激光并行共焦测量系统的并行光源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光共焦显微术是现代加工制造、生物医学等领域中探知样品表面微形貌的重要技术手段之一。本学位论文选题来源于国家自然科学基金——基于并行像散共焦探测原理的微结构三维形貌测量基础研究(50775063),重点研究激光并行光源,克服由于泰伯效应给测量带来的影响,并构建柔性的数字并行光源,提高共焦测量速度,扩展共焦测量用途。
     激光用于并行共焦测量系统可以提高测量分辨率,因泰伯效应会产生多个共焦像,致使无法辨识正焦面位置,使测量无法实现;针孔阵列、微透镜阵列等均能实现光束分割,用于并行共焦测量,但是这些光分束器件普遍存在制作困难、价格昂贵等缺点,而且器件一旦制作完成,其参数将不能更改,因而对不同的被测对象的适应性较差。
     因此,本论文围绕激光并行共焦测量中的并行光源开展了系统深入的研究,主要的研究工作和创新点如下:
     (1)建立了激光并行共焦测量的泰伯间距模型
     在菲涅耳衍射光学的基础上,建立了激光并行共焦测量系统的泰伯间距模型,推导了系统中的物方泰伯间距公式,指出了物方泰伯间距zT与光源波长λ、光分束器件周期d,以及望远镜组视觉放大率Г之间的关系:zT=(dГ)2/λ,为研究克服泰伯效应对测量影响的方法提供了理论依据。
     (2)提出了多种克服泰伯效应影响的方法
     泰伯间距计算数学模型表明:减小光源的波长λ、扩大光分束器件的周期d、增加望远镜组的视觉放大率Г均可扩大泰伯间距。在此基础上,提出了多光源系统、双光源系统,以及采用微透镜阵列与针孔阵列的合成光分束器件等多种测量系统构建方案,较好地克服了泰伯效应对激光并行共焦测量的影响。上述研究成果已申请1项国家发明专利。
     (3)建立了基于数字微镜器件的柔性并行光源的空间光调制模型
     建立了数字微镜器件(DMD)在相干光照射下的反射及衍射模型,得到了DMD经调制后形成的光场是一个包含了DMD自身的衍射图像、DMD所显示图像的实像、虚像的复杂二维周期性光波场的结论,证明了若仅利用DMD所成的点光源阵列实像,则激光并行共焦测量可不受泰伯效应影响,并由此提出了“单光源双光路”的激光并行共焦测量系统构建方案,并申请了1项国家发明专利。
     (4)构建了基于数字微镜器件的激光并行共焦测量系统
     研究了基于DMD的柔性数字光源构建方法,通过操作者的简单设置,即可控制生成任意尺寸和间距的点阵列光源、栅状光源以及混合光源,既降低了阵列光源制作成本,又能根据不同的被测对象制定不同的测量策略,扩展了并行共焦测量的应用范围。该研究成果已申请1项国家发明专利,获得1项实用新型专利。
     (5)研制了单光源双光路激光并行像散共焦测量装置并完成了相关实验研究
     较系统地分析了光源、光分束器件、CCD及其他光学器件特性对测量的影响,搭建了单光源双光路激光并行像散共焦测量实验装置,研究了抑制系统构建误差导致的光点漂移影响的图像处理方法,提高了数据处理精度及可靠性。实验结果表明:利用基于DMD的并行光源可以辨识出正焦面位置,克服泰伯效应对测量的影响;利用基于微透镜阵列的并行光源可以实现高精度测量。
Laser confocal microscope is one of the important technologies to measure the3Dsurface topography of specimens in modern manufacturing and biomedical engineering. Thisdissertation was based on the project of “Research on Measuring3D Surface Topographyof Microstructure Based on the Principle of Parallel Astigmatism Confocal Detection”sponsored by the National Natural Science Foundation, and it focused on laser parallelsource to overcome the influence of Talbot effect in the laser parallel confocalmeasurement. A flexible digital parallel light source has been developed to improve thespeed and to extend the use of confocal measurement.
