基于太阳能利用的储能缓释地板模块结构及相变材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为实现对能源的高效利用,本课题研制了一种具有储热与热缓释功能的地板模块。该地板模块以太阳能转化的热空气为热源,以相变材料为储热载体,以规范化、标准化加工为产品实现的原则,实现对室内的均衡供热。通过对该储能缓释地板的结构及热、力学特性研究,探讨其储热、缓释特性,为实际生产提供理论依据,研究内容主要包括:
     1、相变材料研究
     相变材料的种类和特性、相变材料选择、新型相变材料研制、新型相变材料的相变温度、相变潜热特性等方面的研究。
     (1)以相变材料(XB-1)和相变材料(XB-2)按一定比例混合后,检测其相变温度。
     (2)在XB-1和XB-2混合物的基础上,加入一定量的添加(TJ)剂,增加相变材料的热焓量,提高导热系数。
     (3)选择合适的多孔性材料,使相变材料填充于该多孔性材料中,形成复合型相变材料,通过试验确定最佳复合工艺。
     (4)通过对复合相变材料进行封胶处理试验,对封胶材料进行优化。
     (5)对复合相变材料进行热分析、电镜分析、比表面及孔隙率分析。
     2、地板模块结构设计
     (1)地板模块材料选择、模块尺寸规格、模块加工过程和模块安装方式等方面的研究,并对储热地板模块的热学特性进行计算与分析。
     (2)隔热底板制作,用三层木胶合板为上下盖板,周围用木条封边,中间填充隔热保温材料,对隔热保温材料种类、性能进行筛选,用导热系数测试仪对多种隔热保温材料进行试验,并对试验结果进行优化。
     研究结果表明,比例为XB-1/XB-2/TJ(100/50/100)的复合相变材料热含量和导热系数可满足要求。同时以膨胀珍珠岩为载体,用水泥进行定型、封边,解决了相变材料在相变过程中的渗漏等问题,同时该研究成功地设计并制造出复合地板模块样品。地板模块样品用挤塑板做隔热底板的保温材料热损失最少,而热源温度在60-70℃时,地板模块的吸热量最大。通过试验结果分析,对模块结构、隔热材料、相变材料等因素与该复合地板的储能缓释性能的关系进行了探讨。
     试验结果证明,该复合地板的储热性能和保温缓释性能良好,可行性高;加工与安装简便。
To achieve efficient use of energy, The developed a kind of module floor with thermal storage and heat-release function. For this module floor, hot air converted from solar energy is heat source, and phase change material is thermal storage carrier. Following the principles of standardization and normalization processing, this module floor could achieve a balanced indoor heating. The structures and thermal and mechanic characteristics of this floor were investigated, and its heat storage, heat release characteristics were discussed, so as to provide a theoretical basis for the actual production. The research mainly includes:
     1、Development of phase change materials
     Including the type and characteristics of phase change materials, selection of phase change material, development of new phase-change materials, phase transition temperature of the new developed-phase-change material, potential heat and other characteristics, development of composite phase change materials:
     (1) The phase change material (XB-1) and phase change materials (XB-2) were mixed according to a certain mass ratio before the phase transition temperature was detected.
     (2) Based on the mixture of XB-1and XB-2, A certain amount of additive (TJ-1) were applied, increasing the enthalpy value of phase change material and improving its thermal conductivity.
     (3) Phase-change material was filled in a selected porous material to gain a composite phase-change material. The best processing parameters for complexing were determined by test methods such as infer.
     (4) A best sealant material was found by sealing the composite phase change material with different material.
     (5) for Thermal analysis, electron microscopy characterization and surface area and porosity analysis were carried out on the composite phase change materials, and the correlation coefficient was determined.
     2、The structural design of floor module
     (1) Materials for the floor module were choosen, the module size, the maching process, and installation process were studied. At the same time, thermal characteristics of the heat storage floor module were calculated and analyzed.
