严寒地区季节性自然冷源土壤蓄冷应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了降低夏季空调能耗、利用可再生能源,本文基于自然冷源移季利用的思想,提出一种新型的适用于严寒地区的季节性自然冷源土壤蓄冷系统。该系统以室外自然低温空气作为冷源,大地作为蓄冷储存装置,通过地下垂直U型埋管换热器将冷量储存在土壤之中,到了夏季再将其取出作为建筑空调的冷源使用。它与传统短期蓄冷方式相比,节省了占地面积大、耗资较多的蓄冷装置;由于换热器、蓄冷装置都在地下,系统运行平稳,构造简单;省去了电力制冷装置,运行成本低,无污染。该系统为空气自然冷源利用提出了一个新的应用领域。
     与传统的土壤源热泵系统不同的是:在季节性自然冷源土壤蓄冷系统中,地下埋管充当蓄冷装置也作为吸热和排热的换热装置,具有双重功能;土壤蓄冷属于人工冻结作用下的土冻结过程,土壤冻结时土壤的物性也随之发生改变,影响地下埋管的传热性能;同时,土壤冻结会导致土壤水分梯度改变,引起土壤水分迁移,改变土壤的蓄冷能力,在热传导和对流换热的共同作用下,使土壤的传热能力增强;此外,土壤作为蓄冷介质,会与地表空气和周围自然土壤发生热交换,导致系统冷量损失。基于此,本文建立了地下垂直U型埋管换热器管群内、外层埋管的水热耦合数学模型以及温差传热冷量损失和预存冷量损失数学模型,提出了一个新的求解非线性相变传热问题的数值方法-“反求时间步长法”,使模型求解大为简化。除此以外,本文补充了室内外换热器传热数学模型,完成了整个系统模型的建立。
     考虑到第二年系统蓄冷之前,土壤温度不可能恢复至原始状态,采用第二年蓄冷期结束时埋管周围土壤的内能与第一年保持不变的方法来调整第二年蓄冷时间,可保证系统的可持续运行。通过数值模拟,从理论上分析了土壤水迁移作用、埋管间距、蓄冷时间、土壤类型、不同含水量土壤及室外换热器换热面积等因素对系统运行特性的影响,研究了第一年和第二年,以及在不同埋管间距、蓄冷时间及土壤类型条件下系统蓄冷、释冷和停机过程中的冷量损失,为系统的优化设计与参数的合理匹配提供理论支持。选取沈阳和长春两个具有代表性的城市,针对其气候特点进行系统运行方案设计,通过对全年运行过程进行模拟分析得出,该系统在严寒地区应用可以得到较好的运行效果,若在寒冷地区也可以作为空调冷源的重要补充。
     建立了哈尔滨地区季节性自然冷源土壤蓄冷现场实验系统,并对实验系统进行连续两年的测试。研究了系统的冬季蓄冷量,夏季释冷量,埋管进出口温度和井内土壤温度的变化规律,提出了影响性能系数的主要因素。实验结果表明:该系统在严寒地区应用是完全可行的。通过模拟结果与实测数据的比较,验证了本文中建立的数学模型的可靠性和正确性。
     针对冻融土壤温度场的数值模拟,分别采用传统计算方法与本文提出的“反求时间步长法”进行相变传热问题的求解,通过对比发现,这种新方法不仅可以较为精确地求解冻融土壤的温度场,而且加快了修正时间步长的速率,使求解过程大为简化。该方法是对传统方法的改进,可为其它多维复杂相变传热问题求解提供参考。
     该系统为21世纪建筑提供了一种更为清洁、高效的空调蓄冷技术,本文所做的研究将会为该系统的应用提供理论支持和示范作用。
To reduce air conditioning energy consumption in summer and use the renewable energy source, a new type of soil cold storage system, which bases on the idea of seasonal natural cold energy transfer and is applicable to cold regions, is presented in this dissertation. Using the outdoor low temperature air as the cold energy and the underground soil as the cold storage device, the system is to store cold energy underground by U-tube heat exchanger and extract cold energy in summer for building air conditioning. Compared with the traditional way of short-time storage, this mode has a lot of benefits. It can avoid using expensive cold storage devices with large area and high cost; due to the heat exchanger and cold storage device underground, it runs stably and structures simply; finally, it has low operation cost and avoids refrigeration equipment and pollution. This system provides a new application field for natural cold air energy.
