC Line Faults[J] IEEE Trans on Power Apparatus and Systems, April 1970, 59(4): 592-610.
    [59] Hingorani, N.G. Transient Overvoltages Caused by Monopolar Ground Fault on Bipolar DC Line: Theory and Simulation[J] IEEE Trans on Power Apparatus and Systems, April, 1970, 59(4):584-592.
    [60] Reeve J., Kappoor S.C.. Digital Simulation of Travelling Waves in HVDC Transmission Lines[J]. IEEE Trans Power Apparatus and Systems, Nov. 1972, 91(6): 2342-2355.
    [61] Toshio Takagi, Naba J., Uemura K. et a1. Fault protection based on traveling wave theory: Part I Theory[C]. IEEE Summer Meeting, July 1977, A77-750-3
    [62] Toshio Takagi, Naba J., Uemura K. et a1. Fault protection based on traveling wave theory: Part II Sensitivity Analysis and Laboratory Test[C]. IEEE Summer Meeting, July 1978, A78-220-6.
    [63] Toshio Takagi, Naba J, Uemura K. et a1. Feasibility study for a current differential carrier relay system based on traveling wave theory[C]. IEEE Summer Meeting, July 1978, A78-132-3
    [64] Toshio Takagi, Oth Digital differential relaying system for transmission line primary protection using traveling wave theory-its theory and experience[C]. IEEE Summer Meeting, Feb. 1978, A79-096-9
    [65] Chantia M., Liberman S.. Ultra high speed relay for EHV/UHV transimission lines-development design and application[J]. IEEE Trans on PAS, 1978, 97(6): 2104-2112,.
    [66] Yee M. T., Esztergalyos J.. Ultra high speed relay for EHV/UHV transmission lines-installation, staged fault tests and experience[J]. IEEE Trans on PAS, 1978, 97(5): 1814-1825.
    [67] Domell H. W., Michels, J. M.. High speed relaying using traveling wave transient analysis[C]. IEEE PES Winter Meeting, New York, 1978 A78-214-9
    [68] Vitins M. A. Fundamental Concept for High Speed Relay[J]. IEEE Trans. on PAS, Jan. 1981, 100(1): 163-168.
    [69] Johns A.T. New ultra-high speed directional comparison technique for the protection of EHV transmission lines[J]. IEE Proceedings Generation, Transmission and Distribution, 1980, 127:228-239.
    [70] Johns A.T., Martin M. A., A.Barker et a1. A new approach to EHV direction comparison protection using digital signal processing techniques[J]. IEEE Trans on Power systems, 1986, PWRD-1(2): 24-34.
    [71] Prakash K. S. Amplitude Comparator Based Algorithm for Directional Comparison Protection of Transmission Lines[C]. IEEE PES Winter Meeting,New York, 1989, 525~677
    [72]董杏丽,葛耀中,董新洲基于小波变换的比率式行波方向继电器的研究[J]西安交通大学学报, 2002, 36(8): 771-775.
    [73]董新洲,葛耀中,贺家李波阻抗方向继电器的基本原理[J]电力系统自动化, 2001, 25(9): 15-18.
    [74]段建东,张保会,张胜祥利用线路暂态行波功率方向的分布式母线保护[J]电机工程学报, 2004, 24(6): 7-12.
    [75]李幼仪,董新洲,孙元章不同行波方向元件原理与判据的比较[J]清华大学学报(自然科学版), 2006, 40(7): 1208-1211.
    [76] Crossley P. A., Mclaren, P. G. Distance protection based on travelling waves[J]. IEEE Trans.on PAS, Sep.1983, 102(9):2971~2983.
    [77] Christos C., D. Thomas, Arther W. P. Scheme, Based on Traveling Waves, for theProtection of Major Transmission Lines[J]. IEE Proceedings, Jan. 1988, 135(1): 63~73.
    [78] Shehab-Eldin E. H., Mclaren P. G. Traveling Wave Distance Protection Problem Areas and Solution[J]. IEEE Trans.on Power Delivery, July 1988, 3(3):894~902.
    [79] Johns A.T., Aggarwal R.K, Bo Z.Q, Non-unit Protection Technique for EHV Transmission Systems Based on Fault-generated Noise. Part 1: Signal Measurement[J]. IEE Proc-Gener.,Transm.Distrib, March 1994, 141(2):137~140.
    [80] Johns A.T, Aggarwal R.K, Bo Z.Q, Non-unit Protection Technique for EHV Transmission Systems Based on Fault-generated Noise. Part 2:Signal Processing[J]. IEE Proc-Gener.Transm.Distrib, March 1994, 141(2):141~147.