     When laser is used in parallel confocal measurement system, the resolution could beimproved, but the Talbot effect which causes lots of confocal images will appear. However,only one of those images could be called in-focus image. If the in-focus image cannot berecognized, the confocal measurement will not be realized. Many optical divide devices(ODDs), like pinhole array and microlens array, can divide a light beam into many finebeams, but those ODDs have poor adaptability to different measured object because theirparameters could not be changed, and in addition, they are difficult to manufacture, andthe prices are too high.
     In this dissertation, the parallel light source used in laser parallel confocalmeasurement has been studied systematically, and the main researches and innovations ofthe dissertation can be summarized as follows:
     (1) Established the Talbot distance model in laser parallel confocal measurement
     The Talbot distance model in laser parallel confocal measurement based on FresnelOptics has been established, and the formula of Talbot distance in object space has beenderivated. The formula built the relationship among Talbot distance in object space,wavelength of laser, period of ODD, and visual magnification of telescope: zT=(dГ)2/λ.It will provide the theoretical basis to overcome the influence of Talbot effect in the laserparallel confocal measurement.
     (2) Developed some methods to overcome the influence of Talbot effect
     The formula of Talbot distance in object space indicated that the Talbot distancecould be expanded by reducing the wavelength of laser, expanding the period of ODD, andincreasing the visual magnification of telescope. The thesis developed some projects, suchas Multi-source system, Dual-source system, and synthesis ODD based on pinhole arrayand microlens array, to suppress the impact of Talbot effect in a certain extent. One invention patent has been applied.
     (3) Established the spatial light modulation model of flexible parallel light sourcebased on Digital Micromirror Device
     The reflection and diffraction models of Digital Micromirror Device (DMD) havebeen established by illuminating by coherent light, and the results indicated that the lightwave field after modulated was a complicated2D periodic light wave field, whichcontained a diffraction image of DMD itself, and real and virtual images of displayedpicture on DMD. Furthermore, the laser parallel confocal measurement would not beinfluenced by the Talbot effect when only the real image of displayed picture on DMD wasused, and a project of laser parallel confocal measurement system based on “single sourceand dual beam paths” was developed. One invention patent has been applied.
     (4) Constructed a laser parallel confocal measurement system based on DMD
     The flexible digital light source based on DMD was studied, which could producepoint light array with different size of point and different distance between points, and alsocould produce grid light source. This flexible light source could help saving cost,developing different measurement strategies to different objects, and expanding the use ofparallel confocal measurement. One invention patent has been applied, and one utilitymodel patent has been obtained.
     (5) Developed a laser parallel astigmatism confocal measurement system based on theparallel light source with single source and dual beam paths, and completed relatedexperiments
     The influence on measurement from laser, ODD, CCD and other optical devices wasanalyzed systematically, and a laser parallel astigmatism confocal measurement systembased on the parallel light source with single source and dual beam paths was constructed.A method of image processing to inhibit drifting of measured spots, which is caused by theerror of system construction, was investigated, and this method could help improve theprecision and reliability of data processing. The experiments results indicated that theposition of in-focus image could be distinguished with the parallel light source of DMD,and high precision measurement could be completed with the parallel light source ofmicrolens array.
