光伏太阳能热泵系统的模拟研究和经济性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源和环境问题的日益突出,太阳能因其无污染、可再生等优点,受到人们的重视。本文以太阳能光电/光热综合利用为出发点,对光伏太阳能热泵系统(PV-SAHP)进行了研究。
     PV-SAHP系统在直膨式太阳能热泵系统集热板的上方层压光伏电池制成光伏蒸发器(PV-EVAP).一方面,蒸发盘管中的制冷剂带走了光伏电池中多余的热量,保证了光伏电池较低的工作温度,提高了系统的光电转换效率。另一方面,系统的蒸发过程在太阳直接辐照之下完成,使得热泵循环的性能系数明显提高。系统能够同时输出电能和热能,提高了对太阳能的综合利用能力。
     首先,本文利用稳态分相区集中参数模型对光伏蒸发器进行了理论研究。研究了太阳辐射强度、环境温度、结构参数以及蒸发器进口参数等因素的改变对出口焓值的影响;根据给定的进口参数和外界环境参数,对光伏蒸发器进行了全天的数值模拟。结果表明,光伏蒸发器具有优越的性能:其电效率、热效率、电热综合效率的平均值分别为13.3%、67.9%、79.2%,综合效率比普通集热器约高出10%。
     其次,建立了PV-SAHP系统的数学模型,并对其进行了全天的数值模拟。结果显不,PV-SAHP系统具有优越的性能:平均光伏功率、光电转换效率、热泵性能系数和光电光热综合性能系数分别为462.1w、13.8%、5.89和9.13;此外,系统的压缩机耗功占光伏功率的78.2%,这意味着系统所输出的电能能够满足自身需求。
     最后,对光伏太阳能热泵热水器(PV-SAHPWH)进行了经济性分析和环境效益的评价,说明了该系统能够节省费用、降低能耗、减少污染物的排放,适用于小区、住宅楼集中供生活热水、供电量,具有可行性和工程应用价值。
Well known as a non-polluting, inexhaustible, and clean energy source, solar energy has received considerable attention at present, while the energy and the environmental issue increasing significant. This paper take the compound photovoltaie/thermal utility to study Photovoltaic Solar Assisted Heat Pump system (PV-SAHP).
     In PV-SAHP, a specially designed direct expansion PV/T solar collector with PV cells laminated on the front surface is employed in the system to act as the evaporator (PV-EVAP). On one hand, because refrigerant absorbed unnecessary heat from the PV base plate in the evaporator, the system can mainiain the PV cell in a lower temperature for better photovoltaic performance. On the other hand, the coefficient of performance of PV-SAHP is obviously improved because the evaporating process under insolation. The system can also generate electricity and heat energy in the meantime. This improves the overall utilization of solar energy efficiency.
     First in this paper, a steady-state phase-separating lumped parameters approach has been used to simulate the PV-EVAP in depth, which is the core component of PV-SAHP system. Researches were focused on the environmental parameters, structural parameters and inlet parameters of the evaporator, which influenced the outlet enthalpy of the PV-EVAP. After that, numerical simulation has been performed for predicting the behavior of the evaporator in whole day, according to specified instantaneous solar irradiance, ambient temperature and inlet parameters of the evaporator. The results demonstrate that PV-EVAP has a superior performance. The average thermal efficiency, electrical efficiency and the overall efficiency of the PV-EVAP are around 13.3%,67.9% and 79.2% respectively. Compared to a traditional PV/T collector the overall efficiency was 10% higher. Besides, the results also show that the photovoltaic and thermal performance mainly depend on the soiar irradiance. The ambient temperature also can effect the performance of PV-EVAP.
     Second, a model for the PV-SAHP system is then established and numerical simulation is performed for predicting the behavior of the system in whole day. The results show that high performance can be obtained by the system. The average output electricity, electrical efficiency, COP, and COPe-t are around 462.1W,13.8%,5.89 and 9.13 respectively. The compressor power consumption is about 78.2% of the output electricity, which means that the system can offer all the power consumed by itself.
