电子膨胀阀开度对光伏—太阳能热泵系统性能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球人口的增长、能耗的增加,太阳能的开发利用正在加速发展。太阳能热泵SAHP系统(SOLAR-ASSISTED HEAT PUMP,SAHP)是太阳能利用的一种方式,SAHP系统将热泵装置和太阳能集热器结合在一起,同时提高热泵的性能系数和太阳能的热利用效率。
     本文将光伏发电与变频技术和直膨式SAHP系统有机结合在一起,提出了光伏-变频太阳能热泵PV/T-VFSAHP系统(Photovoltaic-Variable Quency Solar Assisted Heat Pump)的概念。
     结合系统数学模型对辐照强度、环境温度、蒸发器出口过热度三个参数对PV/T-SAHP系统性能的影响进行了模拟分析,根据分析的结果提出了使系统优化的控制策略。即电子膨胀阀——吸气过热度控制,机组无论在标准工况下、变工况、满负荷、变负荷运行维持较高的COP值和集热器效率η_(coll)。
     当变频压缩机恒定频率运行时,其性能相当于一个在相同频率下运行的定速压缩机。因此,光伏-变频太阳能热泵系统在实际运行时可以离散为无穷多个与不同频率相对应的定速压缩机,所以研究清楚定频下电子膨胀阀的开度对系统性能的影响是研究光伏-变频太阳能热泵系统的关键。所以本文主要从电子膨胀阀的开度对系统性能的影响进行研究。
     以PV/T-SAHP系统实验台为基础,开发了电子膨胀阀开度控制器。并对不同的电子膨胀阀开度下,PV/T-SAHP系统的动态性能进行了实验和分析,根据实验结果我们发现,系统的COP值随着冷凝水温的升高而降低,光电效率的峰值发生在工质蒸发对光伏模块的冷却作用和太阳辐照度和空气对集热/蒸发器表面的加热作用的平衡点,而并非太阳辐照度最高点。在电子膨胀阀开度一定时,随着太阳辐照度的升高,压缩机功率出现振动,当电子膨胀阀开度最大时,系统振动更加明显。振荡对运行经济性与安全性均不利,为确保运行稳定性,片面地增加蒸发器的运行过热度,这就大大降低了蒸发器的利用率,为获得一定的节能效益就减小蒸发器的运行过热度,但盲目地减少过热度,追求运行经济性而导致系统产生振荡.只有对蒸发器和膨胀阀本身的动态特性做出定量分析,并找出系统的临界稳定区(Minimum Stable Signal线,简称MSS线)与条件,找出影响系统稳定性的各种因素,才能在保证系统稳定性前提下,最大限度的利用蒸发器的有效传热面积,获得最高的经济性。由此本文提出了光伏-太阳能热泵(PV/T-SAHP)的系统稳定性原理。同时指出优化PV/T-SAHP系统的关键问题是找到系统集热/蒸发器的MSS线(Q—Tsh关系曲线)。
     最后,建立了变频PV/T-SAHP系统(PV/T-VFSAHP系统)的数学模型,就不同频率时的系统的性能进行了模拟和分析。得出压缩机转速过大和过小,都会影响系统的正常运行,对系统产生不利的影响。在实际运行时,这两种情况都要避免。并对频率分别是30hz、50hz、70hz时的系统性能进行了实验研究。
With the rising of population and energy consuming on earth, the fossil energy on earth is stepping into exhaustion and the issues of environment are facing grimness . The utilization and development of solar energy are improving greatly. The Photovoltaic Solar Assisted Heat Pump (PV/T-SAHP) system which integrated heat pump and solar energy collector can heighten the COP (coefficient of performance) and the utility efficiency of solar energy simutaneous is a main way of utilization of solar energy.
     Based on the photovoltaic and the technology of variable frequency and the DXSAHP (direct expansion solar assisted heat pump),we proposed the idea of the PV/T-VFSAHP (Photovoltaic-Variable Quency Solar Assisted Heat Pump) .