引文
[1]姚楠,王中林.纳米技术中的显微学手册[M].北京:清华大学出版社,2006
    [2] Willismson J B P. Micro Topography of Surfaces[A]. Proceeding of theInstitution of Mechanical Engineer,1968,182:21–30
    [3] Peklenik J, Kubo M. A Basic Study of a Three-dimensional Assessment ofthe Surface Generated in a manufacturing Process[J]. Annals of the CIRP,1968,16:257–265
    [4] Sayles R S, Thomas T R. Mapping a Small Area of a Surface[J]. Jorunalof Physics E: Scientific Intstruments,1976,9:855–861
    [5] Stout K J, Blunt L. Nanometers to micrometers: three-dimensional surfacemeasurement in bio-engineering[J]. Surface and Coatings Technology,1995,71:69–81
    [6] Song J F, Vorburger T V. Stylus profiling at high resolution and low force[J]. Appl. Opt.,1991,30:42–50
    [7] Stedman M, Lindsey K. Limits of surface measurement by stylus instruments
    [A]. Proc SPIE,1988,1009:56–61
    [8] Chen F, Brown G M, Song M. Overview of three dimensional shape measurementusing opticalmethods[J]. Opt. Eng.,2000,39(1):10–221
    [9]王军,鲍海明,魏仲慧等.光学三维轮廓测量技术综述[J].光电信息技术,2005,32(2):32–36
    [10]陶涛,郭红卫,何海涛.镜面反射面形光学三维测量技术综述[J].光学仪器,2005,27(2):90–96
    [11] Wang Y S, Fu S, Xu J Q, et al.. Application of wavelet digital filterof fourier transform profilometry in3-D measurement[A]. MaterialsScience Forum,2004,471–472:654–657
    [12]潘伟,赵毅,阮雪榆.采用光栅投影的三维测量方法[J].光电工程,2003,30(2):28–31
    [13]盖绍彦.光栅投影三维测量系统的关键技术研究[D].南京:东南大学2008
    [14] Kohno T, Ozawat N, Miiyamuto K, et al.. Practical non-contact surfacemeasuring instrument with one nanometer resolution[A]. Proc. Eng.,1985,7(4):54–57
    [15] Mitsui K, Sakai M, Kizka Y. Development of a high resolution sensor forsurface roughness[J]. Opt. Eng.,1988,27(6):498–502
    [16] Whitehouse D J. Instrumentation for measuring finish, defects and gloss
    [A]. Proc. SPIE,1985,525:106–123
    [17] Mitsui K. In-process sensors for surface roughness and theirapplications[A]. Proc. SPIE,1986,8(4):24–31
    [18] Wyant J C, Creath K. Recent advances in interferometric optical testing[J]. Laser Focus,1985,21:118–132
    [19] Huang C C. Optical heterodyne profilometer[J]. Opt. Eng.,1984,23:365–370
    [20] Makosch G, Drollinger B. Surface profile measurement with a scanningdifferential ac interferometer[J]. Appl. Opt.,1984,23(24):4544–4553
    [21] Bruning J H, Gallagher J E, Rosenfeld D P, et al.. Digital wavefrontmeasuring interferometer for testing optical surface and lens[J]. Appl.Opt.,1974,13(11):2693–2703
    [22] Balasubramanian. Optical system for surface topography measurement
    [P]. U.S. Patent,4340306,1980
    [23] Thomas R, Andreas W, Verdes, et al.. Confocal reader for biochipscreening and fluorescence microscopy [J]. Biosensors andBioelectronics,2005,20(9):1872–1877
    [24] Chandler E L, Smith A L, et al.. Membrane surface dynamics ofDNA-threaded nanopores revealed by simultaneous single-moleculeoptical and ensemble electrical recording[J]. Langmuir,2004,20(3):898–905