    [81] Johns A.T, Aggarwal R.K, Bo Z.Q, Non-unit Protection Technique for EHV Transmission Systems Based on Fault-generated Noise. Part 3:Engineering and HV Laboratary Test[J]. IEE Proc-Gener.Transm.Distrib, May 1996, 143(3): 276~282.
    [82] Bo Z. Q., A New non-communication Protection Technique for Transmission Lines[J]. IEEE trans.on Power Delivery, October 1998, 13(4):1073~1078.
    [83] Bo Z. Q., Li H. Y., Aggarwal R.K., et al. Non-communication Protection ofTransmission Line Based on Genetic Evolved Neural Network[C]. IEE International Conference on Developments in Power System Protection, U.K., University of Nottingham, March 1997,pp. 291~294.
    [84] Bo Z. Q. Adaptive Non-communication Protection for Power Lines BO Scheme 1: The Delayed Operation Approach[J]. IEEE Trans. On Power Delivery, Jan.2002, 17(1):85~91.
    [85] Bo Z. Q. Adaptive Non-communication Protection for Power Lines BO Scheme 2: The Instant Operation Approach[J]. IEEE Trans. On Power Delivery, Jan.2002, 17(1): 92~96.
    [86] Bo Z. Q. Adaptive Non-communication Protection for Power Lines BO Scheme 3: The Accelerated Operation Approach[J]. IEEE Trans. On Power Delivery, Jan. 2002, 17(1): 97~104.
    [87]哈恒旭,张保会,吕志来利用暂态电流的输电线路单端保护新原理探讨[J].中国电机工程学报, 2000, 20(11): 56-61.
    [88]哈恒旭,张保会,吕志来,等超高压输电线路单端暂态量保护新原理探讨[J].电工技术学报, 2001, 16(6): 65-70.
    [89]哈恒旭超高压输电线路边界保护的研究[D].西安:西安交通大学, 2002
    [90]葛耀中,小波变换与继电保护技术[J].继电器, July, 1998, 26(4): 1-6.
    [91]杨晓敏,胡起宙,卢键小波分析在线路保护中应用的可行性研究[J].华北电力技术, 1999, (8): 52-54.
    [92]林湘宁,刘沛,程时杰小波分析基础理论及其在电力系统中的应用(一、二、三)[J].电力系统自动化, 21(10,11,12), 1997。
    [93]任震,黄雯莹小波分析及其在电力系统中的应用(一、二、三)[J].电力系统自动化, 21(1,2,3), 1997.
    [94] Aguilera C, Orduna E, Ratta G. Adaptive non-communication protection based on traveling waves and impedance relay[J]. IEEE Trans. Power Del., July. 2006. 21(3): 1154-1162,
    [95] Zhang Nan, Kezunovic M. Transmission Line Boundary Protection Using Wavelet Transform and Neural Network[J]. IEEE Trans. on Power Del. April. 2007, 22(2): 859-869,
    [96]董杏丽,葛耀中,董新洲,基于小波变换的无通道全线速动行波保护的研究[J].电力系统自动化, 2001, 25(10): 18-22.
    [97]段建东,张保会,任晋峰,等.超高压输电线路单端暂态量保护元件的频率特性分析[J]中国电机工程学报, 2007, 27(1): 37-43.
    [98]何正友,钱清泉.利用小波分析实现EHV线路暂态保护初探[J].继电器, 2000, 28(8): 1~5.
    [99]段建东,张保会,李鹏,等超高压输电线路新单端暂态量保护元件的实用算法[J]中国电机工程学报, 2007, 27(7): 46-51。
    [100]邬林勇,何正友,钱清泉.一种提取行波自然频率的单端故障测距方法[J]中国电机工程学报, 2008, 28(10): 69-75。
    [101]邬林勇,何正友,钱清泉.单端行波故障测距的频域方法[J].中国电机工程学报,2008,28(25):99-104
    [102]吴青华,张东江.形态滤波技术及其在继电保护中的应用[J].电力系统自动化, 2003, 27(7): 45-49..
    [103]白嘉.基于形态滤波技术的电力系统行波保护的研究[D].保定:华北电力大学大学, 2006.
    [104]白嘉,徐玉琴,王增平.基于形态学–小波综合算法的超高压输电线路单端行波保护新原理[J]电网技术, 2006, 30(2): 66-69.
