热能贮存和应用中若干热物理问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用于建筑物空气调节、热水供应、物料干燥的低温热能需求总量巨大。由于时间和强度上的不匹配性,来自太阳能收集、地热能、工业余热等低温热能难以直接满足实际需求。从提高能源利用效率和节能的角度,基于热能贮存的热泵技术是缓解这一矛盾的可行途径。
     本文研究低温热能贮存和热泵应用中几个相关的方面,内容涉及热能贮存的方式和贮能系统效率分析、水源热泵的性能和应用研究、贮能材料的热物性测量和预示。
     潜热贮能中的传热问题研究
     针对相变材料(PCM)物性数据缺乏的现状,研究热针法测量导热系数。通过测量原理的分析对热针法进行优化;改进测试电路提高温度测量的精度。改进后的热针法可以快速简便地测量PCM在固液两态下的导热系数。实验结果表明测试时间不超过20秒,对导热系数为0.1~0.6Wm~(-1)K~(-1)的样品测量不确定度为3%。
     相变胶囊是微尺度封装的新型PCM。本文运用显热容法求解相变问题,分析相变胶囊在对流边界条件下的蓄放热特性。结果表明微尺度封装具有显著的传热强化效果、相变胶囊在蓄放热过程中热流稳定,小温差条件下仍能保持高效换热。这些优异性能主要源于相变胶囊的尺度特性。
     目前潜热贮能的理论研究主要集中在过程分析,很少有关于系统效率的报道。本文通过对管内流体换热式相变贮能系统的研究,综合系统的换热有效度和PCM潜热的利用率,探讨与系统效率相关的因素。尽管系统的尺度特性、流体流动状态和换热温差等条件是系统设计的重要依据,但PCM内部的传热强化才是提高系统效率的关键因素。
     水源热泵的性能研究和应用
     根据建筑节能这一社会需求,建立太阳能辅助水箱蓄热式热泵供暖的实验系统。实验研究了自行设计的水源热泵(WSHP)机组的性能及其与供热温度的关系。综合实验结果,分析研究了设计中的不足之处和提高性能的措施。作为WSHP的一个应用,实验研究了在夏季机组作为室内空调制冷和热水供应的工作特性。
     结合热力学第一和第二定律,分析了WSHP兼作室内空气调节和热水供应的节能效果。通过对比一台空气源热泵热水器和制冷空调机联合运行的功耗,论证了一机两用的热泵系统具有高性价比和显著的节能效果。这一分析也证明了空气源热泵空调系统余热回收的节能意义。
The huge quantity of thermal energy is demanded for air-conditioning of buildings, hot water supply and drying processes. The supply of thermal energy can not fulfill such a demand, in terms of the mismatch both in time and intensity. In view of the efficiency of the energy utilization and energy-saving, a potential way is to use the heat pump with thermal energy storage.
    In this dissertation, several thermophysical problems related to the thermal energy storage and the water source heat pump (WSHP) are investigated. The contents consist of the modes of thermal energy storage and their efficiencies, the performance of WSHP and its applications, and the measurement and prediction of thermal properties of energy storage materials.
    Heat transfer problems associated with the latent heat storage
    The hot probe method is investigated for measurement of the thermal conductivity of the phase change materials (PCMs), for the lack of the data of thermal properties. Two improvements are proposed. The first is to optimize the probe design, based on the theoretical analysis of the measurement principles; the second is to improve the precision of temperature measurement. The improved hot probe can conveniently be used for measuring the thermal conductivity of PCMs, both in liquid and solid states. From the experimental results, the relative measurement uncertainty is about 3%, and the measurement time is less than 20 seconds.
    Micro-encapsulated PCMs have been receiving much attention recently. Based the apparent heat capacity method for solving the Stefan problem, the heat charge and discharge of the encapsulated PCMs are investigated numerically. The results show that the micro-encapsulated PCMs characterize the desirable behaviors such as the heat transfer enhancement, the stable heat flow and high efficiency of heat exchange under small temperature difference. All these advantages mainly come from its scale characteristic.