     (2) Floor insulation was made. Three-layer plywood were used as the up and down cover, wood strips were around the edge, and the inner space was filled with thermal insulation material. Different thermal insulation materials were tested on a conductivity tester, and the best was choosen according to insulation effects.
     Results showed that:thermal conductivity and heat content of composite phase change materials which has a mass ration of XB-1/XB-2/TJ=(100/50/100) reached the requirements. At the same time, when expanded perlite was used as the carrier, cement was utilized for shaping and edging, problems of phase change material the solid liquid phase change process issues were successfully solved, for instance, leakage no longer occurred easily. At the same time composite floor sample module were to designed and manufactured. When extruded insulation board was used as the insulation floor, least heat was lost, and the heat source temperature is about60-70℃, the floor module could absorb most heat. Effects of structure, insulation materials, water temperature, and phase change materials on the heat storage and heat release performance of this floor were learned.
     Results showed that:this composite floor has good hear storage and heat release properties; its application is feasibile, whilt its processing and installation are relatively simple. Meanwhile, the experiment also suggested a limited endothermic capacity and a low hear transfer rate of this composite floor.
引文
[1]姚伟.太阳能利用与可持续发展[J].中国能源,2005,27(2):46-47.
    [2]仓啦,李金祥,等.浅谈太阳能采暖系统应用现状与发展[J].西藏科技,2010,211(10):12-14.
    [3]王如竹,翟小强.基于太阳能热利用的生态建筑能源技术[J].建筑热能通风空调,2004,23(1):25-28.
    [4]单军勇,刘效洲.太阳能采暖的可行性分析[J].工业锅炉,2003(6)41-43.
    [5]熊巍,张存泉.我国太阳能技术发展概况与应用前景[J].中国建设动态:阳光能源,2005(5):74-77.
    [6]郑瑞澄.太阳能供热、采暖工程应用及经济性分析[J].建设科技,2008(1):136-139.
    [7]于洪艳,齐志勇.太阳能热风采暖系统设计及可行性研究.现代农业科技,2010(22):36-39.
    [8]王默晗,杨前明,等.太阳能供暖在建筑中的应用[J].中国建设动态:阳光能源,2006(6):43-45.
    [9]祖文超,戎卫国,等.太阳能供热采暖系统研究现状及思考.制冷与空调,2010,24(2):78-81.
    [10]Abhat A Low. Temperature latent heat thermal energy storage[J] Solar Energy, 1983,30:313-332.
    [11]庄逸峰,贾正源.我国太阳能开发利用现状及建议[J].科技和产业,2008,8(9):123-125.
    [12]刘瑞霞.一种新型复合定形相变储能材料的研究[D].南京:江苏大学,硕士论文,2007.
    [13]张丽芝,张庆.相变储热材料[J].化工新型材料,1999,27(2):19-21.
    [14]尚燕,张雄.储能新技术—相变储能[J].上海建材,2004(6):42-45.
    [15]陈爱英,汪学英.相变储能材料及其应用[J].洛阳工业高等专科学校学报,2002(12):7-9.
    [16]LANE G A. Solar heat storage:latent heat materials[M]. Florida:CRC Press, 1987.
    [17]李金.相变储热材料应用研究进展[J].北京联合大学学报(自然科学版).2005,19(3):51-53.
    [18]尚燕,张雄.相变储能材料应用研究[J].西华大学学报·自然科学版,2005,24(2):23-27.
    [19]张静,丁益民,陈念贻.相变储能材料的研究及应用[J].盐湖研究,2005,13(3):52-57.
    [20]王志强,曹明礼,龚安华,苏青青.相变储热材料的种类、应用及展望[J].安徽化工,2005,134(2):65-69.
    [21]戴或,唐黎明.相变储热材料研究进展[J].化学世界,2001(12):662-666.
    [22]张东,吴科如.相变储能复合材料的研究和应用[J].节能与环保,2004,(1):17-19.
    [23]李金辉,刘晓兰,等.新型相变储能材料研究进展[J].化工新型材料,2006,34(8):33-38.