     Different from the traditional ground source heat pump system, firstly, the underground tube has a dual function that it not only serves as cold storage devices, but also behaves a role as exchanger for charging and discharging. Secondly, soil cold storage is the soil freezing process under artificial freezing effect, and during soil freezing, the soil physical properties change, which affect the heat transfer performance of underground tube. Meanwhile, soil freezing will lead to water gradient changes and cause soil moisture migration, which alters cold storage capacity of soil, and enhances its heat transfer capacity with the function of both heat conduction and convection. Besides, the soil, as storage medium, exchange heat with the air of soil surface and the surrounding natural soil, resulting in cold loss. Based on the above-mentioned, the mathematical model of the moisture-heat coupling and cold loss caused by temperature difference and pre-existing storage are established for the inner and outer tube in the vertical U-tube bundles; A new method called the backwards calculating time step method is presented to solve heat transfer problems of complex nonlinear phase change, and as a result, the iteration procedure can be simplified; In addition, by supplementing to indoor and outdoor heat exchanger heat transfer model, the model for the whole system is completely finished.
     Taking into account the sold storage before next year, it is impossible for soil temperature to be restored to its original level. The method, which keeps the internal energy of soil around tube at the end of charging period unchangeably compared with the first year, is used to adjust the cold-storage time during the second year. It can ensure the sustainable operation of the system. Through numerical simulation, this dissertation does a lot of analysis to the factors which influence on the operation performances of the system, such as soil moisture migration, tube distances, cold-storage time, soil type, soil with various water contents and heat exchanger area of indoor and outdoor heat exchanger etc, and research to the system cold loss of the first year and the second year and under different tube distances, cold-storage times and soil types during the three processes of cold storage, shutdown and cold extraction of the system. It supplies theory support and technology accumulation for the optimal design of system and the matching of the parameters. Take the two representative cities Shenyang and Changchun as an example. According to their climate characteristics the operation schemes of system are designed. Through the simulative analysis of operation process over one entire year, simulations show that the system achieved many better operation results if applied in severe cold region and supplied a part of cold energy for air conditioning if the system is applied in cold region.
     Hereby, the field experiment of soil cold storage system with seasonal natural energy is set up in Harbin while the test work in the continuous two years is implemented. This dissertation researches the charged quantities in winter, the discharged quantities in summer, the changing principle of inlet and outlet liquid temperature of tube and soil temperature in well, and puts forward the main factors of influencing on performance coefficient. The experimental results show that the system is feasible in severe cold region. The reliability and validity of the model established above are validated by comparing the simulation results and experimental data.
     In view of the numerical simulation of temperature fields of soil freezing and thawing, the phase change heat transfer problems are solved using the traditional methods and backwards calculating time step method presented in this dissertation, respectively. This new method, in contrast to the traditional methods, not only accurately calculates the temperature fields of soil freezing and thawing, but accelerates rate for adjusting the time step. It is an improvement over traditional methods, and can provide reference for solving other complex multi-dimensional problems involving phase change heat transfer.
