薯蓣皂素提取新工艺及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薯蓣皂素的生产被誉为“废水之王”,所排污水量大,有机物含量高,酸性强,色素浓,极难治理,对周围环境造成巨大污染,目前尚无成功治理的方法。而生产薯蓣皂素的黄姜加工企业又主要处于南水北调中线工程的水源地,如果不进行改进治理,这些企业将面临关停的命运。
     为了改变薯蓣皂素的这种生产现状,对现有的酸水解工艺进行改进,提出了用酶法改进处理以综合利用黄姜中的淀粉发酵燃料乙醇。研究了黄姜的糊化性质及液化、糖化过程,为生产燃料乙醇提供参考。得到了液化糖化的最佳操作条件:粒度为0.28mm以下黄姜粉按1:5(w/w)调浆,加液化酶10u/g,在90℃下液化30分钟即能达到良好的液化效果;调pH 4.0~4.5,加糖化酶60u/g,在60℃下糖化90分钟就可糖化完全。
     本文提出一种全新的热分解方法来处理黄姜,并对其进行相关基础研究,为以后的工业生产提供理论依据。新工艺过程中无需酸、碱处理,最重要的是不需对残渣进行清洗,基本无废水产生,从根本上解决了皂素生产中的污水处理问题,可以实现真正意义上的清洁生产。该工艺简称热分解法,现已申请国家发明专利,并获得河南省教育厅自然科学基础研究项目的资助。
     研究了影响热分解的各种因素,得到操作的优化条件,回归出相应的数学模型。利用响应面法进行分析可知,压力越高,保压时间越长,加料量适中,物料粒度越细,处理效果越好。操作优化条件为:饱和蒸汽压力1.4MPa,保压时间30min,加料量3.5kg,在此条件下薯蓣皂素的收率为1.745%。在热分解前加入二氧化碳介质,可以提高处理效果,改善物料颜色,但物料呈酸性,保压时间需要适当延长。
     用SAS软件对数据进行回归分析,得薯蓣皂素收率与热分解操作参数之间的关系式:Y~(1.4)=1.619992+0.445945*X1+0.436486*X2—0.128199*X3—0.186137*X1*X1+0.180706*X1*X3—0.266779*X2*X2+0.155259*X2*X3,模型的相关系数R~2=0.9753。
     本文对热分解物料中的薯蓣皂素进行有机溶剂提取和超临界CO_2萃取的研究,并与水解物进行提取对比。在有机溶剂萃取时,考察了时间、温度、溶剂量及粒度的影响。热分解物的皂素收率为1.75%左右,萃取率约为72.9%;水解物的皂素收率约为10.5%,萃取率为75%左右。从收率看,这两种原料提取的薯蓣皂素量有很大的悬殊,但二者的萃取效果相当。
     用SAS软件处理热分解物超临界萃取的数据,得到相应的关系曲线和等收率线。根据误差分析的结果可知,CO_2流量影响最大、其次是操作压力,然后是加料量的影响。优化出热分解物超临界萃取最佳条件为:操作压力35MPa,温度55℃,CO_2流量12kg/h,加料量125g,皂素萃取率为89.96%。
     对数据进行回归分析,则薯蓣皂素的萃取率与热分解物超临界萃取操作参数之间的关系可拟合如下:Y=74.68667+7.478333*X1+1.456667*X2+8.560833*X3—4.654167*X4—1.08375*X1*X1+2.9625*X1*X2—2.205*X1*X3+3.5925*X1*X4+0.77125*X2*X2+1.9975*X2*X3—1.405*X2*X4—4.61*X3*X3—1.855*X3*X4—3.365*X4*X4,模型的相关系数R~2=0.9300。
     通过对水解物超临界萃取的研究可知,压力的变化对水解物萃取效果的影响最大,其次是CO_2流量和温度的变化。由正交试验法得其最佳操作条件为100g原料,萃取时间4h,萃取压力35MPa,萃取温度45℃,CO_2流量12kg/h,无水乙醇的用量300mL,此时薯蓣皂素萃取率为88.25%。
     通过对黄姜热分解物进行扫描电镜、红外光谱、X-射线衍射和热分析的表征,探讨了热分解作用的机理,分析了黄姜中淀粉和纤维素在热分解过程中的变化情况,对由热分解产物提纯的物质进行了结构确证。通过测定熔点、紫外光谱、红外图谱、核磁共振氢谱、质谱与标准品进行比对,谱图基本一致,表明该物质确为薯蓣皂素。用超高效液质联用UPLC-MS对以水解物、热分解产物为原料,有机溶剂和超临界提取的产物进行定量分析,结果表明,用有机溶剂提取时,从水解物中提取的薯蓣皂素含量比从热分解物中提取的薯蓣皂素含量高。但用超,临界萃取的方法却是从热分解物中提取的薯蓣皂素含量高。
     酸水解物料为粉状,需用酸回流水解3~6h,产生大量废水;而热分解物料可为5cm以下的块状,处理时间短,只需30min左右,基本无废水。无论是从经济性,还是从环保角度看,热分解法都比酸水解法要优越得多。因此热分解方法可以彻底革新薯蓣皂素的生产工艺,从根本上解决皂素生产中的废水问题,对实现真正的绿色过程,促使皂素生产健康持续发展,具有非常重要的生产实际意义。
The wastewater from diosgenin production is called as the king which is great acidity, thick colour, high organic matter concentration. At present, there isn't an appropriate process that can be used to treat the wastewater successfully in practical engineering. The diosgenin plants mainly lie the upriver of Danjiangkou Reservoir wich is the water source of the middle line of South-to-North water diversion project (MLSWDP). The water pollution will directly effect the water quality of the MLSWDP, and effect the national strategy. If no effective measures adopting, the diosgenin plants will face the fate of closed.
