提高太阳能集热系统集热效率及热转换成蒸汽设备的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经济的快速发展导致能源消耗加剧,环境污染问题也随之越发严峻,节能减排和开发可再生能源成为解决问题的有利途径。国内外研究证明太阳能热的中高温利用可以实现热发电,解决目前常规能源短缺的现状。本课题首先介绍了国内外当前的能源形势以及云南省的实际情况,指出课题研究的可行性;其次介绍了国内外太阳能热利用的研究和发展状况,根据本课题的前期研究成果最终提出太阳能热利用发电的意义。
     课题组前期的研究表明,云南省作为以旅游发展为主的地区,在省内工业园区进行集中供电供热具有很好的经济前景和环境效益,同时利用云南省得天独厚的气候和太阳能条件,发展太阳能热电系统具有可行性,并得出以太阳能资源为主发展太阳能-轻柴油互补的分布式能源系统具有可观的经济效益、社会效益和环境效益。课题组前期太阳能资源利用的研究中存在集热效率不高、保温及换热效果不理想等问题,本课题在课题组前期研究成果的基础上进行,有针对性的进行深入的研究,以期解决以上问题。
     本课题主要针对课题组前期研究中存在的问题分别进行研究,具体包括提高系统的集热效率、换热效率和保温效果,设计承压设备进行了产生蒸汽的实验,课题主要集中在研究利用太阳能中温(200℃)的阶段,为中高温的利用提供基础数据。
     第一,为提高系统的集热效率,在课题组原来实验系统的基础上进行优化,采用槽式太阳能代替太阳能灶,并得出最佳的实验条件为导热油的流速为1m3/h,水的流速为0.22m3/h;在最佳实验条件下利用设计的承压储水箱进行产生蒸汽的实验,得出在加热时间2.8h时,可以实现循环水路的压力达到0.12MPa,产生蒸汽。
     第二,为研究系统储热及保温效果,本课题分析了各种储热方式及储热材料,并采取显热储热的储热方式,以导热油和水分别作为储热材料进行了储热实验,得出较优的储热条件及储热方式,为后期实验提供了理论基础,同时在课题组原实验系统的基础上改进保温措施以期提高系统的保温效果。实验结果表明,在中温条件下(200℃)导热油作为储热介质单位时间储热量为298J/s,高于水的储热效果;在中温条件下进行保温实验,采用改进后的保温措施,系统的热量损失率也会有不同程度的降低,系统温度均由200℃开始降低,到温度下降到70℃时,新系统的热量损失速率为2312J/s;系统温度由70℃下降到环境温度(21℃)时,新系统的热量损失速率为876J/s。此外,进行了储热实验中保温条件的优化设计,得出在当前实验条件下环境温度对储热系统保温效果的影响最大。
     第三,为提高系统的换热效率,将课题组原沉浸式蛇管换热器更替为板式换热器,并通过两套实验系统的对比得出换热效率高低与集热系统的集热效果之间关系不大的结论。
     通过本课题的研究优化了系统,得出了预期的实验效果,并为课题组的进一步推进提出了理论数据,针对在研究过程中遇到的问题提出了后期研究需要改进的方面和研究的方向。
The rapid economic development has led to intensified energy consumption and serious environmental pollution, which is becoming a favorable way to solve the problem that energy conservation and development of renewable energy. Studies have shown that thermal power can be achieved of using high temperature solar thermal, which can solve the shortage of conventional energy status quo. Firstly, this topic introduced the current energy situation at home and abroad, and the actual situation in Yunnan Province, pointing out that the feasibility of the research; Secondly, it describes the use of domestic and international solar thermal research and development, and ultimately raised the significance of the use of solar thermal power generation based on previous research in this subject.
     Existing study on the group pre-studies have shown that centralized supply heating has good economic prospects and environmental benefits in Yunnan Province, which is mainly in the development of tourism. Centralized power supply heating in the industrial park has good economic prospects and environmental benefits. Yunnan Province, unique climate and solar conditions, the development of solar thermal systems is feasible. It is effective to develop solar resource-based development and distributed energy systems for solar energy-light diesel complementary. With current study, collection efficiency is not high, insulation and heat transfer effects are not ideal, this topic is on this basis of targeted in-depth studies in order to solve the above problem.
     The research is including the collection efficiency to improve the system efficiency of heat transfer and insulation effect, the experiment to produce steam. The subject is mainly concentrated in the research phase of the solar temperature (200℃), which can provide basic data for the use of the high solar temperature.
     Firstly, in order to improve the collection efficiency, the experimental system is based on optimized trough solar energy instead of solar cookers, and come to the best experimental conditions for conducting oil flow rate of1m3/h, water flow rate was0.22m3/h; Under the optimal experimental conditions, the pressure tank in the heating time2.8h, can achieve circular waterway pressure reaches0.12MPa, the produce steam.