     Combined the mathematical mode of the PV/T-SAHP system , system performance and optimization under the affecting factor of solar radiation, condensing water temperature, surrounding temperature , and the superheat of evaporator were studied. Based on the results ,the optimal control strategy of the system was put forward.viz.the control of the EXV-the superheat degree of the collector.By this way, the system can maintain more COP and more the efficient of the collector at no matter what status of the system,such as the standard status , the variable status, the full load and the variable load.
     When the variable frequency compressor run at a constant frequency ,its performance worthiness a fix velocity compressor move with a sameness frequency.So the PV/T-VFSAHP can disperse to a lot of fixed velocity compressor corresponding different frequency. Therefor the key of the study of the PV/T-VFSAHP is to probe the effecting of the opening of the EXV to the system.
     Basing on the test rig and mathematical mode of the PV/T-SAHP system ,we developed the controller of the openning the EXV (Electronic Expansion Valve).
     At the same frequency of compressor, under different opening of EXV, outdoor tests were conducted on the PV/T-SAHP system. The dynamic behavior of PV/T-SAHP was analyzed . The COP of the system reduced along with the raising of temperature of the condensing water .The peak value of the efficiency of the photovoltaic is occurred while the balance between the cooling influence of the vaporizing working material to the PV/T module and the heating influence of the air to the collector/evaporator, not the vertex of the solar radiation. The vibration of the power of the compressor appeared when the raising of the solar radiation at a fixing opening of EXV. when at the maximum opening of the EXV, the vibration is especially evident. The vibration is harmful to the economical and security of the system .Increasing and decreasing the superheat degree of the evaporator ex parte are all mistake.The only way to utilize the availity area of the evaporator and to gain the maximum economocal of PV/T-SAHP is to find the MSS of the system.So we brings forward the principal of the stability of the PV/T-SAHP system .
     At the same time point out the key of the study of the PV/T/T-SAHP is to discover the relation of the solar radiation and the superheat degree of collector/evaporator.
     At last , we simulation and analyzing the performance of the PV/T-SAHP system based on the mathetical mode of the PV/T-SAHP system under different frequency of compressor ,and carry through the experiment when the frequency is 30hz,50hz,70hz
引文
[1] 《中国能源发展报告》编委会,中国能源发展报告,中国计量出版社,2001
    [2] 中国欧盟第四次能源合作大会(国家计委发言)北京2001年6月18日
    [3] 《合肥市建筑节能“十一五”发展规划》,2007
    [4] 韩文科,能源冲击,瞭望周刊,2004,15
    [5] 陈清泰,国家能源战略的基本构想,中国经济时报,2003,11,10
    [6] 姜文来,人民网环保频道2007年02月01。http://env.people.com.cn/GB/5355129.html
    [7] 《中国环境公报》2005
    [8] 杨玉民,循环经济:可持续发展的战略选择,合作经济与科技[J],2005,第289期
    [9] fox.lee,2010 年:中国三种可能前景(http://www.vankeweekly.com/vankebbs/index.asp)
    [10] 吴志坚,李颂哲等,热泵在我国开发与应用的可行性论证,中科院广州能源研究所,1987
    [11] Threlkeld P, Jordan, D R, 1957. Direct solar radiation available on clear days. Heating, Piping and Air Conditioning, 29(12):134-145