     In order to changing the situation of diosgenin, we put up the enzymatic hydrolysis method to comprehensive utilize the starch by fermenting fuel ethanol. We study the factors of the Dioscorea zingiberensis C. H. Wright pasting property, liquefaction and saccharification. The optimal operation conditions are achieved: the particle 0.28mm, add water by the rate of 5 (w/w), the amount ofα-amylase 10u/g, at 90℃holding 30min; And then, adjust pH 4.0~4.5, add the amount ofglucoamylase 60u/g, at 60℃holding 90min.
     We put forward a new treatment method——heat decomposed technology to improve the situation of diosgenin. Fundamental research is carried in order to provide the theory base. It can predigest the process and avoid the pollution. There is no acid, alkali reagent and wastewater in the whole process. What's the most important is no washing and no wastewater. So it is the real pollution-free technology. Now, we have applied the invention patent. It has been sponsored by the project of Henan Province Education office.
     We take the lead in researching the factors of heat-decomposed technics, get the process optimization and the mathematic mold by response method. The effect of heat decomposed is better with high pressure, long holding time, and moderate material amount. The best condition is the steam pressure 1.4 MPa, holding 30min, the material 3.5kg and the product rate 1.745%. The treated material was better with weak color when CO_2 added, but it's acidity was increased slightly, and the holding time needed longer.
     We obtain the correlation formula about the product rate and heat-decomposed factors by SAS software: Y~(1.4)=1.619992+0.445945~*X1+0.436486~*X2-0.128199~*X3-0.186137~*X1~*X1+0.180706~*X1~*X3-0.266779~*X2~*X2+0.155259~*X2~*X3, R~2=0.9753.
     In this paper, we extract diosgenin from heat-decomposed material by solvent extraction, SFE-CO_2 by contrast with acid-hydrolyzed material. The factors of solvent extraction are investigated about extracting time, temperature, the amount of solvent and granularity. The heat decomposed material: product rate is 1.75%, extraction rate is about 72.9%; The acid hydrolyzed material: product rate is 10.5%, extraction rate is about 75%. The amount of diosgenin is higher from acid-hydrolyzed than from heat-decomposed material. But at the raw material point, their extraction rates are same.
     The response surface stereograms and contour plots in SFE-CO_2 extraction with heat decomposed material are gained by SAS software. According to the result of error analysis, the CO_2 flux is the most important, the pressure is the next, and then is the amount of material. The terms of optimization: the pressure 35 MPa, temperature 55℃, CO_2 flux 12 kg/h, the material 125g, and the extracting rate 89.96%.
     We obtain the correlation formula about the extracting rate and factors about heat decomposed material with SFE-CO_2 extraction by SAS software: Y=74.68667+7.478333~*X1+1.456667~*X2+8.560833~*X3-4.654167~*X4-1.08375~*X1~*X1+2.9625~*X1~*X2-2.205~*X1~*X3+3.5925~*X1~*X4+0.77125~*X2~*X2+1.9975~*X2~*X3-1.405~*X2~*X4-4.61~*X3~*X3-1.855~*X3~*X4-3.365~*X4~*X4, R~2=0.9300.