    [24]陈枭,张仁元,毛凌波.石蜡类相变材料的研究及应用进展[J].材料研究与应用,2008,2(2):21-25.
    [25]盛青青,章学来.石蜡类复合相变材料的研究进展[J].制冷空调电力机械,2008,120(29):71-75.
    [26]张正国,邵刚,方晓明.石蜡膨胀石墨复合相变储热材料的研究[J].太阳能学报,2005,26(5):11-15.
    [27]尚燕,张雄.新型相变储能技术的应用与发展[J].建筑节能,2006,34(2)
    [28]马素德,宋国林,等.相变储能材料的应用及研究进展[J].高分子材料科学与工程,2010,26(8):73-77.
    [29]张正国,文磊,等.复合相变储热材料的研究与发展[J].化工进展,2003,22(4):61-64.
    [30]吕学文,考宏涛,李敏.基于复合相变储能材料的研究进展[J].材料科学与工程学报,2010,28(5)
    [31]Xavier P, Pegis O, Sylvain M. Paraffin/porous-graphite-matrix Composite as a High and Constant Power Thermal Storage Material[J]. Heat and MassTransfer, 2001, (44):2727-2737.
    [32]肖敏,龚克成.良导热、形状保持相变蓄热材料的制备及性能[J].太阳能学报,2001,22(4):427-430.
    [33]郭元强,陈玉放,梁学海,等.壳聚粉/聚乙二醇共混物的相变行为[J].纤维素科学与技术,1999,7(2):8-12.
    [34]Hawlader M N A, Uddin M S, Zhu H J. Encapeulation Phase Change Materials[J]. International Journal of Energy Research,2002, (26):159-171.
    [35]石黑守,前田茂宏.蓄热材料用的微胶囊分散液[P].CN 1161364A,1997.
    [36]姜勇,丁恩勇,黎国康.一种新型的相变储能功能高分子材料[J].高分子材料科学与工程,2001,17(3):173-175.
    [37]Yong J, Enyong D, Guokong L. Study on Transition Characteristics of PEG-CDA Solid-solid Phase Change Materials[J]. Polymer,2002,43:117-122.
    [38]周剑敏,张东,吴科如.建筑节能新技术——相变储能建筑材料[J].新型建材,2003,(4):10-12.
    [39]陈宝春.相变材料的基本理论及其在建筑节能领域的应用[J].新型建筑材料,2009.
    [40]王沁芳,张朝辉,杨江金.相变储能材料在节能建筑中的应用[J].建筑应用,2009(1):42-46.
    [41]陶雅各.相变储能技术在建筑中的应用[J].建设科技,2007(6):38-43.
    [42]马保国,王信刚,等.相变蓄能围护结构材料的研究现状与进展[J].建筑节能,2005(6):41-45.
    [43]HawesDW, Feldman D. Absorption of Phase ehange materials in concrete[J]. Solar Energy Materials and Solar Cells, 1992,27(2):91-101.
    [44]Hawes DW, Banu D, Feldman D. Stability of Phase change materials in concrete[J]. Solar Energy Materials and Solar Cells, 1992,27(2):103-118.
    [45]BakosG. Energy management method for auxiliary energy saving in a Passivesolar -heated residence using low cost off-peak eleetrieity[J]. Energy and Buildings, 2000, 31:237-241.
    [46]Barrio M, Font J, LoPez DO, etal. Floor radiant system with heat storage by a solid-solid Phase transition material[J]. Solar Energy Materials and Solar Cells, 1992,27:127-133.
    [47]T.Lee, D W IIawes et.al. Control aspects of latent heat storage and recovering in concrete[J]. Solar Energy Material&Solar Cell, 2000,62:17-317.
    [48]Anthienitis A K, et al. Investigation of the thermal Performance of a Passive solar test-room with wall latent heat storage[J]. Building and Environment, 1997, 32(5):405-410
    [49]Athienitis A K, Chen T Y.ExPerimental and theoretical investigation of floor heating with thermal storag[J]. ASHRAE Trans, 1993,99(1):1049-1057.