    [12] Yanagimachi Report on two and a half years' experimental living in Yanagimachi Solar House Ⅱ ,Solar Energy, Wind Power and Geothermal Energy; proceedings of the United Nations Conference on New Sources of Energy held August 21-31, 1961, in Rome, Italy. Volume 5, Solar Energy: Ⅱ
    [13] Raymond Bliss ,Designing solar furnaces for specific performance,Solar Energy, Volume 1, Issues 2-3, April-July 1957, Pages 55-62
    [14] S.K.Chaturvedi, Y.F.Chiang and A.S.Roberts, Analysis of two-phase flow solar collector with application to heat pumps [J]. Joural of Solar Energy Engineering, 1982, 104:358-365
    [15] S.K.Chaturvedi, Y.F and James Y.Shen, Thermal performance of a direct expansion solar-assisted heat pump [J]. Solar Energy 1984, 33:155-162
    [16] Chaturvedi S.K., Roberts A.S. and Mei V.Solar collector as heat pump evaporator, Proceedings of 13th Intersociety Energy Conversion Conference: 286-297
    [17] Chaturvedi S.K., Abazeri M. Transient Simulation of a Capacity-Modulated, Direct-Expansion, Solar-Assisted Heat Pump. Solar Energy, Vol.39 (1987), P421-428
    [18] G.L.Morrison, Simulation of packaged solar heat-pump water heaters. Solar Energy, 1994, 53:249-257
    [19] 赵军,马一太等。太阳能热泵供水系统实验研究[J],太阳能学报,1993,(4):306-310
    [20] 赵军等R134a应用于直接膨胀式太阳能热泉系统[J]天津大学学报 2000.33(3):302-305
    [21] 张喜明,白莉等。太阳能热泵供热水系统实验研究[J],节能技术,2003,2l(1):27~33
    [22] 旷玉辉,王如竹,许煜雄,直膨式太阳能热泵供热水系统的性能研究,工程热物理学报,2004,25(5):737-740
    [23] 旷玉辉,王如竹,直膨式太阳能热泵热水器的试验研究,工程热物理学报,2005,26(3):379-381
    [24] Kuang Y H, Sumathy K, Wang R Z. Performance of a multi-functional direct-expansion solar assisted heat pump system [J]. Solar Energy, Vol.80 (2006), No.7, P795-803
    [25] Sporn P. and Ambrose, E.R. The heat pump and solar energy. Proceedings of the World Symposium on Applied Solar Energy, Nov. 1-5, 1955
    [26] Franklin J.L., Saaski E.W.and Yamagiwa A.A high efficiency, direct expansion solar panel. Proceedings of 1977 Flat-Plat Solar Collector Conference: 187-195
    [27] 裴刚.季杰,何伟等,PV/T太阳能热泵系统的性能研究[J],中国工程科学.2006年第8卷第9期,p78-82
    [28] 裴刚,季杰等,光伏-太阳能热泵在不同冷凝水温下的特性[J],中国科学技术大学学报,2006 Vol.36,No.10 P:1044—1050.
    [29] 季杰,刘可亮,裴刚,何伟,何汉峰;对太阳能热泵PV蒸发器的理论研究及基于分布参数法的数值模拟[J];太阳能学报;2006年12期;22-27
    [30] Jie Ji, T.T Chow, Wei He. Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong[J]. Building and Environment. Vol.38 (2003),p1327-1334
    [31] Morgan R.G.Solar Assisted HeatPump.Solar Energy, 1982, 28:129-135
    [32] Krakow K.L.and Lin S. A solar source heatpump with refrigerant-cooled solar collectors for cold climates.Transactions of the ASHRAE, 1982, 88:417-439
    [33] Ito S.Miura N.and wang K.Performance of a heatpump using direct expansion solar collectors[J]. Solar Energy, 1999, 65(3):189-196
    [34] Hawlader M N A , Chou S K , Ullah M Z. The performance of a solar assisted heat pump water heating system[J]. Applied Thermal Engineering, 2000, 21(10): 1049-1065
    [35] Huang B.J.and Chyng J.P. Performance characteristic of integral type solar-assisted heat pump [J] Solar energy, 2001, 71:403-414
    [36] Krakow K.L.and Lin S. A solar source heatpump with refrigerant—cooled solar collectors for cold climates.Transactions of the ASHRAE, 1982, 88:417-439