    [25]张旭,徐维奇.激光扫描共聚焦显微镜技术的发展与应用[J].现代科学仪器,2001,76(2):21–23
    [26]王永红,余晓芬,俞建卫等.非扫描并行三维共焦检测技术综述[J].仪器仪表学报增刊,2003,24(4):8–11
    [27]王永红,余晓芬,黄其圣等.基于差动共焦的并行三维形貌检测系统的研究[J].中国科学技术大学学报,2003,3(4):415–420
    [28]王永红,余晓芬,俞建卫等.基于像散的并行全场三维检测新方法[J].上海交通大学学报,2003,37(10):1548–1551
    [29]王永红,余晓芬,俞建卫等.多光束并行共焦探测系统特性的研究[J].计量学报,2004,25(2):100–103
    [30]王永红,余晓芬,俞建卫等.高精度非扫描三维光聚焦探测系统的研究[J].应用科学学报,2004,22(2):187–190
    [31]王永红,高晓斌.并行共焦探测系统的数据处理与三维信息获取[J].合肥工业大学学报(自然科学版),2004,27(10):1123–1129
    [32]高晓斌,王永红.一种提高并行共焦显微测量重复性精度的方法[J].合肥工业大学学报(自然科学版),2004,27(10):1365–1368
    [33]陈小洪,高正平.磁光存储技术原理[M].成都:电子科技大学出版社,1994
    [34]石顺祥,张海兴,刘劲松.物理光学与应用光学[M].西安:西安电子科技大学出版社,2000
    [35] Sheppard C J R, Marthews H J. The extended-focus, auto-focus andsurface-profiling techniques of confocal microscope[J]. J. Mod. Opt.,1988,35:145–154
    [36] Talbot W H F. Facts relating to optical science[J]. Philos. Mag.,1836,9(5):401–407
    [37]金国藩,严瑛白,邬敏贤.二元光学[M].北京:国防工业出版社,1998
    [38] Minsky M. Microscopy Apparatus[P]. U.S. Patent,3013467,1961
    [39] Wilson T, Sheppard C J. Theory and practice of scanning opticalmicroscopy[M]. Acadmic Press, London,1984
    [40] Gu M, Sheppard C J R. Three-dimensional image formation in confocalmicroscopy under ultra-short-laser-pulse illumination[J]. J. M. Opt.,1995,42(4):747–748
    [41] Lee C H, Wang J, Optical measurement of viscoelastic and biochemicalresponses of living cells to mechanical perturbation[J]. Opt. Lett.,1998,23:307–309
    [42] Holmes D, Somekh M G, Extend-focus phase imaging with an interferometricconfocal microscope[J]. Appl. Opt.,1994,33(4):654–661
    [43] Gu M, Sheppard C J R. Three-dimensional transfer functions in4Piconfocal microscopes[J]. J. Opt. Soc. Am. A,1994,11(5):1619–1927.
    [44] Gu M, Bird D. Fibre-optic double-pass confocal microscopy[J]. Optics&Laser Technology,1998,30:91–93
    [45] Martinez-Corral M, et al.. Three-dimensional super-resolution byannular binary filters[J]. Optics Communications,1999,165:267–278
    [46]英国Bio-Rad公司, http://cellscience.bio-rad.com/
    [47]德国Zeiss公司, http://www.zeiss.de/de/micro/home_e.nsf
    [48]德国leica公司,http://www.confocal-microscopy.com/website/sc_llt.nsf
    [49]日本Olympus公司, http://microscope.olympus.com/
    [50]日本Nikon公司, http://www.nikon-instruments.com/
    [51]黄向东,谭久彬.阵列式共焦显微系统超分辨特性的研究[J].光电子·激光,2006,17(1):28–31
    [52]邱丽荣,赵维谦,沙定国.具有高空间分辨力的位相型光瞳滤波式差动共焦测量法[J].计量学报,2006,27(3A):118–122
    [53]陈叶金.创新型微纳米测量探头机理的研究[D].合肥:合肥工业大学2007
    [54]杨永田.首台国产激光共焦扫描显微镜问世[J].科学时报,2001
    [55]清大德人科技有限公司http://www.chinde.com/chinese/gcs-yinyong.htm
    [56] Petran M, Hadravsky M, Boyde A. The tandem scanning optical microscope[J]. Scanning,1985,7:97–108
    [57]孔兵,王昭等.基于针孔阵列的多光束共焦三维测量系统[J].中国激光,2002,29(3):263–266
    [58] Tiziani H J, Achi R, Krmen R N,et al. Theoretical analysis of confocalmicroscopy with microlenses[J]. Appl. Opt.,1996,35(1):120–125
    [59] Esiner M, Lindein N, Schwider J. Confocal microscopy with a refractivemicrolens-pinhole array[J]. Opt. Lett.,1998,23(10):748–749