    The process of the latent heat storage has been studied widely. However, few reports are addressed to the efficiency of the latent heat storage system. In this work, the system with internally flowing liquid is investigated. Combined the heat exchange effectiveness and utilization factor of the latent heat, the systematic efficiency is discussed. Although the scale characteristics of the system, the flow state of the fluid and the difference between the heat source and the storage temperatures are important for the system design, it is the key to enhance the heat transfer inside the PCM.
    Performance of WSHP and its application
    Considering the demand of the energy-saving of buildings, a solar-aided heat pump system, in which a water tank is used for storage of the collected solar energy for the heat supply in the winter, is set up. The performance of the WSHP is experimentally investigated, with respect to various temperatures of the heat supply. As an additional application, the performance of the WSHP simultaneously served for air-conditioning and hot water supply is also experimentally investigated in the summer.
    A thermodynamic analysis is given to the WSHP for multi-functional applications. Compared with the energy consumption of two air-source heat pumps, served for refrigeration and
引文
[1] 黄素逸 高伟.能源概论.2004,北京:高等教育出版社
    [2] 王金南 曹东 等.能源与环境:中国2020.2004,北京:中国环境科学出版社
    [3] 傅庆云 刘伟 张迎新 等.各国能源概况.2004,北京:中国大地出版社
    [4] 中华人民共和国国务院:国家中长期科学和技术发展规划纲要(2006—2020). 2006-02-09, http://www.gov.cn
    [5] 新浪网评述:解读布什国情咨文.2006-02-02,http://news.sina.com.cn
    [6] 崔海亭 杨锋.蓄热技术及其应用.2005,北京:化学工业出版社
    [7] 郭茶秀 魏新利 编著.热能存储技术与应用.2005,北京:化学工业出版社
    [8] 汪集晹 马伟斌 龚宇烈 等.地热利用技术.2005,北京:化学工业出版社
    [9] 葛新石 龚堡 陆维德 王义方.太阳能工程—原理和应用.1988,北京:学术期刊出版社
    [10] 张寅平 胡汉平 孔祥冬 等.相变贮能.1996,合肥:中国科学技术大学出版社
    [11] Kurklu A. Energy storage applications in greenhouses by means of phase change materials (PCMs): a review. Renewable Energy 1998, 13: 89-103.
    [12] Zalba B, Marin JM, Cabeza LE, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Thermal Eng. 2003, 23: 253-83.
    [13] Khudhair AM, Farid MM. A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Mgmt. 2004: 45: 263-75.
    [14] Farid MM, Khudhaire AM, Razack SAK, et al. A review on phase change energy storage: materials applications. Energy Convers. Mgmt. 2004, 45: 1597-615.
    [15] 王立新 苏竣峰 任丽.一直蜜胺树脂为壁材的相变储热微胶囊致密性研究精细化工 2003,20:705-8.
    [16] Brown RC, Rasberry JD, Overmann SP. Microencapsulated phase-change materials as heat transfer media in gas-fluidized beds. Powder Technol. 1998, 98: 217-22.
    [17] Colvin DP, Bryant YG. Protective clothing containing encapsulated phase change materials. ASME, IMECE'98, Anaheim, CA. 1998, 123-32.
    [18] 白凤武 卢文强.潜热型功能流体强化换热分析.工程热物理学报 2003,24: 115-7.
    [19] Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int. J Heat Mass Transfer 2001, 44: 2727-37.
    [20] Ye H, Ge XS. Preparation of polyethylene-paraffin compounds as a form-stable solid-liquid phase change materials. Solar Energy mater. & Solar Cells 2000, 64: 37-44.
    [21] 叶宏 程丹鹏 葛新石 等.定形相变贮能式地板辐射采暖系统数值模型的实验验证及参数分析.太阳能学报2004,25:189-94.
    [22] 林坤平 张寅平 徐煦 等.定形相变材料蓄热地板电采暖热性能研究.清华大学学报 2004,44:1616-21.