     In SFE-CO_2 extraction process with the acid-hydrolyzed material, the pressure is the most important, the CO_2 flux is the next, and then is the temperature. The best terms obtained by Orthogonal test are the material 100g, time 4h, the pressure 35 MPa, temperature 45℃, CO_2 flux 12 kg/h, and ethanol 300mL, the extracting rate 88.25%.
     We discuss the mechanism, characteristic of original and the treated material by meanas of SEM, FT-IR, X-ray diffraction and thermal analysis. The change of amylum and cellulose in the tubers among the heat-decomposed process are discussed. The results show that heat-decomposed technology can break up the supermolecule structure of amylum and cellulose. Diosgenin can be directly extracted from the heat-decomposed material. The product extracting from the heat-decomposed material is identified as diosgenin by melting point, UV, FT-IR, ~1HNMR, UPLC-MS. The extracts from different material with different extraction methods are quantitated by UPLC-MS. The results show that the content of diosgenin extracting from acid-hydrolyzed residue is higher than that from heat decomposed material by solvent extraction. While the content from heat decomposed material is higher than that from acid-hydrolyzed residue by SFE-CO_2.
     The powder material is acid hydrolysis with circumfluence time 3~6h. There are a lot of wastewater produced in acid hydrolysis procedure. But, the material about 5cm is treated 30min in the heat decomposed method, and there is no wastewater in the whole process. Whatever the economy or environment protection, the heat decomposed method is more preponderance than acid hydrolysis. So, the heat decomposed technology is a simple method without acid-hydrolysis and no wastewater produced. It is a revolution of diosgenin and can solve the pollution problem root and branch. It is significant to improve the market competition capacity of diosgenin.
引文
[1] 《全国中草药汇编》编写组编.全国中草药汇编(上册)[M].人民卫生出版社,第一版,1973:633-634
    [2] 江苏新医学院编.中药大辞典(下册)[M].上海科学技术出版社,第一版,1986:1698
    [3] Benghuzzi, Hamed;Tucci, Michelle; Eckie, Rebecca et al.The effects of sustained delivery of diosgenin on the adrenal gland of female rats [J]. Biomedical Sciences Instrumentation, 2003, 39: 335-340
    [4] Tucci,Michelle; Benghuzzi,Hamed. Structural changes in the kidney associated with ovariectomyand diosgenin replacement therapy in adult female rats [J]. Biomedical Sciences Instrumentation, 2003, 39:341-346
    [5] Roman, I. D.; Thewles, A.; Coleman, R. Fractionation of livers following diosgenin treatment to elevate biliary cholesterol [J]. B B A-Biomembranes, 1995, 1255(1): 77
    [6] Tian, Weisheng; Xu, Qihai; Chen, Ling et al. Synthesis of pennogenin utilizing the intact skeleton of diosgenin [J]. Science in China, Series B: Chemistry, 2004, 47(2): 142-144
    [7] Lahmann, Martina; Gyback, Helena; Garegg, Per J. et al. A facile approach to diosgenin and furostan type saponins bearing a 3β-chacotriose moiety [J]. Carbohydrate Research, 2002, 337(21-23): 2153-2159
    [8] 李开泉,邹盛勤,陈武.薯蓣属植物的研究开发现状[J].林产化工通讯,2004,38(2):26-29
    [9] 张燕,梅明,董梅.黄姜产业概况及污染防治对策[J].黄石高等专科学校学报,2004,20(4):58-61
    [10] 宋发军.甾体药物源植物薯蓣植物中薯蓣皂甙元的研究及生产状况[J].中成药,2003,25(3):232-234.
    [11] 田云.黄姜资源及开发利用[J].特产研究,2002,(2):53-55.
    [12] 罗跃龙,周日宝,陈茜等.湖南省盾叶薯蓣(黄姜)种植的概况分析[J].湖南中医学院学报,2003,23(6):59-60.
    [13] 黄诗铿,张希.中国黄姜生产的现状与对策[J].世界农业,2003,(9):49-50.