    [37] CHATURVEDI S.K. CHEN D.T. KHEIREDDINE A. Thermal performance of a variable capacity direct expansion solar-assisted heat pump [J] Energy conversion and management Vol.39 (1998), No.3, P189-196: P181-191
    [38] Kern Jr.E.C, Russell M.C, Combined photovoltaic and thermal hybrid collector systems. Proc.l3~(th) IEEE Photovoltaic specialists, Washington, USA, 1978, p1153-1157
    [39] Hendrie S.D, Evaluation of combined photovoltaic/thermal collectors. Proc. ISES Int. Congress, Atlanta, USA, Vol.3, p1865-1869
    [40] Florschuetz L.W, Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plat collectors, Solar Energy, Vol.22, p361-366
    [41] Raghuraman P, Analytical predictions of liquid and air photovoltaic/thermal flat plate collector performance. J. of Solar Energy Engineering. Vol.103, p291-298
    [42] Cox C.H, Raghuraman P, Design considerations for flat-plate photovolatic/thermal collectors, Solar Energy, Vol.35, p227-245
    [43] Lalovic B, A Hybrid amorphous silicon photovoltaic and thermal solar collector, Solar Cells, Vol.19, p131-138
    [44] Loferski J.J, Ahmad J. M, Pandey A, Performance of photovoltaic cells incorporated into unique hybrid photovoltaic/thermal panels of a 2.8 Kw residential solar energy conversion system, Proc. of the 1988 Annual Meeting, American Solar Energy Society, Cambridge, Massachusetts, p427-432
    [45] Bhargava A.K, Garg H.P, Agarwal R.K, Study of a hybrid solar system-solar air heater combined with solar cells, Energy Convers. Mgmt. Vol.31, p471-479
    [46] Prakash J, Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water, Energy Convers. Mgmt. Vol.35, p967-972
    [47] Sopian K, Liu H.T, Yigit K.S. etal, An investigation into the performance of a double pass photovoltaic thermal solar collector. Proc. ASME Int.Mechanical Engineering Congress and Exhibition, San Francisco, USA, AES Vol.35, p89-94
    [48] Sopian K, Liu H.T, Kakac S. etal, Performance of a hybrid photovoltaic thermal solar collector, Proc. ASME Int.Mechanical Engineering Congress and Exhibiton, Atlanta, USA, AES Vol.36 p341-346
    [49] Takashima T, Tanaka T, Doi T. etal, New proposal for photovoltaic-thermal solar energy utilization method, Solar Energy, Vol.52, p241-245
    [50] Bergene T, Lovvik O.M, Model calculations on a flat-plate solar heat collector with integrated solar cells. Solar Energy Vol.55, p453-462
    [51] Garg H.P, Ahhikari R.S, Conventional hybrid photovoltaic/thermal (PV/T) air heating collector: steady-state simulation, Renewable Energy, Vol. 11, p363-385
    [52] Imre L, Bitai A, Bohonyey F, Hocker G. etal, PV-Thermal combined building elements., Proc. ISES Solar World Congress, Budapest, Hungary, Vol.3, p277-280
    [53] Posnansky M, Gnos S, Coonen, The importance of hybrid PV-building integration, Proc.IEEE First World Conf. on Photovoltaic Energy Conversion, Waikoloa, Hawaii, Vol.Ⅰ, p998-1003
    [54] Ricaud A,Roubeau P, Capthel, a 66% efficient hybrid solar module and the Ecothel co-generation solar system, Proc. IEEE First World Conf on Photovoltaic Energy Conversion, Waikoloa, Hawaii, Vol.Ⅰ, p1012-1015
    [55] Elazari A, Multi solar system. Solar multimodule for electrical and hot water supply for residentially building. Proc. of 2nd World Conf. and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria, p2430-2433