    [60]田维坚,丁志华,郭履容等.一种全场三维共焦检测的新方法[J].光学学报,1998,18(6):757–761
    [61] Gmitro A F, Aziz D. Confocal microscopy through a fiberoptic imagingbundle[J]. Opt. Lett.,1993,18(8):565–567
    [62] Pierre M L, Andrew L P, et al.. Fiber-optic confocal microscopy usinga spatial light modulator[J]. Opt. Lett.,2000,25(24):1780–1782
    [63] Naruse M, Ishikawa M, Parallel Confocal Laser Microscope System usingSmart Pixel Arrays[A]. Proc of SPIE,2000,4092:94–101
    [64] Winthrop J T, Worthington C R. Theory of Fresnel images. I. planeperiodic objects in monochromatic light [J]. J. Opt. Soc. Am.,1965,55:373–381
    [65] Montgomery W D. Self-imaging objects of infinite aperture[J]. J. Opt.Soc. Am.,1967,57(6):772–778
    [66] Goodman J W. Introduction to Fourier Optics[M]. McGraw-Hill,1968
    [67] Patorski K. The self imaging phenomenon and its application[J]. Progressin Optics,1989,ⅩⅩⅦ
    [68] Liu L. Talbot and Lau effects on incident beams of arbitrary wavefrontand their use[J]. Appl. Opt.,1989,28:4668–4678
    [69] Latimer P, Crouse R F. Talbot effect reinterpreted[J]. Appl. Opt.,1992,31(1):80–88
    [70] Zhou C, Wang W, et al.. Simple principles of the Talbot effect[J].Opt. Photonics News,2004,15(11):46–50
    [71] Teng S Y, Liu L, et al.. Uniform theory of the Talbot effect withpartially coherent light illumination [J]. J. Opt. Soc. Am. A,2003,20:1747–1754
    [72] Teng S Y, Chen X Y, et al.. Quasi-Talbot effect of a grating in the deepfresnel diffraction region [J]. J. Opt. Soc. Am. A,2007,24(6):1656–1665
    [73]滕树云,刘立人,刘德安等.部分相干光照明下光栅的塔尔博特效应[J].光学学报,2004,24(5):692–695
    [74]周同军,滕树云.光栅尺寸对光栅泰伯效应的影响[J].山东师范大学学报(自然科学版),2007,22(3):50–51
    [75] Wang H, Chou C H, Li J L, et al.. Talbot effect of a grating underultrashort pulsed-laser illumination[J]. Microw. Opt. Technol. Lett.,2000,25(3):184–187
    [76] Wang H S, Zhou C H, Zhao S, et al.. The temporal Fresnel diffractivefield of a grating illuminated by an ultrashort pulsed-laser beam[J].J. Opt. A: Pure Appl. Opt.,2001,3:159–163
    [77]王淮生,周常河,李建朗等.光栅在超短脉冲激光照射下的塔尔博特效应[J].光学学报,2001,21(3):320–323
    [78]滕树云,刘立人,祖继锋,栾竹.脉冲和连续多色光源照明下光栅泰伯效应的等价性[J].中国激光,2004,31(10):1177–1182
    [79] Leger J R, Swanson G J. Efficient array illuminator using binary-opticsphase plates at fractional-Talbot planes [J]. Opt. Lett.,1990,15(5):288
    [80] Arrizón V, Ojeda-Castaneda J. Talbot array illuminator with binary phasegratings[J]. Opt. Lett.,1993,18:1–3
    [81] Arrizón V, Szwaykowski P. Talbot array illuminator with multilevel phasegratings[J]. Appl. Opt.,1993,32:1109–1114
    [82] Westerholm J, Turunen J, Huttunen J. Fresnel diffraction in fractionalTalbot planes: a new formulation[J]. J. Opt. Soc. Am. A,1994,11(4):1283
    [83] Da X Y, Wang Q Q, Xue X J. Two-dimensional Talbot array illuminatorswith single-step phase grating[J]. J. Opt. Soc. Am. A,1996,13(1):126