    [14] 袁晓颖,祖元刚,于景华.野生盾叶薯蓣(Dioscorea zingiberensis C.H.Wrigh)资源储量精度估算[J].植物研究,2003,23(1):103-105
    [15] 秦天才,张友德,张君芝.湖北省黄姜生产中的问题与对策[J].长江流域资源与环境,1997,6(1):35-38
    [16] Singh, R. S.; Bhattacharyya, T. K.; Ghosh, A. C. Variability in yield of tuber and diosgenin in plants developed by seed and single-node leaf cutting and vine staking of medicinal yam (Dioscorea floribunda) [J]. Indian Journal of Agricultural Sciences, 1996, 66(8): 443
    [17] Chen, Yongqin; Fan, Jinyu; Yi, Fei et al. Rapid clonal propagation of Dioscorea zingiberensis [J]. Plant Cell, Tissue and Organ Culture, 2003, 73(1): 75-80
    [18] Wang Wen-Meei, Lai Vivian M-F, Chang Kao-Feng et al. Effect of amylopectin structure on the gelatinization and pasting properties of selected Yam (dioscorea spp.) starches[J]. Starch/Staerke, 2006, 58(11): 572-579
    [19] Elsenhaber F, and Schulz W, Monte carlo. Simulation of the hydration shell of double-helical amylose: a left-handed antiparallel double helix fits best into liquid water structure[J]. Biopolymers, 1992, 32: 1643-1664
    [20] Anne Imberty and Serge Perez, A revisit to the three-dimensional structure of B-type starch[J]. Biopolymers, 1988, 27: 1205-1221
    [21] Myllarinen P, Buleon A, Lahtinen R, et al. The crystallinity of amylose and amylopectin films[J]. Carbohydrate Polymers, 2002, 48(1): 41-48
    [22] 黄峻榕.X射线衍射在测定淀粉颗粒结构中的应用[J].陕西科技大学学报,2003,21(4):90-93
    [23] Paris M, Bizot H, Emery J, et al. Crystallinity and structuring role of water in native and recrystallized starches by 13C CP-MAS NMR spectroscopy: 1: Spectral decomposition[J]. Carbohydrate Polymers, 1999, 39(4): 327-339
    [24] Waigh T A, Donald A M, Florian Heidelbach, et al. Analysis of the native structure of starch granules with small angle x-ray microfocus scattering[J]. Biopolymers, 1999, 49(1): 91-105
    [25] Heidi Jacobs, Nicolay Mischenko, Michel H. J. Koch, et al. Evaluation of the impact of annealing on gelatinisation at intermediate water content of wheat and potato starches: A differential scanning calorimetry and small angle X-ray scattering study[J]. Carbohydr. Res., 1998, 306: 1-10
    [26] Caldwell R A, Matheson N K. α-(1-4) chain distributions of three-dimensional, randomly generated models, amylopectin and mammalian glycogen: Comparisons of chromatograms of debranched chains of these polysaccharides and models with random dendrimeric models with the same chain lengths (CL, ICL, ECL) and fractions of A chains[J]. Carbohydrate Polymers, 2003, 54(2): 201-213
    [27] Thompson D B. On the non-random nature of amylopectin branching[J]. Carbohydrate Polymers, 2000, 43(3): 223-239
    [28] Cheetham N W H, Leping Tao, Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study[J]. Carbohydrate Polymers, 1998, 36: 277-284