     Finally, according to the economic analysis and the environmental benefits evaluation on the photovoltaic-solar assisted heat pump water heater, it shows that the system can save expenses, reduce energy consumption and decrease emissions of pollutants. PV-SAHPWH is suitable for supplying hot water and electrical energy to residence community, and it is also worth to be applied to practical engineerings.
引文
[1]闰长乐,张永泽等,中国能源发展报告2007,中国水利水电出版社,2007
    [2]张国宝.中国能源发展报告2009.经济科学出版社,2009:169
    [3]徐伟.可再生能源建筑应用技术指南.中国建筑工业出版社,2008:50
    [4]王崇杰,薛一冰等.太阳能建筑设计.中国建筑工业出版社,2007:13-14
    [5]董月鲜.2005年房地产宏观调控成效明显.中国投资信息网,2005
    [6]国务院.国家中长期科学和技术发展规划纲要(2006-2020).2006
    [7]Roger A. Messenger, Jerrv Ventre. Photovoltaic System Engineering.2nd Edltlon, CRC Press, Flonda, USA,54-55
    [8]Brinkworth et al. Thermal regulation of photovoltaic cladding. Solar Energy,1997,61: 169-178
    [9]Klanter et al. Combined Photovoltaic and solar thermal Systems for facade integration and bullding insulation.Solar Energy,1999,67:239-248
    [10]Kalogirou S.A., Tripanagnostopoulos Y. Hybrid PV/T solar systems for domestic hotwater and electicity production.Energy Conversion and Management.2006,47: 3368-3382
    [11]P. Sporn, E.R. Ambrose. The heat pump and solar enegy. Proceedings of the World Symposium on Applied Solar Energy, Phoenix, Arizona,1955
    [12]旷玉辉,王如竹,许煌雄.直膨式太阳能热泵供热水系统的性能研究.工程热物理学报,2004,25(5):737-740
    [13]旷玉辉,王如竹.直膨式太阳能热泵热水器的试验研究.工程热物理学报,2005,26(3):379-381
    [14]余延顺,廉乐明.寒冷地区太阳能—土壤源热泵系统运行方式的探讨,太阳能学报,2003,24(1):111-115
    [15]余延顺,马最良,廉乐明.太阳能热泵系统运行工况的模拟研究.流体机械,2004,32(5):65-69
    [16]赵军,刘立平,李丽新等.R134a应用于直接膨胀式太阳能热泵系统.天津大学学报,2000,33(3):301-305
    [17]M.N.A. Hawlader, K.A.Jahangeer, Solar heat pump drying and water heating in the tropics. Solar Energy, Vol.80:492-499,2004
    [18]S.K.Chaturvedi, YF.Chiang and A.S.Roberts, Analysis of two-Phase flow solar collector with application to heat pumps[J]. Journal of Solar Energy Engineering,1982,104: 358-365
    [19]V.Badeseu. First and second law analysis of a solar assisted heat-pump based hleating system. Energy Conversion and Management,2002,43(18):2539-2552
    [20]J.Prakash, Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water. Energy Conversation and Management, Vol.35:967-972
    [21]J.Jie, P.Gang, C.Tin-tai, et al. Experimental study of photovoltaic solar assisted heat pump system. Solar Energy,2008,82(1):43-52
    [22]裴刚.光伏—太阳能热泵系统及多功能热泵系统的综合性能研究.博士学位论文,中国科学技术大学热科学与能源工程系,2006
    [23]张行星.基于光伏/光热预制模块的冷/热-电联供热泵系统的研究.硕士学位论文,东华大学环境与工程学院,2009
    [24]M.Bosanac, A.Brunotte, W.SPirkl and R.Sizmann. Use of Parameters Identification for Flate-Plate Collector Testing under Non-Stationary Conditlons. Renewable Energy Sources,1994,04:217-222
    [25]Photovoltale/thermal solar collectors and their potential in Denmark, Final Report, EFP Project,2003,1713/00-0014