    [56] Hauser T, Rogash H, Latent heat storage on photovoltaics, Proc. 16th European PV Solar Energy Conf, Glasgow, U.K, Vol.Ⅲ,p2265-2267
    [57] Thomas H.P, Hayter S.I, Martin R.L. etal, PV and PV/Hybrid products for buildings. Proc. 16th European Solar Energy Conf. Glasgow, U.K. Vol.Ⅱ, p1894-1897
    [58] Huang B.J, Lin T.H, Huang W.C. etal, Performance evaluation of solar photovoltaic/thermal systems, Soalar Energy, Vol.70, p443-448
    [59] Ji Jie, Chow T.T, He Wei, Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong, Building and Environment, Vol.38, p1327-1334, 2003
    [60] 季杰,程洪波,何伟等,太阳能光伏光热一体化系统的试验研究,太阳能学报,Vol.26.2.p170-174,2005
    [1] 裴刚,光伏-太阳能热泵系统及多功能热泵性能的研究,博士论文,中国科学技术大学热科学和能源工程系,2006
    [2] 珠海**压缩机有限公司,QX-218090压缩机规格书,2002
    [3] 张毅刚等,MCS51单片机应用设计[M]哈尔滨:哈尔滨工业大学出版社,1996
    [1] 裴刚,光伏-太阳能热泵系统及多功能热泵性能的研究,博士论文,中国科学技术大学热科学和能源,2006
    [2] Chaturvedi SK, Roberts AS. Analysis of Two-Phase Flow Solar Collectors with Application to Heat Pumps [J]. Journal of Solar Energy Engineering, 1982, 104:359-365
    [3] Chaturvedi S.K., Abazeri M. Transient Simulation of a Capacity-Modulated, Direct-Expansion, Solar-Assisted Heat Pump. Solar Energy, Vol.39 (1987), P421-4:28
    [4] J.A. Duffle, W.A. Beckman. Solar Engineering of Thermal Processes[M], 2nd Edition, John Willy& Sons, Inc, 1991.2
    [5] 王列科,杨强生 板式换热器中蒸汽凝结换热特性[J]上海交通大学学报Vol.32,No.4,PP.18-22,1998
    [6] 缪道平等.制冷压缩机[M].北京:机械工业出版社(第二版),2001
    [7] While D D. The measurement &expansion valve capacity. Refrigeration Engineering, 1935, 8: 108-112
    [8] 刘志刚,刘咸定,赵冠春,制冷工质热物性程序的编制,科学出版社,1991
    [9] Hulle Z.R.The MSS Line-A New Approach to Hunting Problem.ASHRAE.Journal,1972(10):43-46
    [1] Chaturvedi S.K., Abazeri M. Transient Simulation of a Capacity-Modulated, Direct-Expansion, Solar-Assisted Heat Pump. Solar Energy, Vol.39 (1987), P421-428
    [2] HE Faming, Comparison between Electronic Expansion Valve and Thermostatic Expansion Valve. World Shipping Vol.27(2004) p44-46
    [3] 陈理壁.步进电机及其应用[M].上海科学技术出版社,1989.
    [4] 浙江三花股份有限公司 电子膨胀阀阀体认可图
    [5] 浙江三花股份有限公司 电子膨胀阀线圈认可图
    [6] 刘保延,等.步进电机及其驱动控制系统[M].哈尔滨工业大学出版社,1997
    [7] 朱瑞琪,等.单片机原理[M].北京航空航天大学出版社,1998.
    [8] 张毅刚等,MCS51单片机应用设汁[M]哈尔滨:哈尔滨工业大学出版社,1996
    [9] 王福瑞,等.单片机微机测控系统设计大全[M].北京航空航天大学出版社,1998
    [10] Keil Software Inc. Implementing ‘μVision DLL's for Advanced Generic Simulator Interface Review3. http://www.keil.com/μVision2/agsi/;, 2004
    [11] 浙江三花股份有限公司 电子膨胀阀流量测试报告2005.05.04
    [1] Hulle Z.R. The MSS Line-A New Approach to Hunting Problem. ASHRAE.Journal, 1972(10): 43-46
    [2] Chen W, Zhijiu Chen, Ruiqi Zhu,Yezheng Wu.Experimental Investigation of a Minimum Stable Superheat Control System of an Evaporator[J].International Journal of Refrigeration,2002,(25): 1137-1142
    [1] 葛云亭,房间空调器仿真模型研究,博士沦文,清华大学热能工程系,1997
    [2] 珠海**压缩机有限公司,QX-21B090压缩机规格书,2002
    [3] 邵双全,石文星等 变频压缩机性能仿真建模[J],清华大学学报,2004,(44):362~365
    [4] J.A. Duffie, W.A. Beckman. Solar Engineering of Thermal Processes [M], 2nd Edition, John Willy& Sons, Inc, 1991.2
    [5] While D D. The measurement of expansion valve capacity. Refrigeration Engineering, 1935, 8: 108-112

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700