    [29] 叶怀义,杨素玲,徐倩.高压对淀粉粒结晶结构的影响[J].中国粮油学报,2000,15(6):24-28
    [30] Bogracheva T Y, Wang Y L, Hedley C L. The effect of water content on the ordered/disordered structures in starches[J]. Biopolymers, 2001, 58(3): 247-259
    [31] 马妍,张黎明,袁毅.黄姜淀粉理化性质的研究[J].食品工业科技,2006,27(7):75~77
    [32] Bayer R K, Balta-Calleja F J. Nanostructure development in wet amorphous amylopectin as revealed by in situ X-ray scattering methods[J]. Journal of Applied Polymer Science, 2006, 100(5): 3832-3839
    [33] R.L.惠斯特勒,J.N.贝密勒,E.F.帕斯卡尔.淀粉的化学与工艺学[M].中国食品出版社,第一版,1988:334-350
    [34] 贾树彪,李盛贤,吴国峰著.新编酒精工艺学[M].化学工业出版社,第一版,2004:17~24
    [35] Gunaratne A, Hoover R. Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches[J]. Carbohydrate Polymers, 2002, 49(4): 425-437
    [36] 罗志刚,高群玉,杨连生.湿热处理对淀粉分子性质的影响[J].食品科学,2005,26(2):50-53
    [37] Lim S-T, Chang E-H, Chung H-J. Thermal transition characteristics of heat-moisture treated corn and potato starches[J]. Carbohydrate Polymers, 2001, 46(2): 107-115
    [38] 陈洪章.纤维素生物技术[M].化学工业出版社,第一版,2005:8-23,68-74
    [39] 中野準三著,高洁,鲍禾,李忠正译.木质素的化学[M].轻工业出版社,1988:22-44
    [40] W Y Hamad and J W Provan. Microstructural cumulative material degradation and fatigue-failure micromechanisms in wood-pulp fibers[J]. Cellulose, 1995, 2: 159-177
    [41] Chang V S, Holtzapple M T. Fundamental factors affecting biomass enzymatic reactivity[J]. Appl. Biochem. Biotechnol, 2000, 84-86: 5-37
    [42] Haibo Zhao, Ja Hun Kwak, Z. Conrad Zhang etc. Studying cellulose fiber structure by SEM, XRD, NMR and acid hydrolysis[J]. Carbohydrate Polymers, 2007, 68(2): 235-241
    [43] J X. Sun, F Xu, X F Sun etc. Physico-chemical and thermal characterization of cellulose from barley straw[J]. Polymer Degradation and stability, 2005, 88: 521-531
    [44] Roger N. Ibbett, Dimitra Domvoglou and Mario Fasching. Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution Carbon-13 solid-state NMR[J]. Polymer, 2007, 48(5): 1287-1296
    [45] Iryna Yakimets, Nikolaus wellner, Andrew C Smith et al. Effect of water content on the fracture behaviour of hydroxyproyl cellulose films studied by the essential work of fracture method. Mechanics of materials[J]. 2007, 39(5): 500-512
    [46] 刘仁庆.纤维素化学基础[M].科学出版社,第一版,1985:153-156
    [47] 蒋挺大.木质素[M].化学工业出版社,第一版,2001:1-58
    [48] 唐爱民.超声波作用下纤维素纤维结构与性质的研究[博士论文].华南理工大学,2000:1-20
    [49] 朱圣东.微波技术用于植物纤维素原料生产酒精的研究[博士论文].华中农业大学,20015:18-28
    [50] γ辐射对粘胶浆粕的物理化学和工艺性能的影响[J].人造纤维,1992,(4):33-35
    [51] K Fischer, S Rennert, M Wilke et al. Possibilities of enhancement of reactivity of dissolving pulp(G) [J]. Acta Polym., 1990, 41(5): 279-284
    [52] X F Sun, F Xu, R C Sun et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw[J]. Carbohydrate Research, 2005, 340(1): 97-106