    [26]Donald L.Chubb. Fundamentals of thermophotovoltaic energy conversion. Elsevier,2007
    [27]Zondag H A, Vries de D W, Heldenb van W G J, Zolingen van R J C, Steenhoven van A A. The yield of different combined PV-thermal collector designs. Solar Energy,2003,74: 253-269
    [28]J.A.Duffie, W.A.Beekman. Solar Engineering of Thermal Proeesses[M].2nd Edition, John Willy & Sons, Ine,1991.2
    [29]W.Rohsenow, J.Hartnet, Y.cho. Handbook of Heat Transfer.3rd edition, McGraw-Hill, 1998
    [30]Moshtegh B, Sandbergy M. Investi gation of fluid flow and heat transfer in a vertical channel heated from one side by PV elements, Part Ⅰ-numerical study. Renewable Energy,1996,08:248-253
    [31]刘可亮.光伏太阳能热泵的理论和实验研究.博士学位论文,中国科学技术大学热科学与能源工程系,2007
    [32]丁国良.小型制冷装置动态仿真研究.博士学位论文,上海交通大学热能与动力工程学院,1992
    [33]D.L.Bennert, J.C.Chen. Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AIChE Journal,1980,26(3):454-461
    [34]M.M.Shah. A new correlation for saturated boiling heat transfer:Equations and further study. ASHRAE Transactions,1982,88(1):185-196
    [35]K.E.Gungor, R.H.S.Winterton. Simplified general correlation for saturated flow boiling and comparison of correlations with data. Chemical Engineering Research and Design, 1987,65:148-156
    [36]W.Qu, I.Mudawar. Flow boiling heat transfer in two-phase micro-channel heat sinks-Ⅱ. Annular two-Phase flow model. International Journal of Heat and Mass Transfer,2003, 46:2773-2784
    [37]L.Wojtan, T.Ursenbacher, J.R.Thome. Investigation of flow boiling in horizontal tubes: Part Ⅱ-Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. International Journal of Heat and Mass Transfer,2005,48:2955-2969
    [38]H.Wang, S.Touber. Distributed and non-steady-state modeling of an air cooler. International Journal of Refrigeration,1991,14:98-111
    [39]Y.Y.Hsieh, T.F.Lin. Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger. International Journal of Heat and Mass Transfer,2002,45(5):1033-1044
    [40]丁国良,张春路.制冷空调装置仿真与优化.科学出版社,2003
    [41]葛云亭.房间空调器仿真模型研究.博十学位论文,清华大学热能工程系,1997
    [42]张春路.基于模型的制冷空调装置智能仿真方法基础研究.博士学位论文,上海交通大学热能与动力工程学院,1999
    [43]季杰,程洪波,何伟等.太阳能光伏光热一体化系统的试验研究.太阳能学报,2005,Vo1.26(2):170-174
    [44]柏杰,李连生,郁永章.涡旋式压缩机动力特性分析.西安交通大学学报,1994,28(8):83-88
    [45]刘振全,杜桂荣.涡旋压缩机理论机构模型.机械工程学报,1999,35(2):38-41
    [46]王宝龙,石文星,李先庭.制冷空调用涡旋压缩机数学模型.清华大学学报(自然科学版),2005,45(6):726-729
    [47]A.E.Dbiri, C.K.Rice. A Compressor Simulation Method with Correlations for the Level of Suction Gas Superheat. ASHRAE Transactions,1981,87(2):1019-1025
    [48]陈志澜,乔宗亮,熊则男.涡旋压缩机于HFC替代工质的研究.制冷学报,1995,1:1-4
    [49]裴刚.多功能家用热泵系统的研究.硕士学位论文,中国科学技术大学,2003
    [50]Xu Guoying, Zhang Xiaosong, DengShiming. A simulation study on the operating performance of a solar-air source heat pump water heater. Applied Thermal Engineering, 2006,26:1257-1265
    [51]何汉峰.光伏太阳能热泵的动态分布参数模拟与实验研究.博士学位论文,中国科技大学热能工程专业.2008.
    [52]李连生.涡旋压缩机.机械工业出版社,1998.