     The system will supply a kind of cold storage technology of air conditioning with more efficient and cleaner for the 21st century buildings. At the same time, the researches in this dissertation provide theory support and demonstration effect for the system application.
引文
1国家发改委经济体制与管理研究所.中国可再生能源和新能源产业高端论坛.北京:中国经济出版社, 2007: 55-60
    2龙惟定,王长庆,丁文婷.试论中国的能源结构与空调冷热源的选择取向.暖通空调. 2000, 30(5):27~29
    3王荣光,沈天行.可再生能源利用与建筑节能.北京:机械工业出版社, 2004: 3-7
    4李志浩.基于建筑节能的暖通空调节能措施.电力需求侧管理. 2004, 6(4): 49-50
    5姜益强,姚杨,马最良等.季节性天然蓄冷技术初步探讨.低温建筑技术. 2005, 6: 110-111
    6贾先斌,李里特,温旺.自然冷资源的开发利用.自然资源学报.1995, 10(2): 181-189
    7贺平,孙刚.供热工程(第三版).北京:中国建筑工业出版社, 2000: 332
    8中国建筑设计标准研究所.全国民用建筑工程设计技术措施(暖通空调动力分册).北京:中国计划出版社, 2003: 9-11
    9彦启森.空气调节用制冷技术.北京:中国建筑工业出版社, 1985: 24
    10刘红绍,肖传晶,张华.一种过冷型多联机冰蓄冷空调系统试验研究.制冷与空调. 2008, 8(1): 69-71
    11严德隆,张维君.空调蓄冷应用技术.北京:中国建筑工业出版社, 1997: 8-11
    12 Kjell Skogsberg, Bo Nordell. The Sundsvall Hospital Snow Storage. Cold Regions Science and Technology, 2001, 32(1): 63-70
    13 Kjell Skogsherg. The Sundsvall Regional Hospital Snow Cooling Plant-results from the First Near of Operation. Cold Regions Science and Technology. 2002, 34(2): 135-142
    14 Yasuhiro Hamada, Makoto Nakamura, Hideki Kubota. Field Measurements and Analyses for a Hybrid System for Snow Storage/Melting and Air Conditioning by Using Renewable Energy. Applied Energy. 2007,84: 117-134
    15贾庆贤,赵荣义,许为全等.吹风对舒适性影响的主观调查与客观评价.暖通空调. 2000, 30(3): 15-17
    16 A. Tablada, F. De Troyer, B. Blocken, et al. On Natural Ventilation and Thermal Comfort in Compact Urban Environments-the Old Havana case. Building and Environment. 2009, 44: 1943-1958
    17 Aboul Naga M M. Improving night ventilation into lowrise buildings in hot-arid climates exploring a combined wall-roof solar chimney. Renewable Energy, 2000, 19(1-2):47 -54
    18 Blondeau P, Sperandio M, Allard F. Night ventilation for building cooling in summer. Solar Energy, 1997, 61(5):327 -335
    19武丽霞.严寒地区大型超市应用夜间通风与人工制冷耦合运行研究.哈尔滨工业大学硕士学位论文.2004:10-22
    20 S. Togari, Y. Arai, K. Miura. A Simplified Model for Predicting Vertical Temperature Distribution in a Large Space. ASHRAE Trans. 1993, 99(1): 84-90
    21 LevermoreGeofJ. Simulation of a Naturally Wentilated Buliding at Different Locations. ASHRAR Trans. 2000, 106(5): 402-407
    22 L. Siuma, G. M. Bragg, CxReusing, Translation Solutions to a Stochastic Model of Ventilation. Building Environment. 1989, 24: 265-277
    23 Gang Tan, Leon R. Glicksman. Application of Integrating Multi-Zone Model with CFD Simulation to Natural Ventilation Prediction. Energy and Buildings. 2005, 37: 1049-1057
    24 Qingyan(Yan) Chen. Using Computational Tools to Factor Wind into Architectural Environment Design. Energy and Buildings. 2004, 36: 1197-1209
    25高军,高甫生,赵加宁.采用“二区+CFD”模型研点源自然通风及其羽流.暖通空调. 2006, 35(1): 20-25
    26马最良,孙宇辉.冷却塔供冷技术的原理及分析.暖通空调. 1998, 28(6): 27-30
    27康艳兵,江亿,张寅平.夜间通风相变贮能堆积床系统降温效果实验研究.暖通空调. 2003, 33(2):24-26
    28梁月影.自然通风与自然冷源在山体人防工程中的应用.广西工学院学报. 2000, 11(4): 77-79
    29倪智华.自然冷源在坑道式人防工程中的应用.暖通空调. 2007, 37(10): 116-117
    30李忠建,郑茂余,王芳等.土壤冷源直接供冷空调系统供冷特性的实验研究.太阳能学报. 2008, 28(9): 988-992
    31 M. K .Ghosal, G. N. Tiwari. Modeling and Parametric Studies for Thermal Performance of an Earth to Air Heat Exchanger Integrated with a Greenhouse. Energy Conversion and Management. 2006, 47(13): 1779-1798
    32 Pierre Tittelein, Gilbert Achard, Etienne Wurtz. Modelling Earth-to-Air Heat Exchanger Behaviour with the Convolutive Response Factors Method. Applied Energy. 2009, 86(2): 1683-169
    33 Rakesh Kumara, A.R.Sinhab, B.K.Singhc, et al. A Design Optimization Tool of Earth-to-Air Heat Exchanger Using a Genetic Algorithm. Renewable Energy. 2008, 33: 2282-2288
    34 Rakesh Kumar, S. C. Kaushik, S. N. Garg. Heating and Cooling Potential of an Earth-to-Air Heat Exchanger Using Artificial Neural Network. Renewable Energy. 2006, 31: 1139-1155