    [23] 林坤平 张寅平 狄洪发 等.地表下送风式相变蓄热电采暖系统.太阳能学报 2005,26:820-4.
    [24] Zhang YW, Faghri A. Heat transfer enhancement in latent thermal energy storage system by using the external radial finned tube. J Enhanc. Heat Transfer. 1996, 3: 119-27.
    [25] Zhang YW, Faghri A. Heat transfer enhancement in latent thermal energy storage system by using the internally finned tube. Int. J Heat Mass Transfer, 1996, 39: 3165-73
    [26] Costa A, Buddhi D, Olliva A. Numerical simulation of a latent heat thermal energy storage system with enhanced heat conduction. Energy convers. Mgmt. 1998, 39: 319-30.
    [27] 汤勇 王小伍 曾志新.纤维复合相变材料传热模型及性能分析.太阳能学报2002,23:809-12.
    [28] Fukai J, Kanou M, Kodama Y, Miyatake O. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers. Mgmt. 2000, 41: 1543-56.
    [29] Fukai J, Hamada Y, Morozumi Y, Miyatake O. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling. Int. J Heat Mass Transfer. 2003, 46: 4513-25.
    [30] Hamada Y, Otsu W, Fukai J, Morozumi Y. Anisotropic heat transfer in composites based on high-thermal conductive carbon fibers. Energy, 2005, 30: 221-33.
    [31] 王剑锋 欧阳应秀 朱永雷 等.相变材料应用于热泵干燥的实验研究.太阳能学报 2002,23:1-5.
    [32] 李晓霞 张胜虎 凌永顺 等.新型热红外伪装体系.红外技术2002,24:42-6.
    [33] 陈立.相变蓄热式太阳能热水系统及其应用.能源技术 2002,23:203-4.
    [34] 林坤平 张寅平.电加热相变材料蓄热地板采暖的性能模拟.太阳能学报2003,24:633-7.
    [35] 林坤平 张寅平 江亿.夏季“空调”型相变墙热设计方法.太阳能学报 2003,24:145-51.
    [36] 崔海亭 袁修干 邢玉明.高温相变蓄热容器的优化设计及参数分析.太阳能学报 2003,24:513-7.
    [37] 陈超 蹇瑞欢 焦庆影 等.新型定型板状相变材料的蓄/放热特性.太阳能学报 2005,26:857-62.
    [38] Zhang YP, Jiang Y, Jiang Y. A simple method, the T-history method, of determining the heat of fusion, specific heat and thermal conductivity of phase-chase materials. Meas. Sci. Technol. 1999, 10: 201-5.
    [39] 叶宏 徐蒙 徐斌 等.利用单水浴法测量相变贮热材料及其构件的贮热能力太阳能学报.2005,26:831-5.
    [40] Siegel DL, Davis LR. Transient heat and mass transfer in soils in the vicinity of heated porous pipes. ASME Trans. J. Heat Transfer 1977, 99: 541-6.
    [41] Baladi JY, Ayers DL, Schoenhals RJ. Transient heat and mass transfer in soils. Int. J Heat Mass Transfer 1981, 24: 449-58.
    [42] Sasaki A, Aiba S, Fukuda H A study on the thermophysical properties of a soil. ASME Trans. J Heat Transfer 1987, 109: 232-7.
    [43] Piechowski M. Heat and mass transfer model of a ground heat exchanger: theoretical development. Int. J Energy Res. 1997, 21: 860-72.
    [44] Piechowski M. Heat and mass transfer model of a ground heat pump: validation and sensitivity analysis. Int. J Energy Res. 1998, 22: 965-79.
    [45] 李新国 赵军 周倩.埋地换热理论模型与周围土壤温度数值模拟.太阳能学报 2004,25:492-6.
    [46] 庄迎春 孙友宏 谢康和.直埋闭式地源热泵回填土性能研究.太阳能学报2004.25:216-20.
    [47] 冯健美 高晓兵 屈宗长 等.土壤热源热泵地下换热性能分析.太阳能学报2002,23(3):349-52.