    [53] Hongzhang Chen, Liying Liu, Xuexia Yang et al. New process of maize stalk amination treatment by steam explosion[J]. Biomass and Bioenergy, 2005, 28(4): 411-417
    [54] Chen Hongzhang, Liu Liying. Unpolluted fractionation of wheat straw by steam explosion and ethanol extraction[J]. Bioresource Technology, 2007, 98(3): 666-676
    [55] 吕秉峰.纤维素蒸汽闪爆改性的表征及化学反应性能研究[硕士论文].华北工学院,2002:1-14
    [56] Dale B E, Henk LL, Shiang M. Fermentation of lignocellulosic materials treated by ammonia freeze explosion[J]. Dev Ind Microbiol, 1984, 26: 223-233
    [57] M Mes-Hartree, B E Dale, W K Craig. Comparison of steam and ammonia pretreatment for enzymatic hydrolysis of cellulose[J]. Appl. Microbiol. Biotechnol. 1988, 29: 462-468
    [58] Dale B E, Moreira M J. A freeze explosion technique for increasing cellulose hydrolysis[J]. Biotechnol Bioeng. Symp, 1982, 12: 31-43
    [59] Y Z Zheng, H M Lin, G T Tsao. Pretreatment for cellulose hydrolysis by carbon dioxide explosion[J]. Biotechnol. Prog. 1998, 14: 890-896
    [60] Esteghlalian A, Hashimoto A G, Fenske J J et al. Modeling and optimization of the dilute surlfuric acid pretreatment of corn stover[J], poplar and switchgrass. Bioresource Technol, 1997, 59:129-136
    [61] Fan L T, Gharpuray M M, Lee Y H. Cellulose hydrolysis biotechnology monographs. Berlin: Springer, 1987
    [62] 何江波.黄姜综合利用新技术及其成分系统分析研究[硕士论文].湖北大学,2003:33
    [63] 顾永明.盾叶薯蓣中薯蓣皂甙元的制备与分析[硕士论文].南京工业大学,2004:1-25
    [64] 丁怡.天然甾体皂甙研究进展[J].中国新药杂志,2000,9(8):521-524
    [65] 向纪明,李金灿.黄姜中提取薯蓣皂素的新工艺研究[J].安康师专学报,2003,15(3):56-59
    [66] 沙世炎.中草药有效成分分析法(上册)[M].人民出版社,第一版,1982:176
    [67] 石艳霞.银屑灵冲剂中薯蓣皂甙元的重量测定法[J].中医药动态,1993,(增):77-79
    [68] 彭晓英,周朴华,裴刚等.薯蓣皂苷元测定方法的研究概况[J].湖南林业科技,2004,31(4):27-29
    [69] 江天生.旋光法测定薯蓣皂甙元含量[J].吉首大学学报(自然科学版),1997,18(2):63-64
    [70] 刘爱茹.薯蓣属植物中薯蓣皂苷元的测定[J].药学学报,1984,19(2):141-144
    [71] 敖冬梅,陈树和,刘焱文等.比色法测定薯蓣丸中薯蓣皂甙元的含量[J].湖北中医杂志,1999,21(11):525-526
    [72] 王俊,杨克迪,陈均.分光光度法测定薯蓣皂苷元[J].分析试验室,2004,23(1):73~75
    [73] 魏永春,李谦,李明静等.黄姜中薯蓣皂苷元的薄层扫描法测定[J].分析试验室,2006,25(11):67-69
    [74] 杨玉霞,赵育梁,刘绣华.薯蓣皂苷元提取分离与含量测定方法的研究进展[J].中南药学,2004,2(6):363-365
    [75] Katarina Savikin-Fodulovic, Dragoljub Grubisic, Ljubinka Culafic, et al. Diosgenin and phytosterols content in five callus lines of Dioscorea balcanica[J]. Plant Science, 1998, 135(1): 63-67
    [76] José A. cortés concepción. Evaluation of Edible Yams of Dioscorea Species as Potential sources of Diosgenin[Master Paper]. University of Puerto Rico Mayagüez campus, 2000: 26-27
    [77] Wesley G. Taylor, Holly J. Zulynink, Ken W. Richards, et al. Variation in Diosgenin Levels among 10 Accessions of Fenugreek Seeds Produced in Western Canada[J]. Agric. Food Chem, 2002, 50(21): 5994
    [78] Wesley G. Taylor, James L. Elder, Peter R. Chang, et al. Microdetermination of Diosgenin from Fenugreek (Trogonella foenum-gruecum) Seeds[J]. Agric Food Chem, 2000, 48(11): 5206