    35蒋爱华,侯秋熊.河水自然冷源中央空调系统及其经济性分析.制冷与空调. 2003, 3(1): 60-61
    36陈慧和.低温河水直接供冷空调系统的研究.中南大学硕士学位论文. 2007: 46
    37鹿世化.浅层地下水作为冷源应用于地板供冷的研究和利用.节能. 2004, 12: 11-13
    38蒋爱华,陈慧和,马卫武等.河水供冷中央空调风机盘管的干工况设计与运行分析.制冷与空调. 2007, 7(1): 97-99
    39彭扬华,卞素萍.利用井水和散热片系统降低居室温度的实证研究.南京工业大学学报. 2005, 27(4): 101-105
    40 R. A. Downing. Groundwater-Our Hidden Asset. British Geological Survey, 1998
    41 D.L.M.G.Wall. Ground Water Cooling. Building Services Journal, 2005.6. Available from: .
    42 F. Ampofo, G. G. Maidment, J. F. Missenden. Review of Groundwater Cooling Systems in London. Applied Thermal Engineering. 2006, 26: 2055-2062
    43 G. G. Maidment, J. F. Missenden. Evaluation of an underground railway carriage operating with a sustainable groundwater cooling system. International Journal of Refrigeration. 2002, 25: 569-574
    44 Bill Holdsworth. Cool thinking: Unlocking Earth's Energy. Refocus. 2004, 5(2):28-30
    45 Michaelis Karagiorgas, Dimitrios Mendrinos, Constantine Karytsas. Solar and Geothermal Heating and Cooling of the European Centre for Public Law Building in Greece. Renewable Energy. 2003, 29: 461-470
    46 MacCracken C D, Silvetti B M. Charging and Discharging Long-Term Ice Storage. ASHRAE Trans. 1987, 93(1): 1766 1772
    47中国科学院兰州冰川冻土研究所冷能研究组.自然冷源及其应用.高科技与产业化. 1998, (2): 20-22
    48 LiLiteA. Study on the Technology of Keepin Fruits and Vegetables Fresh by Utilizing Natur Cooling Resource. CSAE. 1995, (9):88-93
    49堂腰纯.自然冰在利用した野菜の长期贮藏.寒地技術ツソボツゥム. 1985, 11
    50堂腰纯.自然冰の潜热ュネルキ利用はすケち研究.寒地技術ツソボツゥム. 1986, 11
    51余延顺,李迪,李先庭等.季节性冰雪蓄冷技术的研究现状与技术展望.暖通空调. 2005, 35(5): 24-30
    52邱凌.自然冷源空调冷藏技术现状与前景.暖通空调. 1993, 2: 30-33
    53 D. L. Kirkpatrick, M. Masoero, A. Rabl, et al. The Ice Pond-Production and Seasonal Storage of Ice for Cooling. Solar Energy. 1985, 35(5): 435-445
    54 C. Vigneault, J.Gallich, L. Blouin, et al. Evaluation of Stored Winter Coldness as a Cooling Source for Pre-Cooling Vegetables. Canadian Agri Engi. 1990, 32(2): 285-289
    55彦启森,王补宣,江亿.利用自然冷源的开控式地下贮藏库的合理结构.制冷学报. 1984, 6(4): 50-57
    56彦启森,王补宣,江亿.利用自然冷源的地下贮藏库的热工性能估算方法及评价指标.冷藏技术. 1985, 2(3): 23-32
    57李里特.利用自然冷源果蔬保鲜贮藏技术.农村机械. 1998, (7): 12
    58李里特,王领,开阳等.我国果品蔬菜贮藏保鲜的现状和新技术.无锡轻工大学学报. 2003, 22(2): 106-109
    59王世清,宋庆武,张岩等.基于热管的自然冷源制冰技术方案的初步试验.农业工程学报. 2008, 24(11): 230-232
    60李里特,贾先斌,薛文通.自然冷源利用的模拟试验.北京农业工程大学学报. 1995, 15(3): 59-65
    61李里特,赵朝辉,刘巧静.利用自然冷源单管制冷蓄冷试验和一维传热模型.制冷学报. 1999, (1): 34-39
    62高丽馥,王春许.天然冰储存技术及其应用研究.应用能源技术. 2001, (6): 14-15
    63 S. W. T. Kelvin. Mathematical and Physical papers. 1882,Ⅱ: p. 41 ff
    64 L. R. Ingersoll, Plass. Theory of the Ground Pipe Heat Source for the Heat Pump. Heating Piping&Air Conditioning. 1948, 20: 119-122
    65 L. R. Ingersoll, O.J.Zobel, A. C.Ingersoll. Heat Conduction with Engineering, Geological and Other Applications. New York, McGraw-Hill Co.1948: 45-53
    66 P. D. Metz. A Simple Computer Program to Model Three-Dimension Underground Heat Flow with Realistic Boundary Conditions. Journal of Solar Energy Engineering. 1983, 105: 42-49
    67 R. L. D. Cane. Modeling of GSHP performance. ASHRAE Transaction. 1991, 97(1): 909-925
    68 D. P. Hart, R. Couvillion. Earth-Coupled Heat Transfer. Prepared for the National Water Well Association, Dublin, OH, 1986
    69 P. Eskilson. Thermal Analysis of Heat Extraction Boreholes. University of Lund Ph.D. Dissertation. 1987:20-100
    70 P. Eskilson, J.Claesson. Simulation Model for Thermally Interacting Heat Extraction Boreholes. Numerical Heat Transfer. 1988, 13(2): 149-165
    71 H. S. Carslaw, J.C.Jaeger. Conduction of Heat in Solids. Claremore Press, 1947: 260-265
    72 H. S. Carslaw, J.C.Jaeger. Conduction of Heat in Solids. Second Edition. Oxford University Press, 1959: 260-265
    73 J. D. Deerman, S. P. Kavanaugh. Simulation of Vertical U-Tube Ground-Coupled Heat Pump Systems Using the Cylindrical Heat Source Solution. ASHRAE Transactions. 1997, 103(1): 287-295
    74 S. P. Kavanaugh. Simulation and Experimental Verification of Certical Ground- Coupled Heat Pump Systems. Oklahoma State University, Ph.D.dissertation. 1985.