    [84] Xi P, Zhou C H, Dai E W, Liu L R. Generation of near-field hexagonalarray illumination with a phase grating[J]. Opt. Lett.,2002,27(4):228
    [85] Liu L R. Periodic self-Fourier-Fresnel functions[J]. J. Phys. A: Math.Gen.,1994,27:285–289
    [86] Hua J W, Liu L R, Li G Q. Dual self-transform function[J]. J. Phys.A: Math. Gen.,1997,30:1192–1202
    [87] Gaskill J D, Linear Systems, Fourier Transforms, and Optics[M]. NewYork: John Wiley&Sons,1978
    [88] Qu W J, Liu L R, Liu D A, et al.. The fractional Talbot effect oftwo-dimensional array[C]. Proc. of SPIE,2005,5867:121–129
    [89] Kandidov V P, Kondrat’ev A V. Talbot effect in Gaussian optical systems[J]. Quantum Electron.,2001,31(11):1032–1034
    [90] Bonet E, Andres P, Barreiro J C, Pons A. Self-imaging properties of aperiodic microlens array: versatile array illuminator realization[J].Opt. Commun.,1994,106:39–44
    [91] Streibl N. Beam shaping with optical array generators[J]. J. Mod. Opt.,1989,36(12):1559–1573
    [92] Lohmann A W. Array illuminators and complexity theory[J]. Opt. Commun,1992,89:167–172
    [93] Besold B, Lindlein N. Fractional Talbot effect for periodic microlensarrays[J]. Opt. Eng.,1997,36(4):1099–1105
    [94]余卿,余晓芬,程伶俐等.泰伯效应对激光并行共焦显微系统成像影响的研究[J].仪器仪表学报,2009,30(6):1271–1274
    [95] Douglass M R. DMD reliability: a MEMS success story[A]. Proc. of SPIE,2003,4980:1–11
    [96] Migl T W. Interfacing to the digital micro-mirror device for homeentertainment applications[C]. Proc. of IPACK’01, Kauai, Hawaii, USA,2001,1–81
    [97] Gove R J. DMD display systems: the impact of an all-digital display[J]. Society for Information Display International Symposium, June1994
    [98] Hornbeck L J, Nelson W E. Bistable deformable mirror device[J]. OSATechnical Digest Series Vol.8, Spatial Light Modulators andApplications,1988:107
    [99] Hornbeck L J. Deformable-mirror spatial light modulators[C]. SpatialLight Modulators and Applications Ⅲ, SPIE Critical Reviews,1989,1150:86–102
    [100] Sampsell J B. The digital Micromirror Device[C].7th ICSS&A, Yokohama,Japan,1993
    [101] Younse J M. Mirrors on a Chip[A]. IEEE Spectrum,1993:27–31
    [102] Mignardi M A. Digital micromirror array for projection TV[J]. SolidState Technology,1994,37:63–66
    [103] Markandey V, et al.. Motion adaptive deinterlacer for DMD(digitalmicromirror device) based digital television[A]. IEEE Trans. onConsumer Electronics,1994,40(3):735–742
    [104] Markandey V, Gove R. Digital display systems based on the digitalmicromirror device[C]. SMPTE136th Technical Conference and WorldMedia Expo, October1994
    [105] Monk D W. Digital micromirror device technology for projection displays
    [C]. EID Exhibition&Conference, Sandown, UK, October1994
    [106] Chiu E, et al.. Design and implementation of a525mm2CMOS digitalmicromirror device(DMD) chip[C]. IEEE VLSI Conference, May1995
    [107] Critchley B R, Blaxtan P W, et al.. Picture Quality in large screenprojectors using the digital micromirror device[A]. SID95Digest,1995:524–527