     Secondly, in the research of thermal storage and insulation effect, we have analyzed thermal storage and thermal energy storage materials, and use Sensible heat storage to Conduct oil and water as a heat storage material heat storage experiments, get the better thermal storage conditions and thermal storage, which provides a theoretical basis for the latter experiments. The experiment also improved insulation measures to improve the insulation effect. The results show that in the medium temperature (200℃), oil as heat storage media unit time heat storage298J/s, the effect of heat storage is higher than the water; in the medium temperature insulation, use improved insulation measures, heat loss rate of the system will have varying degrees reduction. From200℃down to70℃, the heat loss rate is of2312J/s, and from70℃down to the environment temperature (21℃), the heat loss rate of the new system is876J/s. In addition, optimize the design of the thermal conditions in the heat storage experiments。The Conclusion is that the greatest impact to the insulation effect of the thermal storage system is environmental temperature in the current experimental conditions。
     Thirdly, to improve heat transfer efficiency, immersion snake tube heat exchanger is replaced to the plate heat exchanger. The Conclusion is that the relationship is little between heat transfer efficiency and collector effect.
     With the research, we have received the effect of experimental, and it has provided theoretical data for the further study. Problems encountered in the course of the study, which provided directions for later research.
引文
[1]何梓年.太阳能热利用[M].合肥:中国科学技术大学出版社,2009.
    [2]云南省国民经济和社会发展第十二个五年规划纲要
    [3]云南省能源局,2010.12
    [4]宋永臣,宁亚东,刘瑜译.太阳能利用新技术[M].北京:科学出版社,2009.
    [5]张传强,洪慧,金红光.聚光式太阳能热发电技术发展状况[J].热力发电.2010.39(12):5-9,13.
    [6]霍志臣,罗振涛.国内外平板热水器发展概况.太阳能.2006,(6):11-12.
    [7]高嵩,侯宏娟.太阳能热发电系统分析[J].华电技术.2009,31(1):70-74.
    [8]Stoddard, Abiecunas J, and O'Connell R.Economic. Energy, and Encironmental Benefits of Concentrating Solar Power in California[R]. Kansas:National Renewable Energy Laboratory, 2006.
    [9]王亚龙.槽式太阳能集热与热发电系统集成研究[D].北京:中国科学院研究生院,2010.
    [10]张倩倩.昆明新城高新技术产业基地太阳能-轻柴油互补的分布式能源项目节能减排潜力研究[D].云南:昆明理工大学,2011.
    [11]International Energy Agency(IEA).World Energy outlook. China and India Insights. Paris: OECD/IEA;2007.
    [12]Andreas Poullikkas. Economic analysis of power generation from parabolic trough solar thermal plants for the Mediterranean region—A case study for the island of Cyprus[J]. Renewable and Sustainable Energy Reviews,2009,(13):2474-2484.
    [13]熊亚选.槽式太阳能聚光集热技术[J].太阳能.2009,(6):21-26.
    [14]黄湘.国际太阳能资源及太阳能热发电趋势.华电技术,2009,31(12):24-28.
    [15]张耀明.太阳能热发电技术[J].前沿.2009,(7):28-30.
    [16]袁建丽.新型太阳能热利用系统集成研究[D].北京:中国科学院,2007.
    [17]陈超,聂志刚.槽式太阳能集热发电系统发展概况[J].工程研究.2009,1(4):314-318.
    [18]罗智慧,龙新峰.槽式太阳能热发电技术研究现状及发展[J].电力设备.2006,7(11):29-32.
    [19]胡桂秋,陈军.太阳能热发电系统的现状研究[J].武汉理工大学学报.2009,31(16):154-157.
    [20]Lupfert, E., Geyer, M., Schiel, W., et al. EUROTROUGH design issues and prototype testing at PSA [A]. Proc. Of ASME Int. Solar Energy Conference-Forum 2011 [C], Washington, DC, 2001:389-394.
    [21]C.E. Kennedy, K. Terwilliger. Optical durability of candidate solar reflectors[J]. Transactions of the ASME,2005,127:262-269.
    [22]Pfander M, Lupfert E, Pistor P. Infrared temperature measurements on solar trough absorber tubes. Solar Energy,2007,81(5):629—635.
    [23]S M Jeter. Calculation of the Concentrated Flux Density Distribution in Parabolic Trough Collectors by a Semifinite Formulaiton. Solar Energy,1986,37(5):335-345.
    [24]Xiao Jie, He Yaling, et al. Performance Analysis of parabolic Trough Solar ollector[J].Journal of Engineering Thermophysics.2009,30(5):729-733.
    [25]徐荣吉,何雅玲等.槽式太阳能电站集热管热性能测试及回规分析[J].工程热物理学报.2011,32(11):1932-1936.
    [26]Incropera F, deWitt D. Fundamentals of Heat and Mass Transfer.3rd ed. New York:John Wiley & Sons,2007.
    [27]廖文俊,曾乐才等.槽式太阳能中温集热技术研究[J].装备机械.2011,(1):37-40.
    [28]韩崇巍,季杰等.槽式抛物而太阳能聚焦集热器的理论研究[J].太阳能学报.2009,30(9):1182-1187.
    [29]何汉峰,季杰等.半圆形漫反射板对储热式真空集热管集热性能的影响[J].太阳能学报,2006,27(6):582-587.