    75 Y. Gu, D. L. O'Neal. Development of an Equivalent Diameter Expression for Vertical U-Tubes Used in Ground-Coupled Heat Pumps. ASHRAE Transactions. 1998, 104(2): 347-355
    76 Y. Gu, D. L. O'Neal. Modeling the Effect of Backfills on U-Tube Ground Coil Performance. ASHRAE Transactions. 1998, 104(2): 356-365
    77 Y. Gu, D. L. O'Neal. An Analytical Solution to Transient Heat Conduction in a Composite Region with a Cylindrical Heat Source. ASME J. Solar Energy Engineering. 1995, 117: 242-248
    78 C. Yavuaturk, A. D. Chiasson. Performance Analysis of U-Tube, Concentric Tube, and Standing Column Well Ground Heat Exchangers Using a System Simulation Approach. ASHRAE Transactions. 2002, 108(1): 925-938
    79 C. Yavuaturk, J. D. Spider. Field Validation of a Short Time Step Model for Vertical Ground-Loop Heat Exchangers. ASHRAE Transactions. 2001, 107(1): 617-625
    80 V. C. Mei, S. K. Fischer. Vertical Concentric Tube Ground-Coupled Heat Exchangers. ASHRAE Transactions. 1983, 89(2): 391-406
    81 V. C. Mei, VD.Baxter. Performance of a Ground-Coupled Heat Pump with Multiple Dissimilar U-Tube Coils in Series. ASHRAE Transactions. 1986, 92(2): 30-41
    82 V. C. Mei, Theoretical Heat Pump Ground Coil Analysis with Variable Ground Far-Field Boundary Conditions. AICHE Journal. 1986, 32(7): 1211-1215
    83 V. C. Mei. Heat transfer of buried pipe for heat pump application,Transactions of the ASME. Journal of Solar Energy Engineering, 1991, 113(1):51-55
    84丁勇,刘宪英,胡鸣明等..地热源热泵系统试验研究综述.现代空调. 2001, (3): 11-32
    85 S. P. Rottmayer, W. A. Beckman, J. W. Mitchell. Simulation of a Single Vertical U-Tube Ground Heat Exchanger in an Infinite Medium. ASHRAE Transactions. 1997, 103(2): 651-659
    86 T. K. Lei. Development of a Computational Model for a Ground-Coupled Heat Exchanger. ASHRAE Transactions. 1993, 99(1): 149-15 9
    87 N. K. Muraya, D. L. O'Neal, W. M. Heffington. Thermal Interference of Adjacent Legs in a Vertical U-Tube Heat Exchanger for a Ground-Coupled Heat Pump. ASHRAE Transactions. 1996, 102(2): 12-21
    88 N. K. Muraya. Numerical Modeling of the Transient Thermal Interference of Vertical U-Tube Heat Exchangers. Texas A&M University Ph.D. Dissertation. 1994
    89 G. Hellstrom. Ground heat storage, Thermal Analysis of Duct Storage System. University of Lund Ph.D. Dissertation. 1991
    90刘宪英,王勇,胡鸣明等.地源热泵地下垂直埋管换热器的试验研究.重庆建筑大学学报. 1999, 21(5): 21-26
    91曾和义,方肇洪. U型管地热换热器中介质轴向温度的数学模型.山东建筑工程学院学报. 2002, 17(1): 7-11
    92赵军,张春雷,李新国等. U型管埋地换热器三维传热模型及实验对比分析.太阳能学报. 2006, 27(1): 63-66
    93韩宗伟,郑茂余,孔凡红.严寒地区太阳能—季节性土壤蓄热热泵供暖系统的模拟研究.太阳能学报. 2008, 29(5): 574-580
    94杨卫波,施明恒,陈振乾.基于解析法的地下岩上热物性现场测试方法的探讨.建筑科学. 2009, 25(8): 60-64
    95 M. Piechowski. Heat and Mass Transfer Model of a Ground Heat Exchanger, Validation and Sensitivity Analysis. International Journal of Energy Research. 1998, 22: 965-979
    96 W. H. Leong, V. R. Tarnawski, A. Aittomaki. Effect of Soil Type and Moisture Content on Ground Heat Pump Performance. Int J.Refig. 1998, 21(8):595-609