    [108] Sextro G, Ballew T, Iwal J. High-definition projection system usingDMD display technology[A]. SID95Digest,1995:70–73
    [109] Hornbeck L J. Digital light processing for high-brightness,high-resolution applications[A]. Proc. SPIE,1997,3013:27–40
    [110] Hanley Q S, Verveer P J, et al.. An optical sectioning programmablearray microscope implemented with a digital micromirror device[J].J. Microsc.(Oxford),1999,196:317–331
    [111] Dlugan A L P, MacAulay C E, et al.. Improvements to quantitativemicroscopy through the use of digital micromirror devices[C]. Proc.SPIE,2000,3221:6–11
    [112] Verveer P J, Hanley Q S, et al.. Theory of confocal fluorescence imagingin the programmable array microscope[J]. J. Microsc.(Oxford),1998,189:192–198
    [113] Hanley Q S, Verveer P J, et al.. Optical sectioning fluorescencespectroscopy in a programmable array microscope [J]. AppliedSpectroscopy,1998,52:783–789
    [114] Hanley Q S, Verveer P J. Spectral imaging in a programmable arraymicroscope by Hadamard transform fluorescence spectroscopy[J].Applied Spectroscope,1999,53:1–10
    [115] Kreis T, Aswendt P. Hologram reconstruction using a digital micromirrordevice[J]. Opt. Eng.,2001,40(6):926–933
    [116]杨世宁,李耀棠,王天及等.用数字微反射器件合成体现全息图拍摄系统[J].光电子·激光,2001,12(7):719–721
    [117]王金城,郭欢庆,郎海涛等.数字合成全息系统[J].光电子·激光,2002,13(7):740–743
    [118]郭欢庆,王肇圻,王金城等.数字合成全息系统中空间光调制器DMD的研究[J].光电子·激光,2004,15(1):9–12
    [119]郭小伟,杜惊雷,罗铂靓等.基于数字微反射镜灰度光刻的成像模型[J].光子学报,2006,35(9):1412–1416
    [120]魏涛,朱建华,陈立功等.基于DMD的数字全息显示及其再现像质增强[J].光子学报,2008,37(5):952–956
    [121]曹益平,苏显渝,向立群.数字微镜器件的时空特性[J].激光杂志,2002,23(5):16–18
    [122]曹益平,苏显渝,陈文静等.数字微镜器件的时空特性对相位测量轮廓术的影响[J].光学技术,2004,30(2):157–160
    [123]王巍,巩马理.数字微镜器件(DMD)在相干光照明下的空间光调制特性[J].光电技术应用,2007,22(3):31–35
    [124]李俊昌,宋庆和,桂进斌.数字微镜用于菲涅耳衍射全息显示的理论研究[J].光子学报,2009,38(6):1459–1463
    [125]余晓芬,余卿,刘文文等.数字微镜器件用于并行共焦显微探测的研究[J].光电工程,2010,37(9):58–62
    [126]余卿,余晓芬,刘文文,程伶俐.数字微镜器件用于并行共焦测量的再研究[J].光学学报,2011,31(5):0523005-1-0523005-5
    [127] Dickey F M, Holswade S C, et al.. Laser beam shaping[C]. Proc. ofSPIE,2000,4095:1–216
    [128] Dickey F M, Holswade S C, et al.. Laser beam shaping Ⅱ[C]. Proc.of SPIE,2001,4443:1–198
    [129] Dickey F M, Holswade S C, et al.. Laser beam shaping Ⅲ[C]. Proc.of SPIE,2002,4770:1–158
    [130] Dickey F M, Shealy D L, et al.. Laser beam shaping Ⅳ[C]. Proc. ofSPIE,2003,5175:1–236
    [131] Dickey F M, Shealy D L, et al.. Laser beam shaping Ⅴ[C]. Proc. ofSPIE,2004,5525:1–233
    [132] Dickey F M, Shealy D L, et al.. Laser beam shaping Ⅵ[C]. Proc. ofSPIE,2005,5876:1–367
    [133] Dickey F M, Shealy D L, et al.. Laser beam shaping Ⅶ[C]. Proc. ofSPIE,2006,6290:1–313
    [134] Dickey F M, Shealy D L, et al.. Laser beam shaping Ⅷ[C]. Proc. ofSPIE,2007,6663:1–252
    [135] Shealy D L. Historical perspective of laser beam shaping[A]. Proc.of SPIE,2002,4770:28–47