    [30]达菲JA,贝克曼(著),葛新石,龚堡,陆维德(译).太阳能工程:原理和应用[M].北京:学术期刊出版社,1988.
    [31]李业发,谢红等.全玻璃真空管太阳能辐射量与其放置角度的关系[J].节能,2005,274(4):27-29.
    [32]V Dudley, G Kolb, MSloan, etal. SEGS LS2 Solar Collector-Test Results. Report of Sandia National Laboratories, SANDIA94-1884, USA,1994.
    [33]高志超,隋军等.30m2槽式太阳能集热器性能模拟研究[J].工程热物理学报.2010,31(4):541-544.
    [34]Price H, Forristall R, WendelinT, et al. Field survey of parabolic trough receiver thermal performance. In:Proceedings of ISEC2006, ASME International Solar Energy Conference. Colorado:ASME,2006.
    [35]Kalogirou S, Lloyd S, Ward J. Modeling, optimisation and performance evaluation of a parabolic trough solar collector steam generation system. Solar Energy,1997.60(1):49—59.
    [36]王克红,赵黛青.槽式和塔式太阳能热发电的热效率及其环境分析比较.2006年节能与可再生能源发电技术研讨会论文集[M].2006:233-235.
    [37]]张宝星,太阳能利用的跟踪与聚集系统研究[D].湖北:合肥工业大学,2006.
    [38]邹建,姬兴等.一种新型的太阳自动跟踪系统研究[J].光电子技术.2010,30(3):159-163.
    [39]夏小燕.大范围太阳光线跟踪传感器及跟踪方法的研究[D].河海大学,2007.
    [40]Mark J. O'Neill, A. J. McDanal. The 25 Kilowatt SolarRow:A Building Block For Utility-Scale Concent rator Systems [J]. IEEE Transactions on Energy Conversion.25:1529-1532.
    [41]郑小年,黄巧燕.太阳跟踪方法及应用[J].能源技术.2003,24(4):149-151.
    [42]郑宏匕,陶涛等.多曲面复合聚焦槽式太阳能集热器的研究.工程热物理学报.2011,32(2):193-196.
    [43]熊亚选,吴玉庭等.槽式太阳能集热管传热损失性能的数值研究.中国科学:技术科学.2010,40(3):263-27].
    [44]邹宁宁,鹿成滨,张德信.绝热材料应用技术[M].北京:中国石化出版社,2005.
    [45]谢文J’.绝热材料与绝热工程[M].北京:国防工业出版社,2006.
    [46]朱教群,李圆圆等.太阳能热发电储热材料研究进展[J]Solar Energy,2009,(6):29-32.
    [47]朱教群,周卫兵,白风武.高温混凝土储热材料及其热性能研究[J].高科技与产业化.2008,(11):31-34.
    [48]Yang M, Ding J, et al. Heat transfer enhancement and performance o f the molten salt receiver of a solar power tower[J]. Apply Energy,2010,87(9):2808-2810.
    [49]尚燕,张雄.储能新技术-相变储能[J].上海建材,2004,(6):18-20.
    [50]李石栋,张仁元等.储热材料在聚光太阳能热发电中的研究进展[J].材料导报:综述篇.2010,24(11):51-55.
    [51]陈思明,刘益才等.高温相变换热材料的研究进展和应阳[J].真空与低温.2010,16(3):25-130.
    [52]路阳,彭国伟等.熔融盐相变储热材料的研究现状及发展趋势[J].材料导报A:综述篇.2011,25(11):38-42.
    [53]张炳.太阳能热发电用无机复合储热材料的制备及其性能研究[D].武汉:武汉理工大学,2007.
    [54]朱盈豹.无机保温材料的应用和发展前景[J].辽宁建材.2010,(2):10-13.
    [55]陈春滋,朱未禹.保温绝热材料与应用技术[M].北京:中国建材工业出版社,2005.
    [56]倪星元,张志华等.Si02纳米多孔材料制备及其保温隔热特性研究[J].原子能科学技术.2004,32:128-132,142.
    [57]王晓红.化工原理[M].化学工业出版社.北京:2009.
    [58]Chen Shuangtao, Hou Yu, Zhao Hong, et al. A numerical model of thermal analysis for woven wire screen matrix heat exchanger[J]. Cryogenics,2009,49(9):497-503.
    [59]Kerner J, Sjogren S, Svensson L. Where Plate Exchangers Offer Advantages Over Shell-and Tube, Power[J].1987,131:53-58.
    [60]Shah R K, Focke W W. Heat Transfer Equipment Design[M]. Washington, DC:Hemisphere. 1988:227-254.
    [61]Kandlikar S G, Shah R K. Multipass Plate Heat Exchangers Effectiveness NTU Tesults and Guidelines for Selecting Pass Arrangements[J],ASME Journal of Heat Transfer,1989,11:300-313.
    [62]钱颂文.换热器设计手册[M].北京:化学工业出版社.2006.
    [63]倪晓华,萧渊.板式换热器的换热与压降计算[J].流体机械.2002.30(3):22-25,32.
    [64]杨伟,王鹏等.换热器传热系数的改进计算[J].中国科技论文在线.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700