    97 S. M. Hailey, T. P. Kast, D. C. Drown. Thermal Conductivity and Soil Conditions Heat Transfer Effects on Ground Source Heat Pumps. Proceedings of the 16th Annual Conference of Solar Energy Society of Canada. Halifax, Nova Scotia, 1990(6): 317-322
    98余延顺,马最良.土壤耦合热泵系统夏季运行工况的传热传湿数学模型的探讨.制冷空调与电力机械. 2004, 25(1): 5-7
    99张玲.土壤热湿传递与土壤源热泵的理论与实验研究.浙江大学博士学位论文. 2006: 97-104
    100 J. A. Shonder, J. V. Beck. Determining Effective Soil Formation Properties from Field Data Using a Parameter Estimations Formation Technique. ASHRAE transactions, 1999. 105(1): 458-466
    101 H. J. L. Witte, G. J. Gelder, J. D. Spider. In Situ Measurement of Ground Thermal Conductivity: The Dutch Perspective. ASHRAE transactions, 2002.108(1): 263-272
    102 R. A. Beier, M. D. Smith. Minimumvertical Boreholes. ASHRAE transactions duration of in-situ tests on 2003. 109 (2) :475-486
    103赵军,段征强,宋著坤等.基于圆柱热源模型的现场测量地下岩土热物性方法.太阳能学报. 2006, 27(9): 934-936
    104 M.L. Allan, S. P. Kavanaugh. Thermal Conductivity of Cementitious Grouts and Impact on Heat Exchanger Length Design for Ground Source Heat Pumps. HVAC and Research. 1999, 5(2): 87-98
    105 A. C. Martin, S. P. Kavanaugh. Ground Thermal Conductivity Testing-Controlled Site Analysis. ASHRAE Transactions. 2002, 108(1): 945-952
    106 P. R. Charles Borehole thermal resistance: Laboratory and Field Studies. ASHRAE Transactions. 1999,105(1): 439-445
    107 S. P. Kavanaugh, M. L. Allan. Testing of Thermally Enhanced Cement ground Heat Exchanger Grouts. ASHRAE Transactions. 1999, 105(1): 446-449
    108李新国,汪洪军,赵军等.不同回填材料对U型垂直埋管换热性能的影响.太阳能学报. 2003, 24(6): 810-813
    109陈卫翠,刘巧玲,贾立群等.高性能地埋管换热器钻孔回填材料的实验研究.暖通空调. 2006, 36(9): 1-6, 23
    110司刚平.地源热泵回填材料的导热性能研究.中国地质大学(北京)硕士学位论文. 2006: 31-44
    111 A. D. Kafadar, I. Fieldhouse, R. A. Budenholzer. Influence of Freezing on Heat Pump Ground Coil Capacity. Proceedings of Midwest PowerConference, 1951: 477-487
    112杨卫波,施明恒,刘光远等.基于显热容法的地源热泵地埋管换热器周围土壤冻结特性研究.暖通空调. 2008, 38(4): 6-10
    113 V. C. Mei. New Approach for Analysis of Ground Coil Design for Applied HeatPump Systems. ASHRAE Transactions. 1985, 91(2): 1216-1224
    114于明志,方肇洪,李明钧.土壤冻结对地热换热器传热的影响.山东建筑工程学院学报. 2001, (1): 42-47
    115余延顺,马最良,姚杨.土壤蓄冷与土壤耦合热泵集成系统中土壤蓄冷与释冷过程的特性研究.暖通空调. 2004, 34(5): 1-6
    116余延顺,马最良,姚杨.固相增量法在土壤蓄冷与释冷过程数值模拟中的应用.暖通空调. 2005, 35(8): 20-24
    117余延顺,马最良,姚杨.土壤蓄冷与土壤耦合热泵集成系统的模拟研究.暖通空调. 2005, 35(6): 1-5
    118余延顺,马最良,姚杨等.土壤蓄冷与释冷过程的模拟与试验验证.太阳能学报. 2006, 27(10): 1063-1068
    119徐学祖.国外对冻土中水分迁移课题的研究.冰川冻土. 1982, 4(3): 97-104
    120 G. Beskow. Soil Freezingand Frost Heaving with Special Application to Roads and Railroads. The Swedish Geological Society. Service C.1935, 375: 14-21
    121 H. A.崔托维奇(张长庆、朱元林译).冻土力学.北京:科学出版社, 1985: 27-123
    122中国科学院兰州冰川冻土研究所.冻土的温度水分应力及其相互作用.兰州:兰州大学出版社, 1989:100, 88, 78
    123徐学祖,邓友生.冻土中水分迁移的实验研究.北京:科学出版社, 1991:29-32
    124李杨.季节冻土水分迁移模型研究.吉林大学博士学位论文. 2008: 4
    125 L. A. Richards. CapillaryConduction of Liquids through Porous Media. Physics. 1931, (1): 318-333