    [136] Hoffnagle J A, Jefferson C M. Measured performance of a refractiveGauss-to-flattop reshaper for deep-UV through near IR wavelengths
    [C]. SPIE Conference on Laser Beam Shaping Ⅱ, paper4443-15,2August2001
    [137] Hoffnagle J A. Sensitivity of a refractive beam reshaper to figure error
    [C]. SPIE Conference on Laser Beam Shaping Ⅲ, paper4770-04,11July2002
    [138] Shealy D L, Hoffnagle J A. Laser beam shaping profiles and propagation[J]. Appl. Opt.,2006,45(21):5118–5131
    [139]林勇,胡家升.激光光束的整形技术[J].激光杂志,2008,29(6):1–4
    [140] Glaser I. Applications of the lenslet array processor[A]. SPIE,1983,564:180–185
    [141] Kawamura Y, Itagaki Y, et al.. A simple optical device for generatingsquare flat-top intensity irradiation from a Gaussian laser beam[J].Opt. Commun.,1983,48(1):44–46
    [142]浙江大学光学教研组.特殊光学系统[M].杭州:浙江大学出版社,1984
    [143] Latta M R, Jain K. Beam intensity uniformization by mirror folding[J]. Opt. Commun.,1984,49(6):435–439
    [144] Deng X M, Xiang C L, et al.. Unifoumillumination of large targets usinga lens array[J]. Appl. Opt.,1986,25(3):337–381
    [145] Shikama S, Toide E, Knodo M A. Polarization transforming optics fora high luminance LCD projection [A]. Proc. of the SID,1991,32(4):301–304
    [146] Motamedi M E, Southwell W H, et al.. Antireflection surfaces in siliconusing binary optics technology[J]. Appl. Opt.,1992,31(22):4371–4376
    [147] Kamon K. Fly-eye lens device and lighting system including same. USPatent, No.5251067, October5,1993
    [148] Pepler D A, Danson C N, et al.. Binary-phase Fresnel zone plate arraysfor high-power laser beam smoothing [C]. Proc. of SPIE,1995,2404:258–265
    [149] Kopp C, Ravel L, et al.. Efficient beamshaper homogenizer designcombining diffractive optical elements, microlens array and randomphase plate[J]. J. Opt. A. Pure Appl. Opt.,1999,1:398–403
    [150] Bollanti S, Dilazzaro P. Edge steepness and plateau uniformity of anearly flat-top shaped laser beam[J]. Appl. Phys. B,2004,78:195–198
    [151]匡丽娟,翟金会,阮玉等.复眼透镜阵列应用于均匀照明系统的特性研究[M].光学与光电技术,2005,3(6):29–31
    [152]江孝国,祁双喜,王婉丽等.CCD输出信号的低噪声处理电路研究[J].光电子·激光,2001,12(11):1126–1129
    [153]佟首峰,阮锦,郝志航.CCD图像传感器降噪技术的研究[J].光学精密工程,2002,8(2):140–145
    [154]潘锋,王利刚.CCD降噪技术的研究[J].现代电子技术,2002,10:24–26
    [155] Gach J L, Darson D, et al.. A new digital CCD readout technique forultra-low-noise CCDs[J]. The Astronomical Society of the Pacific,2003,115(9):1068–1071
    [156] Jean, David D, et al.. Zero noise CCD: a new readout techonique[R].Astrophysics and Space Science Library: Science Detectors forAstronomy,2004:603–610
    [157]许秀贞,李自田,薛利军.CCD噪声分析及处理技术[J].红外与激光工程,2004,33(4):343–346
    [158]杨博雄,胡新和,傅辉清等.CCD工作信号的噪声分析与处理[J].红学与光电技术,2004,2(4):51–54
    [159]张林,李永新.可变带通滤波器在CCD噪声处理中的应用[J].测试技术学报,2007,21(1):39–43
    [160]蔡荣太,王延杰.CCD成像传感器的降噪技术[J].半导体光电,2007,28(5):607–612
    [161]刘文文,余晓芬,余卿,毕美华.用于微结构探测的并行共焦光学结构的研究[J].仪器仪表学报,2009,6(30):1266-1270

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700