    [79] 都述虎,王晓华,夏重道.穿龙薯蓣中薯蓣皂甙元毛细管气相色谱法研究[J].药物分析杂志,2001,21(2):116-119
    [80] Adam L Edwards, Ronald L Jenkins, Davenport L J. Presence of Diosgenin in Dioscorea batatas (Dioscoreaceae)[J]. Economic Botany, 2002, 56(2): 204
    [81] Ortuno A, Oncina R, Botia J M, et al. Distribution and changes of diosgenin during development of Trogonella foenum-graecum plants, Modulation by benzylaminopurine[J]. Food Chemistry, 1998, 63(1): 51
    [82] 徐雄良,张志荣,柯尊洪.RP-HPLC法测定穿山龙中薯蓣皂苷元的含量[J].中国中药杂志,2003,28(9):885-887
    [83] 杨文远,熊楚明.反相高效液相色谱法测定中药中薯蓣皂苷元[J].分析实验室,2002,21(1):74-75
    [84] 都述虎.RP-HPLC法测定穿龙薯蓣总皂甙中薯蓣皂甙元的含量[J].中国药科大学学报,2001,32(1):37-40
    [85] 华小黎,陈东生.菝葜超临界CO_2萃取物中薯蓣皂苷元的含量测定[J].中药材,2006,29(4):339-340
    [86] 赵宇新,李曼玲.高效液相色谱-蒸发光散射法测定葫芦巴中薯蓣皂苷元[J].中草药,2004,35(10):1185-1186
    [87] Iwona Wawer, Andrzej A. Cichowlas, Jadwiga Nartowska. ~(13)C Cross-Polarization MAS NMR Study of Some Steroidal Sapogenins[J]. Solid State Nuclear Magnetic Resonance, 2001, 20(1-2): 35-45
    [88] 孙衍国,徐青,肖红斌等.重楼中薯蓣皂苷元和偏诺皂苷元的HPLC-APCI/MS分析[J].现代中药研究与实践,2004,18(增刊):89-91
    [89] 马敬中,陈长水,江洪等.黄姜中皂素的提取及含量分析[J].广西师范大学学报,2000,(6):111-113
    [90] 鲁鑫焱,赵怀清.薯蓣皂苷元的提取与分离分析方法[J].沈阳药科大学学报,2003,20(6):465-468
    [91] Mishra, Sanjay P.; Gaikar, Vilas G. Recovery of diosgenin from dioscorea rhizomes using aqueous hydrotropic solutions of sodium cumene sulfonate [J]. Industrial and Engineering Chemistry Research, 2004, 43(17): 5339-5346
    [92] 黄进,张肇煜,李林等.黄姜提取薯蓣皂甙元及葡萄糖的工艺研究[J].农业工程学报,2001,17(6):119-122
    [93] 周雯.应用盐酸-丙酮混合液从穿龙薯蓣中直接提取皂素[J].中草药,1996,27(4):207-208
    [94] 向纪明,李金灿.黄姜中提取薯蓣皂素的新工艺研究[J].安康师专学报,2003,15:56-59
    [95] 周振起,封玉贤.薯蓣属植物提取皂素的研究[J].中草药,1985,16(7):15-17
    [96] 周振起,封玉贤.薯蓣皂苷元分离工艺的研究及综合利用[J].西北植物学报,1995,15(3):254-260
    [97] 刘国梁,刘峥.盾叶薯蓣提取皂甙元副产淀粉的研究[J].山西化工,2003,23(1):6-7
    [98] 李国富,冯振声.黄姜提取皂素新工艺探讨[J].益阳师专学报,1999,16(5):67-69
    [99] 周雨丝,朱迟,黄文敏等.应用糖化酶改良法提取黄姜皂素[J].湖北农业科学,2003(5):91-93
    [100] 佟玲,张胜科,李锦等.酶解法提取薯蓣皂素的工艺研究[J].陕西师范大学学报,2003,31(2):81-83.
    [101] 赵书申,柳卫莉.盾叶薯蓣的黑曲霉发酵和薯蓣皂苷配基的结构[J].武汉大学学报(自然科学版),1988,2,93-97
    [102] 刘锡葵,吕春朝,杨崇仁.萃提技术在皂素生产中的应用[J].化学研究与应用,1999,11(5):582-583
    [103] 周斌.用超声波提取中药材[J].安徽科技,2005,(4):23-24
    [104] 李红兵,孙立华,孙国才.超声波提取法在中国药典中的应用探讨[J].中国药品标准,2001,2(4):18-20
    [105] 王昌利,张振光,杨景亮等.超声提高薯蓣皂甙得率的实验研究[J].中成药,1994,16(4):7-8
    [106] 朱自强.超临界流体技术——原理和应用[M].化学工业出版社,第二版,2001:20
    [107] 陈钧,王俊,杨克迪等.超临界CO_2萃取薯蓣皂苷元的研究[J].江苏大学学报,2003,24(3): 1-4.
    [108] 葛发欢,史庆龙,林香仙等.超临界CO_2从黄山药中萃取薯蓣皂素的工艺研究[J].中草药,2000,31(3):181-183.
    [109] Ben Liu, G. Brian Lockwood, Larry A. Gifford. Supercritical fluid extraction of diosgenin from tubers of Dioscorea nipponica[J]. Journal of Chromatography A, 1995, 690(2): 250-253
    [110] Xiao-shun Shu, Zhong-hong Gao, Xiang-liang Yang. Supercritical fluid extraction of sapogenins from tubers of Smilax china[J]. Fitoterapia, 2004, 75(7-8): 656-661