    126 J. R. Philip, D. A. De Veries. Moisture Movement in Porous Material under Temperature Gradient. Trans Am Geophys Union. 1957, (38):222-232
    127 D. A. De Vries. Simultaneous Transfer of Heat and Moisture in Porous Media. Trans Amer Geophys Union, 1957, 39(5): 909-916
    128 P. Hoekstra. Moisture Movement in Soil under Temperature Gradients with Cold Side Temperature Below Freezing. Water Resources Research. 1966, (2):241-250
    129 R. D. Miller. Freezing and Heaving of Saturated and Unsaturated Soils. Highway Research Report. 1972, No.393:1-11
    130 R. L. Harlan. Analysis of Coupled Heat-Fluid Transport in Partially Frozen Soil. Water Resources Research. 1973, 9(5):1314-1323
    131 G. S. Taylor, J. N. Luthin. A model for Coupled Heat and Moisture Transfer during Soil Freezing. Canadia Geotech Journal. 1978, 15: 548-555
    132 M. W. Sheppard, B. Key, J. Loch. Development and Testing of a Computer Model for Heat and Mass Flow in Freezing Soils, Proceedings of 3th International Conference on Permafrost, 1978, (1):76-81
    133 P. E. Jansson, S. Halldin. Model for Annual Water and Energy Flow in a Layered Soil. Society for Ecological, Copenhagen. 1979:145-163
    134 M. Fukuda. Experimental Studies of Coupled Heat and Moisture Transfer in Soils during Freezing. Contribution no.2528 from the Institute of LowTemperature Science, Hokkaido University, Sapporo, Japan, 1982:35-91
    135 M. Fukuda, S. Nakagawa. Numerical Analysis of Frost Heaving Based upon the Coupled Heat and Water Flow Mmodel. Proceeding of 4th International Symposium on Ground Freezing. Sapporo, Japan, 1985: 109-117
    136 C. Duquennoi, M. Fremond, M. Levy. Modelling of Thermal Soil Behaviour. VTT Symposium 95. 1989: 895-915
    137 M. Fremond, M. Mikkola. Thermodynamical Modeling of Freezing Soil. Proceedings of 6th International Symposium on Ground Freezing. 1991:17-24
    138徐学祖,王家澄,张立新.冻土物理学.北京:科学出版社, 2001: 73-74, 60-61, 76, 86-90
    139徐学祖.土水势、未冻水含量和温度.冰川冻土. 1985, 7(1): 1-14
    140徐学祖,冻土与盐溶液系统中热质迁移及变形过程试验研究.冰川冻土. 1992, 14(4): 289-295
    141徐学祖,张立新,王家澄.土体冻胀发育的几种类型.冰川冻土. 1994, 16(4): 301-307
    142李萍,徐学祖,陈峰峰.冻结缘和冻胀模型的研究现状与进展.冰川冻土. 2000, 22(1): 90-95
    143李述训,吴通华.冻土温度状况研究方法和应用分析.冰川冻土. 2004, 26(4): 377-383
    144盛煜,马巍,侯仲杰.正冻土中水分迁移的迁移势模型.冰川冻土. 1993, 15(1): 140-143
    145胡和平,叶柏生,周余华等.考虑冻土的陆面过程模型及其在青藏高原GAME/Tibet试验中的应用.中国科学D辑地球科学. 2006, 26(8): 755-766
    146胡和平,杨诗秀,雷志栋.土壤冻结时水热迁移规律的数值模拟.水利学报. 1992, 7(7): 1-8
    147尚松浩,雷志栋,杨诗秀.冬灌对越冬期土壤水分状况影响的数值模拟.农业工程学报. 1997, 13(3): 65-70
    148尚松浩,雷志栋,杨诗秀等.土壤冻结过程中潜水蒸发规律的模拟研究.水利学报. 1999, 13(6): 6-10
    149尚松浩,雷志栋,杨诗秀等.冻融期地下水位变化情况下土壤水分运动的初步研究.农业工程学报. 1999, 15(2): 64-68
    150陈振乾,施明恒,虞维平.研究土壤热湿迁移特性的非平衡热力学方法.土壤学报. 1998, 35(2): 218-226
    151商翔宇,周国,别小勇.冻结土壤温度场数值模拟的改进.中国矿业大学学报. 2005, 34(2): 179-183
    152于琳琳,徐学燕.人工侧向冻结条件下土的冻结实验.岩土力学. 2009, 30(1): 231-235
    153于琳琳,徐学燕.原状土人工冻结试验研究.低温建筑技术. 2008, 25(5): 117-119
    154尚松浩,雷志栋,杨诗秀.冻结条件下土壤水热耦合迁移数值模拟的改进.清华大学学报(自然科学版). 1997, 37(8): 62-64
    155程国栋,赵林.青藏高原开发中的冻土问题.第四纪研究. 2000, 20(6):521-530
    156陈继,程国栋,吴青柏等.冻土地区风的作用分析—以青藏铁路沿线多年冻土为例.地球科学进展. 2005, 20(3): 275-281