    [105] Taylor, C W, Lefebvre, S. HVDC controls for system dynamic performance[J]. IEEE Trans. on Power System, May 1991, 6(2): 743-752.
    [106]杨卫东,薛禹胜,荆勇等.南方电网中多个直流系统间的协调功率恢复策略[J].电力系统自动化, 2003, 27(15): 1-5.
    [107] Yang, W.D., Xu Z., Han Z.X., Coordinated hierarchical control strategy for multi-infeed HVDC systems[C]., IEE Proceedings- Generation, Transmission and Distribution, 149(2): 242–248, March 2002 Page(s): 12-15.
    [108] Sato, N, Honjo, N, Yamaji, K etc. HVDC converter control for fast power recovery after AC system fault[J] IEEE Trans on Power Del., July 1997, 12(3): 1319-1326.
    [109] Heffernan, M D, Arrillaga, J, Turner, K S etc. Recovery from temporary HVDC line faults[J] IEEE Trans on PAS. , Apr. 1981, 100(4): 1864-1870.
    [110]陈红军,高压直流输电系统故障及控制策略[J]华中电力, 2001, 14 (5): 5-8.
    [111]汪涓涓,张尧,林凌雪.交流故障后MIDC系统的协调恢复策略[J]电力自动化设备, 2009, 29(10): 79-82
    [112]刘崇茹,张伯明.直流输电系统控制参数对交直流连接母线电压幅值的影响[J]电力自动化设备, 2007, 27(5): 23-27.
    [113]张建设,张尧,张志朝,等.直流系统控制方式对大扰动后交直流混合系统电压和功率恢复的影响[J].电网技术, 2005, 29(5): 20-24.
    [114]付颖,罗隆福,童泽等.直流输电控制器低压限流环节的研究[J].高电压技术, 2008, 36(4):1110-1114.
    [115]朱韬析,欧开健.高压直流输电系统线路接地故障过程研究[J].广东电力, 2008, 21(10): 53-57
    [116]王海军,吕鹏飞,曾南超等贵广直流输电工程直流线路故障重启动功能研究[J]电网技术, 2006, 30(23): 32-35.
    [117] Li, Aimin, Cai, Zexiang, Sun, Qizhen et al. Study on the dynamic performance characteristics of HVDC control and protections for the HVDC line fault[C] Proc. PES’09, pp:1-5, Calgary, AB, Canada, July 2009.
    [118]叶猛,曹海艳,马国鹏.高压直流输电线路保护分析[J]南方电网技术, 2008, 2(6): 36-46.
    [119]艾琳,陈为化.高压直流输电线路保护的探讨[J].继电器, 2004, 32(4): 61-63.
    [120]田庆,吴巾克,李建建等.高压直流线路高阻接地故障保护分析[C].第二十四界中国高等学校电力系统及其自动化专业学术年会论文集, pp: 633-635.
    [121]贺家李,宋从矩电力系统继电保护原理(增订版)[M].北京:中国电力出版社, 2004.
    [122] Oechsle, F., Feser, K. Schuster, N., Philippot, L. Active power differential algorithm for protection of transmission lines[C] International Conference on Electric Power Engineering, 1999, Budapest: 207~209.
    [123] Chi-kong Wong, Chi-wai Lam, Kuok-cheong Lei, etc. Novel wavelet approach to current differential pilot relay protection[J] IEEE Trans. On Power Delivery, 2003, 18(1): 20~25.
    [124] Nguyen, T.T. Dynamic responses of charge comparison digital differential protection for transmission lines[C] Proc. Of the 5th International Conference on Advances in Power System Control, Operation and Management. APSCOM 2000, Hongkong, 2000, 249-253.
    [125] Albrecht, N.P., Fleck, W.C., Fodero, K.J. et al. Charge comparison protection of transmission lines-communications concepts[J] IEEE Trans. On Power Delivery, 1992, 7(4): 1834-1852.
    [126] Yamaura, M. ; Kurosawa, Y. ; Ayakawa, H., Improvement of internal charging current compensation for transmission line differential protection[C] 6th International Conference on Developments in Power System Protection 1997, 74-77
    [127]郭征,特高压长线路分相电流差动保护新原理[D].天津:天津大学, 2004.
    [128] H. Takeda, A. Ayakawa, M. Tsumenaga, et al. New Protection Method For HVDC Lines Including Cables[J]. IEEE Transactions on Power Del., October 1995, 10(4): 2035-2039.
    [129]周红阳,余江,黄佳胤,等.南方电网直流100Hz保护的改进措施[J].电力自动化设备, 2007, 27(12): 96-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700