    [53]郎铁军,马国远,马立章.基于MATLAB的全封闭涡旋压缩机性能的仿真.流体机械,2010,39(5):18-23
    [54]徐国英,张小松,杨磊.两种集热结构的太阳能光伏/光热一体化热泵性能分析.化工学报,2008,59(S2):224-229
    [55]谢淑萍,金苏敏,汤新敏.板式冷凝器的稳态仿真模型.流体机械,2009,37(4):83-85
    [56]While.D.D. The measurement of expansion value capacity. Refrigeration Engineering, 1935(8):108-112
    [57]刘振全,杜桂荣.涡旋压缩机理论机构模型.机械工程学报,1999,35(2):38-41
    [58]Ma Shanwei, Zhang Chuan, Chen Jiangping, et al. Experimental research on refrigerant mass flow coeffieient of electronic expansion valve. Applied Thermal Engineering,2005, 25:2351-2366
    [59]Zhang Chuan, Ma Shanwei, Chen Jiangping, et al. Experimental analysis of R22 and R407c flow through electronic expansion valve. Energy Conversion and Management, 2006,47:529-544
    [60]Chasik Park, Honghyun Cho, Yongtaek Lee, et al. Mass flow charaeteristics and empirical modeling of R22 and R410A flowing through electronic expansion valves. Iternational Journal of Refrigeration,2007,30(8):1401-1407
    [61]Xue Zhifang, Shi Lin, Ou Hongfei. Refrigerant flow characteristics of electronic expansion valve based on thermodynamic analysis and experiment. Applied Thermal Engineering,2008,28(2-3):238-243
    [62]张川,马善伟,陈江平,陈芝久.电子膨胀阀制冷剂流量系数经验模型的试验研究.机械工程学报,2005,41(11):63-68
    [63]W.Chen.S, M.Deng. Development of a dynamic model for a DX VAV air conditioning system. Energy Conversion and Management,2006,47(11):2900-2924
    [64]蒋能照,吴兆琳,翁文斌.制冷剂工质热力性质图和表.上海:上海交通大学出版社,1992
    [65]苏长荪主编.高等工程热力学.北京:高等教育出版社,1987
    [66]Clelend A C. Computer subroutines for rapid evaluation of refrigerant thermodynamic properties. Int J Refrig,1986,9(8):346-351
    [67]Cleland A C. Polynomial curve-fits for refrigerant thermodynamic properties:extension to include R134a. Int J Refrig,1994,17(4):245-249
    [68]Martin-Dominguez I R, McDonald T W. Correlations for some saturated thermodynamic and transport properties of refrigerant R-22. ASHRAE Transactions,1993,99(1): 344-348
    [69]张春路,丁国良,李灏.制冷剂饱和热力性质的隐式拟合方法.工程物理学报,1999,20(6):673-676
    [70]张春路,丁国良,李灏.制冷剂过热气体性质的隐式拟合方法.工程物理学报,2000,21(5):533-536
    [71]龙琼,谷波,胡建.饱和线上R22热力性质及传输特性的快速计算模型.流体机械,2008,36(12):79-82
    [72]龙琼,谷波.过热区R22热力性质及传输特性的快速计算模型.流体机械,2009,37(2):69-72
    [73]Ji Jie, Chow T.T, He Wei. Dynamic performance of hybrid photovoltaic/thermal collector wall in Hong Kong, Building and Environment,2003, Vol.38:1327-1334
    [74]B.J.Huang, T.H.Lin, WC.Hung. Performance evaluation of solar photovoltaic/thermal systems. Solar Energy,2001,70(5):443-448
    [75]郑瑞澄.民用系统太阳能热水系统工程技术手册[M].北京:化学工业出版社,2005:294-311
    [76]张鸣,蔡亮,虞维平BIPV系统经济性分析[J].应用能源技术,2007(11):1-4
    [77]李耿华,师江涛,李娟.太阳能热泵供热系统的应用及经济性分析[J].山西建筑,2010.36(25):179-180
    [78]尚存存,何燕,王文.一种直膨式多功能太阳能热泵系统经济性分析[J].制冷技术,2011(1):27-30
    [79]http://www.cnsb.cn/html
    [80]郑瑞澄.《太阳能供热采暖工程技术规范》编制要点[J].建筑节能,2008(11):49-53
    [81]石久胜,韩晶.太阳能开水器的经济性分析[J].节能技术,2005,23(132):372-374

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700