    157许兰民,曹玉新,严学斌等.青藏铁路冻土区遮挡式路基结构安全可靠性预测分析.工程地质学报. 2007, 15(2): 273-278
    158王丽霞,胡庆立,凌贤长等.青藏铁路冻土未冻水含量与热参数试验.哈尔滨工业大学学报. 2007, 39(10): 1660-1663
    159江灏,王大勇,程国栋等.青藏铁路路基表面温度及融冻指数预测.冰川冻土. 2008, 30(5): 855-859
    160王希尧.不同地下水埋深和不同土壤条件的冻结和冻胀实验研究.冰川冻土. 1980, 2(3): 40-45
    161陈肖柏.我国土壤冻胀研究进展.冰川冻土. 1988, 10(3): 319-326
    162 S. Kionsita. Soil Water Movement and Heat Flux in Freezing Ground, Proc. Conf. on Soil Water Problems in Cold Regions, Calgary, Alta, 1975, 5:6-7
    163 R. D. Miller. Lens initiation in Secondary Heaving. Int. Symp. On frost Action in soils. Lulea University of Technology, Sweden. 1977,2: 68-74
    164陈肖柏,刘建坤,刘鸿绪等.土的冻结作用与地基.北京:科学出版社, 2006: 46-48, 66-67, 73
    165郑秀清,樊贵盛,邢述彦.水分在季节性非饱和冻融土壤中的运动.北京:地质出版社, 2002: 30-31, 56-59
    166余延顺.土壤蓄冷与耦合热泵集成系统的蓄冷与释冷特性研究.哈尔滨工业大学博士学位论文. 2004: 34, 71-76
    167 K. O'Nell, R. D. Miller. Exploration of a Rigid-Ice Model of Frost Heave, Water Resources Research, 1985, 21:281-296
    168 S. W. Hopke. A Model for Frost Heave Including Overburden. Cold Reg. Sci.Tech. 1980, 14: 13-22
    169 W. F. Stoecker, J. W. Jones. Refrigeration and Air Conditioning, Second Edition. Mc Graw-Hill. Inc 1982: 254-293
    170 D.皮茨, L.西索姆(葛新石等译).传热学.北京:科学出版社, 2002: 213-221
    171 T. P. Bert, P. J. Williams. Hydrautic Conductivity and Unfrozen Water Content of Air-Free Frozen Soil. Earth surface processes. 1976, 1:349-360
    172 K. Horiguchi, R. D. Miller. Hydrautic Conductivity Functions of Frozen Materials. 4thInt. Conf. on permafrost. Washington D.C. National Academy Press. 1983: 504-508
    173 P. B. Black., R. D. Miller. Hydrautic Conductivity and Unfrozen Water Content of Air-Free Frozen Soil. Water Resource Research. 1990, 26: 323-329
    174 J. Agurrie-puente, J. Gruson. Measurement of Permeabilities and Frozen Soils. Proc.4th.Int. Conf .on permafrost. 1983: 5-9
    175地下建筑暖通空调设计手册编写组.地下建筑暖通空调设计手册.北京:中国建筑工业出版社, 1983:35
    176付祥钊.流体输配管网.北京:中国建筑工业出版社, 2001: 232-233
    177孔祥谦.有限单元法在传热学中的应用.北京:科学出版社, 1998: 131-142
    178陆金甫,关治.偏微分方程数值解法.北京:清华大学出版社, 1987: 5-49
    179 V. Voller, M. Cross. Accurate Solutions of Moving Boundary Problems Using the Enthalpy Method. International Journal Heat Mass Transfer. 1981. 24: 545-556.
    180 C. Tanyhienn, F. B. Cheunn, S. W. Shiah. Behavior of the Two-Phase Mushy Zone during Freeze Coating on a Continuous Moving plate. Journal of Heal Transfer. 2002, 124(1): 111-119
    181孔祥谦.有限单元法求解导热问题中的时间差分格式及其变步长计算.工程热物理学报. 1982, 3(8): 263-269
    182商翔宇,周国庆,别小勇.冻结土壤温度场数值模拟的改进.中国矿业大学学报. 2005, 34(2): 179-184
    183刘高.温度场的数值模拟.重庆:重庆大学出版社, 1990: 27-30
    184叶宏,何汉峰,葛新石等.利用焓法和有效热容法对定形相变材料熔解过程分析的比较研究.太阳能学报. 2004, 25(4): 488-491
    185中国气象局气象信息中心气象资料室等.中国建筑热环境分析专用气象数据集.北京:中国建筑工业出版社, 2005(电子版)
    186范蕊.土壤蓄冷与热泵集成系统地埋管热渗耦合理论与实验研究.哈尔滨工业大学博士学位论文. 2006: 45-50
    187马最良,吕悦.地源热泵系统设计与应用.北京:机械工业出版社, 2007: 154
    188杨卫波,施明恒,陈振乾.土壤源热泵夏季运行特性的实验研究.太阳能学报. 2007, 28(9): 1102-1106
    189郑茂余.建筑节能与供暖.哈尔滨:黑龙江科技出版社, 1995: 42-44
    190李云燕,胡传荣.试验设计与数据处理.重庆:化学工业出版社, 2008: 20-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700