    [48] 李毅 邵明安 王文焰 等.质地对土壤热性能的影响.农业工程学报2003,19:62-5.
    [49] Leong WH, Tarnawski VR, Aittomake A. Effect of soil type and moisture content on ground heat pump performance. Int. J Refrig. 1998, 21: 595-606.
    [50] 太阳能利用简介,http://www.hitnewenergy.com
    [51] Pfeil M, Koch H. High performance-low cost seasonal gravel/water storage pit. Solar Energy 2000, 69: 461-7.
    [52] Svec OJ. Potential of ground heat source systems. Int. J Energy Res. 1987, 11: 573-81.
    [53] Sanner B, Karytsas C, Mendrinos D, et al. Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 2003, 32: 579-88.
    [54] 王芳 范晓伟 周光辉.等我国水源热泵研究现状.流体机械 2003,32:57-9.
    [55] Liang ZW, Park S, Qi FIN. Analysis on energy consumption of water-loop heat pump system in China. Appl. Thermal Eng. 2005, 25: 73-85.
    [56] Ji J, Chow T, Pei G, et al. Domestic air-conditioner and integrated water heater for subtropical climate. Appl. Thermal Eng. 2003, 23: 581-92.
    [57] 陈则韶 江斌 胡芃 等.一种四季节能的空调器制热水的新技术.制冷学报2004,25:54-9.
    [58] Ji J, Pei G, Chow T, et al. performance of multi-functional domestic heat-pump system. Appl. Energy. 2005, 80: 307-26.
    [59] 李舒宏 武文斌 张小松.多功能热泵空调热水器的实验研究.流体机械 2005,33:48-50.
    [60] Hepbasli A, akdemir O. Energy and exergy analysis of ground source (geothermal) heat pump system. Energy convers. Mgmt. 2004, 45: 737-53.
    [61] Bilgen E, Takahashi H. Exergy analysis and experimental study of heat pump systems. Exergy. 2002, 2: 259-65.
    [62] Cervantes JG, Torres-Reyes E. Experiments on a solar-assisted heat pump and an exergy analysis of the system. Appl. Thermal Eng. 2002, 22: 1289-97.
    [63] Torres-Rayes E, Nunez MP, Cervantes J. Exergy analysis and optimization of a solar-assisted heat pump. Energy 1998, 23: 337-44.
    [64] 赵力,张启,涂光备.变温热源地热热泵系统的可用能分析.太阳能学报2002,23:595-8
    [65] 赵海波,杨昭.水源热泵系统的热力学分析.节能技术 2004,22:29-32.
    [66] Ito S, Miura N. Studies of a heat pump using water and air heat sources in parallel. Heat Transfer-Asian Research. 2000, 29: 473-90.
    [67] 赵军 刘立平 李丽新 等.R134a应用于直接膨胀式太阳能热泵系统.天津大学学报 2000,33:302-5.
    [68] Kuang YH, Sumathy K, Wang RZ. Study on a direct-expansion solar-assisted heat pump water heating system. Int. J. Energy Res. 2003, 27: 531-48.
    [69] Aye L, Charters WWS, Charichana C. Solar heat pump systems for domestic hot water. Solar Energy 2002, 73: I69-75.
    [70] Chaturvedi SK, Chen DT, Kheireddine A. Thermal performance of a variable capacity direct expansion solar-assisted heat pump. Energy Convers. Mgmt. 1998, 39: 181-91.
    [71] Yumrutas R, Kaska O. Experimental investigation of thermal performance of as solar assisted heat pump system with an energy storage. Int. J. Energy Res. 2004, 28: 163-175.
    [72] Kayguszu K. Investigation of a combined solar-heat pump system for residential heating. Part Ⅰ: experimental results. Int. J Energy Res. 1999, 23: 1213-23.
    [73] Kayguszu K. Investigation of a combined solar-heat pump system for residential heating. Part Ⅱ: simulation results. Int. J Energy Res. 1999, 23: 1225-37.