    [50]M.Yamagushi, S.Sayama etal. Heat storage with phase change material for house floor heating[J]. Proc.Of the 7th Inter.Conf.on Thermal Energy storage, 1997:349-353.
    [51]Farid M, Kong W J. Underfloor heatingwith latent heat storage[C]. Proeeeding of the Institution Of Mechanieal Engineers, 2001,601-609.
    [52]Feldman D, Shapiro M M, Banu D·Organic Phase change materials forthermalenergy storage [J]. Solar Energy Materials, 1986, 13:1-10.
    [53]Son ChangH·Morehouse JeffreyH, An experimental investigation of solid-state Phase change Materials for solar thermal storage[J]. Trans Of the ASME, J of Solar Energy Engineering, 1991,113:244-249.
    [54]Tashfeen Syed M, Kumar Sunil, Moallemi Karim M, etal. Thermal storage using form-stable Phase-change materials[J]. ASHRAE Journal,1997, 39:45-50.
    [55]KamimotoM, Abe YSawata, set al. Latent thermal storage unit using form-stable high density Polyethylene; Part I:Performance of the storage unit[J]. Transactions of the ASME,1986,108:282-289.
    [56]Abe Y, Takahashi Sakamoto R, etal. Charge and discharge characteristics of adirect contact Latent thermal energy storage unit using form-stable high-densityPolyethylene [J]. Journal of Solar Energy Engineering, 1984, 106:465-474.
    [57]Farid M, Kong W J. Underfloor heating with latent heat storage[C]. Proceeding of the Institution of Mechanical Engineers,2001,601-609.
    [58]Salyer I O, Sircar AK, A review of Phase change materials research for thermal energy storage in heating and cooling applications at the University of Dayton from 1982 to 1996[J]. Int J Global Energy Issues, 1997:183-198.
    [59]Inaba H, Tu P. Evaluation of thermoPhysical characteristics on shape-stabilized paraffin as a solid-liquid Phase change material[J]. Heat and Mass Transfer, 1997, 32:307-312.
    [60]Xavier Py, Pegis Olives, Sylvain Mauran.Paraffin/Porous-graphite-matrix composite as a high and constant power thermal storage material[J]. Heat and Mass transfer, 2001,44 (14):2727-2737.
    [61]Osamu Miyatake, Muhammad Enamul Kabir, Hidehiko Noda, etal.Transient charaeteristics and performance of hybrid latent heat storage and spray flash evaporation system[J]. Journal of Chemical Engineering of Japan, 1997, 30(6):1076-1082.
    [62]Yasushi Koito, Kotaro Tagawa, Yasuhiro Maruta, etal. Effect of Pellet size on discharge characteristics of latent heat storage columns packed with cross -linked polymer pellets. Journal of Chemieal Engineering of Japan, 2001, 34(6):819-827.
    [63]张寅平,狄洪发,葛新石,等.一种相变蓄热电供暖器[P].中国:专利号:95229702.7.
    [64]张寅平,狄洪发,王馨,等.一种民用相变蓄能电取暖器[P].中国:专利号:01275868.
    [65]张寅平,王智超,狄洪发,江亿.未来电暖器值得关注的方向—相变蓄热电暖器[J].家用电器科技,2001,10,39-41.
    [66]刘靖,王馨,等.高温相变蓄热电采暖器蓄放热特性的实验研究[J].工程热物理学报,2004,25:99-102.
    [67]刘靖,刘石,等.一种高温相变蓄热电暖器的研制及其热性能测试[J].建筑科学,2007,25(4):58-62.
    [68]马贵阳,王智慧,等.相变蓄热电暖器的制作及性能测试[J].抚顺石油学院学报,2003,23(3):50-53.
    [69]秦鹏华,张寅平,杨睿等.定形相变材料的热性能[J].清华大学学报(自然科学版),2003,43(6):833-835.