    [111] Wang Jun, Yang Ke-Di, Chert Jun. Study on supercritical-CO_2 extraction of diosgenin from Dioscorea nipponica [J]. Chinese Pharmaceutical Journal, 2003, 38(8): 580-583
    [112] 熊文,邱凉,李欣欣.全面建设水资源保护防线确保南水北调中线水源地安全[J].南水北调与水利科技,2006,4(增刊):17-19
    [113] 赵欣,谢先军,程胜红等.南水北调水资源区黄姜产业的污染治理技术与对策[J].安全与环境工程,2004,11(4):14-17
    [114] 吴成昌,田杰,戴军发.黄姜产业可持续发展对策研究[J].环境科学与技术,2005,28(3):95-97
    [115] 安丽平.黄姜皂素废水资源化利用及皂素洁净生产工艺研究[硕士论文].西北大学,2006:1-5
    [116] 聂凌鸿,林淑英,宁正祥.薯蓣属植物中薯蓣皂苷元的研究进展[J].中国生化药物杂志,2004,25(5):318-320
    [117] 汤兴利,徐增莱,夏冰等.盾叶薯蓣皂素提取工艺及检测方法研究进展[J].中药材,2004,27(11):877-880
    [118] 孙欣,邓良伟,吴力斌.皂素生产废水污染特点及治理现状[J].中国沼气,2005,23(1):25-28
    [119] 刘大银,毕亚凡,李庆新等.皂素生产废水综合治理技术研究(Ⅰ)[J].武汉化工学院学报,2003,25(4):33-36
    [120] 张勇,祁恩成,张守诚等.黄姜—皂素废水综合处理技术的探讨[J].环境科学与技术,2004,27(增刊):124-125
    [121] 刘礼祥.预处理后皂素废水生物生态净化工艺研究[硕士论文].华中科技大学,2004:1-8
    [122] 但锦锋,袁松虎,刘礼祥等.皂素废水处理工程的设计与调试运行[J].环境工程,2006, 24(4):20-21
    [123] 张列宇,熊瑛.黄姜废水处理工程设计[J].工业水处理,2006,26(5):62-64
    [124] 王永科,穆军,呼世斌.利用EM菌处理皂素生产废水的试验研究[J].西北农业学报,2006,15(3):220-222
    [125] 单丽伟,冯贵颖,呼世斌等.新生MnO_2处理皂素废水的试验研究[J].环境科学与技术,2006,29(9):76-77
    [126] 刘红梅,袁淑杰,吕红涛等.膜法处理黄姜加工废水实验研究[J].河北化工,2006,29(7):60-63
    [127] 葛红光,郭小华,李利华等.皂素废水化学预处理研究[J].化学工程师,2006,(4):17-18
    [128] 李冬.黄姜生产皂素资源化新工艺研究[硕士论文].西北大学,2006:1-10
    [129] 陈学文,胡晓帆.南水北调中线工程核心水源区水环境安全分析与对策[J].中国环境管理,2005,(3):9-12
    [130] 熊文,邱凉,李欣欣.全面建设水资源保护防线确保南水北调中线水源地安全[J].南水北调与水利科技,2006,4(增刊):17-19
    [131] 徐志仿,徐铜.丹江口水库水资源保护的对策和措施[J].水利技术监督,2006,(2):44-48
    [132] 毕亚凡,汪建华,严向东等.黄姜皂素废水厌氧处理间歇试验研究[J].工业水处理,2005,25(9):45-48
    [133] 解清杰,吴晓晖,陆晓华等.物化-生化组合工艺处理皂素废水[J].环境工程,2005,23(6):26-28
    [134] 杨宝成.给”黄姜热”泼冷水[J].蔬菜,2006,(6):35
    [135] 陈智清.黄姜产业污染治理对策与措施的探讨[J].当代经理人(下旬刊),2006,(10):19
    [136] 金其荣,张继民,徐勤编.有机酸发酵工艺学[M],轻工业出版社,第一版,1989:302~305
    [137] 李如亮.生物化学实验[M],武汉大学出版社,第一版,1998:8~9
    [138] 王玉万,徐文玉.木质纤维素固体基质发酵物中半纤维素、纤维素和木素的定量分析程序[J].微生物学通报,1987(2):81~84
    [139] 熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业,2005,(8):40-41
    [140] 张敏,薛晓珍.半纤维素测定方法的改进[J].新疆农业科学,1994,(4):180-181
    [141] 薛惠琴,杭怡琼.稻草秸秆中木质素、纤维素测定方法的研讨[J].上海畜牧医通讯,2001, (2):15
    [142] 冯继华,曾静芬,陈茂椿等.应用Van Soest法和常规法测定纤维素及木质素的比较[J].西南民族学院学报(自然科学版),1994,20(1):55-56
    [143] 鲁玉.我国生物燃料化工产业发展前景和对策[J].中国石油和化工,2006,(13):19-23
    [144] 钱伯章.燃料乙醇的发展现状和趋势[J].节能与环保,2006,(6):16-19
    [145] 谢应根,韩玉洁,徐忠等.双酶协同法糖化玉米及L-乳酸发酵工艺的研究[J].食品研究与开发,2006,27(7):54-56
    [146] 刘振,王金鹏,张立峰等.木薯干原料同步糖化发酵生产乙醇[J].过程工程学报,2005,5(3):353-356
    [147] 樊文乐,武文洁.超临界萃取中夹带剂的概述[J].食品科技,2005,(2):39-42.
    [148] 杨贯羽,邹卫华,许庆增等.小麦壳的差热分析与红外光谱分析[J].河南科学,2006,24(1):41-43
    [149] 黄金昭,徐征,李海玲等.射频磁控溅射制备纳米晶Ni-Mo催化阴极及其表征[J].高等学校化学学报,2006,27(5):909-913
    [150] 宁平,杨月红,彭金辉等.椰壳热解炭化热分析研究[J].林产化学与工业,2006,26(1):49-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700