    [74] Badescu V. Model of a solar-assisted heat-pump system for space heating integrating a thermal energy storage unit. Energy and Buildings. 2002, 34: 715-26.
    [75] Kuang YH, Wang RZ, Yu LQ. Experimental study on solar assisted heat pump system for heat supply. Energy Convers. Mgmt. 2003, 44: 1089-98.
    [76] Yamankaradeniz R, Horuz I. The theoretical and experimental investigation of the characteristics of solar-assisted heat pump for clear days. Int. Comm. Heat Mass Transfer 1998, 25: 885-98.
    [77] Kaygusuz K, Experimental and theoretical investigation of a solar heating system with heat pump. Renewable Energy 2005, 21: 79-102.
    [78] Kaygusuz K, Ayhan T. Experimental and theoretical investigation of combined solar heat pump system for residential heating. Energy Convers. Mgmt. 1999, 40: 1377-96.
    [79] Kaygusuz K. Performance of solar-assisted heat-pump systems. Appl. Energy. 1995, 51: 93-109.
    [80] 余延顺 廉乐明.寒冷地区太阳能.土壤源热泵系统运行方式的探讨.太阳能学报 2003,24:111-5.
    [81] 杨卫波 施明恒 董华.太阳能.土壤源热泵系统(SESHPS)交替运行性能的数值模拟.热科学与技术2005,4:228-32.
    [82] Ozgener O, Hepbasli A. Experimental performance analysis of a solar assisted ground-source heat pump greenhouse heating system. Energy & Buildings 2005, 37: 101-10.
    [83] 张嘉辉 马一太 苏维灿 等.一种热泵节能新设备—浅水池热源热泵.制冷技术 1999,Nol:21-5.
    [84] Buyukalaca O, Ekinci F, Yilmaz X. Experimental investigation of Seyan river and dam lake as heat source-sink for a heat pump. Energy 2003, 28: 150-69.
    [85] Inalli M, Unsal M, Tanyildizi. A computational model of a domestic solar heating system with underground spherical thermal storage. Energy 1997, 22:1163-72.
    [86] Yumrutas R, Unsal M. A computational model of a heat pump system with a hemispherical surface tank as the ground heat source. Energy 2000, 25: 371-88.
    [87] Yumrutas R, Unsal M. Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks. Energy 2000, 25: 1231-43.
    [88] Yumrutas R, Kunduz M, Ayhan T. Investigation of thermal performance of a ground coupled heat pump system with a cylindrical energy storage tank. Int. J Energy Res. 2003, 27: 1051-66.
    [89] Lam JC, Chan WW. Energy performance of air-to-water and water-to-water heat pumps in hotel applications. Energy Convers. Mgmt. 2003, 44: 1625-31.
    [90] Morrison GL, Anderson T, Behnia M. Seasonal performance rating of heat pump water heaters. Solar Energy. 2004, 76: 147-52.
    [91] Kim M, Kim MS, Chung JD. Transient thermal behavior of a water heater system driven by a heat pump. Int. J Refrig. 2004, 27: 415-21.
    [92] Lam JC, Chan WW. Life cycle energy cost analysis of heat pump application for hotel swimming pools. Energy Convers. Mgmt. 2001, 42:1299-306.
    [93] Lazzarin RM, Longo GA. Comparison of heat recovery systems in public indoor swimming pools. Appl. Thermal Eng. 1996, 16: 561-79.
    [94] Johansson L, Westerlund L. Energy savings in indoor swimming-pools comparison between different heat-recovery systems. Appl. Energy 2001, 70: 281-303.
    [95] 张吉光 史自强 杨晚生.热泵在海水养殖中的应用探讨.制冷学报 2002,23:48-51.
    [96] 许维秀 朱圣东 李其京.化工节能中的热泵精馏工艺流程分析.节能2004,No.10.19-22.