    [70]林坤平,张寅平,徐煦等.定形相变材料蓄热地板电采暖热性能研究[J].清华大学学报(自然科学版),2004,44(12):1616-1621.
    [71]林坤平,张寅平,狄洪发.相变蓄热电加热地板的优点与应用可行性分析[C].全国暖通空调制冷文摘,2002,169-172.
    [72]林坤平,张寅平.电加热相变材料蓄热地板采暖的热性能模拟[J].太阳能学报,2003,24(5):633-636.
    [73]林坤平,张寅平,等.定形相变材料蓄热地板电采暖热性能实验研究[J].高技术通讯,2005,15(4):51-54.
    [74]林坤平,张寅平,等.送风式相变蓄热地板电采暖系统实验研究[C].全国暖通空调制冷文摘,2004,1-4.
    [75]林坤平,张寅平,等.地板下送风式相变蓄热电采暖系统[J].太阳能学报,2005,26(6):820-824.
    [76]林坤平.相变蓄能建筑构件应用原理和效果研究[D].北京:清华大学,博士论文,2006.
    [77]张群力,狄洪发,张寅平,林坤平.蓄能材料物性对低温热水采暖地板热性能的影响研究[C].制冷空调新技术进展-第四届全国制冷空调新技术研讨会论文集,2006,88-92.
    [78]叶宏.透明蜂窝和定形相变材料在太阳能利用中的理论和实验研究[D].北京:中国科学技术大学,博士论文,2002.
    [79]叶宏,葛新石.一种定形相变材料的结构和理化分析[J].太阳能学报,2000,21(4):417-421.
    [80]叶宏,葛新石,焦冬生.带定形PCM的相变贮能式地板辐射采暖系统热性能的数值模拟[J].太阳能学报,2002,23(4):482-487.
    [81]叶宏,何汉峰,葛新石,徐斌.利用焙法和有效热容法对定形相变材料熔解过程分析的比较研究[J].太阳能学报,2004,25(4):488-491.
    [82]叶宏,程丹鹏,葛新石,庄双勇,王军.定形相变贮能式地板辐射采暖系统数值模型的实验验证及参数分析[J].太阳能学报,2004,25(2):189-194.
    [83]叶宏,王军,庄双勇,葛新石,徐斌.定形相变贮能式地板辐射采暖系统的实验研究[J].太阳能学报,2004,25(5):651-656.
    [84]程丹鹏.相变传热增强及相变贮能系统研究[D].北京:中国科学技术大学,硕士论文,2006.
    [85]吴秀芬.一种封装蓄能材料用于地板辐射采暖的理论与实验研究[D].北京:北京建筑工程学院,硕士论文,2006.
    [86]邱林,魏立峰,吴秀芬,刘星.蓄能地板辐射采暖系统热性能的研究[J].建筑节能,2007,35(193):51-53.
    [87]邱林,吴秀芬,刘星,魏立峰,杨梦易.地面辐射供暖系统相变蓄能地板热工性能研究[J].煤气与热力,2007,27(2):79-82.
    [88]邱林,吴秀芬,杨梦易.相变材料蓄能采暖地板结构模型的探讨[J].建筑科学,2007,23(2):河北工程大学硕士学位论文41-44.
    [89]周传辉.利用相变蓄热材料进行地板辐射采暖的方法[J].建筑热能通风空调,2002,1:42-43.
    [90]陈其针.相变电热地板辐射采暖系统性能研究及舒适性分析[D].沈阳:沈阳建筑大学,2005.
    [91]李国建.相变储能电热地板采暖系统实验研究[D].沈阳:沈阳建筑大学,硕士 论文,2005.
    [92]李国建,冯国会,陈其针.相变储能电热地板采暖系统蓄换热性能实验研究[C].全国暖通空调制冷2004年学术文集,2004,18-21.
    [93]孔一冉.相变蓄热地板传热特性及其供暖房间热性能的研究[D].天津:河北工业大学,硕士论文,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700