    [97] Siqueiros J, Heard H, Holland FA. The commissioning of an integrated heat pump-assisted geothermal brine purification system. Heat Recovery Systems & CHP. 1995, 15: 655-64
    [98] Siqueiros J, Holland FA. Water desalination using heat pumps. Energy 2000, 717-29.
    [99] 陈金增 黄素逸.热泵式舰船海水淡化装置.工业用水与废水2003,34:13-5
    [100] 赵力.海水淡化用小型热泵系统的变工况分析.机械工程学报 2005,41:225-9.
    [101] 周景锋 原郭丰 张鹤飞.热泵式海水淡化系统实验研究.天津化工2005,19:22-23,30.
    [1] Carslaw HS, Jeager JC. Conduction of heat in solids, 2nd ed. 1986, Oxford: Clarendon
    [2] Liang XG. The boundary induced error on the measurement of thermal conductivity by transient hot wire method. Meas. Sci. Technol. 1995, 6: 467-71
    [3] Murakami EG, Sweat VE, Sastry SK, et al. Recommended design parameters for thermal conductivity probes for nonfrozen materials. J. Food Eng. 1996, 27: 109-23
    [4] Murakami EG, Sweat VE, Sastry SK, et al. Analysis of various design and operating parameters of thermal conductivity probe. J. Food Eng. 1996, 30: 209-25
    [5] Elustondo D, Elustondo MP, Urbicain MJ. New thermal conductivity probe design based on the analysis of error sources J. Food Eng. 2001, 48: 325-33
    [6] Cheng SX, Jiang YF, Liang XG. A Tiny heat probe for measuring the thermal conductivities of non-rigid materials. Meas. Sci. Technol. 1994, 5: 1339-44
    [7] Nagasaka Y, Nagashima A. Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method. J Phys. E: Sci. Instrum. 1981, 14: 1435-40
    [8] 陈则韶 葛新石 顾毓沁.量热技术与热物性测定.1991,合肥:中国科学技术大学出版社
    [9] 张寅平 胡汉平 孔祥冬 等.相变贮能.1996,合肥:中国科学技术大学出版社
    [10] 刘中良 马重芳 孙旋.相变潜热随温度变化对固-液相变过程的影响.太阳能学报 2003,24:53-7
    [11] 周业涛 关振群 顾元宪.求解相变传热问题的等效热容法.化工学报 2004,55:1428-33
    [12] Rabin Y, Korin E. An efficient numerical solution for the multidimensional solidification (or melting) problem using a microcomputer. Int. J. Heat Mass Transfer. 1993, 36: 673-83
    [13] 叶宏 何汉峰 葛新石 等.利用焓法和有效热容法对定型相变材料融解过程的比较研究.太阳能学报2004,25:488-91.
    [14] Zhang YW, Faghri A. Semi-analytical solution of thermal energy storage system with conjugate laminar forced convection. Int. J. Heat Mass Transfer. 1996, 39: 717-24.
    [15] Incropera FP, Dewitt DP. Fundamentals of Heat and Mass Transfer. 1985, New York: Wiley & Sons
    [16] 陈敬良 田怀璋 陈林辉.固液相变数学模型中有效热导率.化工学报 2004,55:1072-6.
    [1] 陈沛霖 岳孝芳.空调制冷设计手册.1990,上海:同济大学出版社
    [2] 韩宝琦,李树林.制冷空调原理及应用.2002,北京:机械工业出版社
    [3] 曾丹苓 熬越 朱克雄 等.工程热力学.1986,北京:高等教育出版社
    [4] Bejan A. Advanced Engineering Thermodynamics. 1988, New York: John Wiley
    [5] 赵力,张启,涂光备.变温热源地热热泵系统的可用能分析.太阳能学报 2002,23:595-8.
    [6] 赵海波,杨昭.水源热泵系统的热力学分析.节能技术 2004,22:29-32.
    [7] American Society of Heating, Refrigerating and Air conditioning Engineers. ASHRAE handbook: HVAC Applications. 1995, Atlanta: ASHRAE.
    [8] 郭宽良 孔祥谦 陈善年.计算传热学.1989,合肥:中国科学技术大学出版社
    [9] Yumrutas R, Unsal M. Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks. Energy 2000, 25: 1231-43.
    [10] Leong WH, Tarnawski VR, Aittomake A. Effect of soil type and moisture content on ground heat pump performance. Int. J Refrig. 1998; 21: 595-606.
    [11] Piechowski M. Heat and mass transfer model of a ground heat exchanger: theoretical development. Int. J Energy Res. 1997, 21: 860-72.
    [12] Piechowski M. Heat and mass transfer model of a ground heat pump: validation and sensitivity analysis. Int. J Energy Res. 1998, 22: 965-79.
    [1] 杜洛金 奚同庚 王梅花.固体热物理性质导论—理论和测量.1987,北京:中国计量出版社
    [2] 施明恒 虞维平 王补宣.多孔介质传热传质研究的现状和展望.东南大学学报 1994,24(S1):1-7
    [3] 郭宽良 孔祥谦 陈善年.计算传热学.1989,合肥:中国科学技术大学出版社
    [4] Stauffer D. Introduction to percolation theory. 1985, London: Taylor & Francis
    [5] Wong CP, Bolampally RS. Thermal conductivity, elastic modulus, and coefficient of thermal expansion of polymer composites filled with ceramic particles for electronic packaging. Appl. Polym. Sci. 1999, 74: 3396-403.
    [6] Sundstrom DW, Lee Y. Thermal conductivity of polymers filled with particulate solids. Appl. Polym. Sci. 1972, 16: 3159-67.
    [7] Agari Y, Uno Y. Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. Appl. Polym. Sci. 1985, 30: 2225-35.
    [8] Kumlutas D, Havman IH, Coban MY. Thermal conductivity of particle filled polyethylene composite materials. Comp. Sci. & Technol. 2003, 63: 113-7.
    [9] 丁剑红 张寅平 王馨 等.掺杂对定型相变材料导热系数的影响.太阳能学报 2005,26:853-6.
    [10] Verma LS, Shrotriya AK, Singh U, et al. Heat storage coefficient-an important thermophysical parameter and its experimental determination. J Phys. D: Appl. Phys. 1990, 23: 1405-10.
    [11] Verma LS, Shrotriya AK, Singh R. et al. Prediction and measurement of effective thermal conductivity of three-phase systems. J Phys. D: Appl. Phys. 1991, 20: 1515-26
    [12] Singh AK, Singh R, Chaudhary DR. Prediction of effective thermal conductivity of moist porous materials. J. Phys. D: Appl. Phys. 1990, 23: 698-702.
    [13] Fukasako S. Thermophysical properties of ice, snow, and sea ice. Int. J Thermophys. 1990, 11: 353-72.
    [14] Bouguerra A. Prediction of effective thermal conductivity of moist wood concrete. J Phys. D: Appl. Phys. 1999, 32: 1407-14.
    [15] Chen SC, Vachon RI. The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int. J Heat Mass Transfer 1969, 12: 249-55.
    [16]Lim TC. Unified practical bounds for the thermal conductivity of composite materials. Mater. Lett. 2002, 54: 152-7.
    [17]Agari Y, Uno T. Estimation of thermal conductivities of filled polymer. Appl. Polym. Sci. 1986,32:5702-12.
    [18]Hadley GR. Thermal conductivity of packed metal powders. Int. J Heat Mass Transfer 1986,29: 409-20.
    [19] Jackson KW, Black WZ. A unit cell model for predicting the thermal conductivity of a granular medium containing an adhesive binder. Int. J Heat Mass Transfer 1983,26:87-99.
    [20]Bouguerra A. Temperature and moisture dependence on the thermal conductivity of wood-cement-based composite: experimental and theoretical analysis. J Phys. D: Appl. Phys. 1999, 32: 2797-803.
    [21]Pande RN, Gori F. Effective media formation and conduction through unsaturated granular materials. Int. J Heat Mass Transfer 1987, 30: 993-1000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700