神经生长因子降钙素基因相关肽在下颌骨骨缺损愈合时调节机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因外伤、肿瘤、先天性畸形等造成颌骨缺损的修复一直是困扰口腔颌面外科临床医生的难题。颌骨缺损一方面造成功能障碍,另一方面造成美观问题,加重患者的心理负担。随着社会的进步和发展,交通事故的发生机会也越来越多,头面部损伤和颌骨骨折的发生率呈增高趋势。现代战争中,面部缺乏防护,颌面部现代战伤发生率超出10%。因此,有关颌骨骨缺损修复的研究也一直是基础和临床研究的热点问题。
     骨缺损的修复中,神经系统在其中发挥着重要的调节作用。我们的前期研究发现,神经介质在修复的启动、成骨和后期改建中均发挥重要作用,有许多细胞因子参与这一过程。分子生物学研究表明,骨折愈合是一个多种细胞生长因子参与调控的复杂过程,这其中既有骨缺损周围成骨相关细胞分泌的细胞因子作用,也有远端相关器官通过体液转运而来的各种激素和调节因子,还有神经系统通过神经末梢释放出的神经递质参与其中。神经生长因子(nerve growth factor,NGF)是神经营养因子(neurotrophicfactor; neurotrophic factors,NTF)的一种,也是骨缺损周围成骨相关细胞分泌的一种细胞因子。研究表明,NGF对骨缺损愈合过程起着重要的调节作用。降钙素基因相关肽(calcitonin gene-related peptide,CGRP)作为重要的感觉神经信号分子,因在骨折愈合调控中的重要作用而受到广泛关注。NGF与CGRP都与骨缺损愈合过程相关,并且国内外诸多研究发现CGRP和NGF骨折区的含量均增多。而且都与支配骨组织的神经系统有关联,不同在于NGF是神经靶细胞分泌,被神经末梢摄取的,CGRP是神经末梢释放的,作用于靶细胞的。这两者在骨愈合过程中的相互关系如何?有没有相互之间的调节机制?
     基于以上想法,并结合国内外研究进展,本课题首先制备可以在骨缺损区域持续释放NGF的缓释微球,研究下颌骨骨缺损愈合过程中NGF对支配下颌骨的三叉神经节中CGRP的合成与分泌的影响。利用药剂学技术,制备单甲氧基聚乙二醇聚乳酸神经生长因子[(mono-methoxy poly (ethylene glycol)-poly(lactic acid)-nerve growth factor,mPEG-PLA-NGF]缓释微球,检测微球的包封率、载药量等理化性质,研究缓释微球国家自然科学基金资助项目(编号30973334);重庆市自然科学基金(CSTC2009BB5334)的体外释放规律。利用PC-12细胞培养实验,检测微球释放NGF的生物活性和临床实际应用价值。制备大鼠下颌骨骨缺损模型,通过全身注射或局部应用NGF缓释微球干预骨愈合过程,检测大鼠三叉神经节内NGF、CGRP、TrkA(tyrosine kinase A,络氨酸激酶A)等的变化,探讨下颌骨骨缺损愈合过程中NGF对神经节的作用。原代培养大鼠的成骨细胞,并进行形态观察和鉴定,用不同浓度的CGRP刺激成骨细胞,观察CGRP对成骨细胞合成NGF的影响
     实验方法和结果:
     1、 mPEG-PLA-NGF缓释微球的制备及体外释放实验研究
     mPEG-PLA-BSA微球的制备预实验:取三种不同配比的单甲氧基聚乙二醇聚乳酸(mono-methoxy poly (ethylene glycol)-poly(lactic acid),mPEG-PLA)(mPEG:PLA分别为1:4,1:10,1:20的3种mPEG-PLA,其中mPEG分子量均为5000。)用复乳法制备微球,通过筛选,选用mPEG:PLA=1:20的mPEG-PLA。用复乳法制备mPEG-PLA-NGF缓释微球,观察微球的表面形态,微球表面光滑圆整,球体大小较均匀。微球平均粒径为74.2±21.3μm,粒径分布范围较窄。载药量和包封率的实验表明,mPEG-PLA-NGF缓释微球包封率为(77.3±1.81)%。载药量为[(2.13±0.24)×10-5]%。微球的体外释放实验表明,微球在14d内,不仅一直持续释放神经生长因子,而且所释放出的神经生长因子浓度可以保持在一定的水平:(54.67-76.81) fmol/μL,平均浓度为(65.74±11.07) fmol/μL。经检测表明,神经生长因子缓释微球的24h内释放量为27.36%,21d后释放度达72.34%。NGF缓释系统中释放的NGF活性测定试验中,通过PC-12细胞的出芽情况证明了mPEG-PLA-NGF缓释微球可以持续释放出有生理活性的NGF。
     2、神经生长因子在下颌骨骨缺损愈合过程中对骨折愈合的促进作用以及对三叉神经节合成降钙素基因相关肽的影响
     建立大鼠下颌骨骨缺损动物模型,分为:①空白组:只手术,不给药;②对照组:手术后,NGF腹腔给药;③实验组:手术时,局部涂布mPEG-PLA-NGF缓释微球。分别在术后1w,2w,4w,8w处死动物。术区标本HE染色显示,mPEG-PLA-NGF实验组的骨痂生成量和骨痂成熟度要明显高于对照组和空白组,而且愈合时间明显提前。四环素荧光染色结果显示,mPEG-PLA-NGF实验组可加快大鼠新生骨的形成,结果有统计学意义。
     建立大鼠下颌骨骨缺损动物模型,分为:①单纯骨缺损组,不给药;②单纯全身给药组,不手术;③骨缺损+全身给药组;④骨缺损+NGF微球;⑤空白组。在术后第1d,2d,3d,7d处死动物,获取三叉神经节标本,并通过免疫组化法,检测三叉神经节中NGF、CGRP、TrkA的表达差异。结果显示,各组均观察到三叉神经节内NGF、CGRP、TrkA表达有所增强,第2组最不明显,第4组表达显著高于其他组。3天达到最高,以后逐渐下降,但仍高于两对照组。三项指标结果极为相似,显示出密切的相关性。
     3、降钙素基因相关肽对成骨细胞分泌神经生长因子的影响
     原代培养大鼠成骨细胞,并进行了形态观察和鉴定。用不同浓度的CGRP刺激成骨细胞,在第1,2,3,5d,用ELISA法测不同浓度CGRP对大鼠成骨细胞上清液中NGF浓度的影响。结果显示成骨细胞自身可以产生少量的NGF,在CGRP作用下,可以明显上调成骨细胞分泌的NGF,而且随CGRP浓度升高,此作用也相应增强。此外,成骨细胞上清液中NGF的浓度随CGRP作用后时间延长也增加。
     结论:
     1、以mPEG-PLA为载体,采用复乳法(w/o/w)制备的mPEG-PLA-NGF缓释微球具有良好的物理和生化性能,能够持续释放具有生物活性的神经生长因子。
     2、实验采用的微球制备方法和工艺确实可行,并具有一定的实用性。通过中国、美国、欧盟、日本等专利检索,“一种生长因子缓释微球及其制备方法”具有原创性,已经获得了中国知识产权局技术发明专利(专利号: ZL201110027337.8)。
     3、体内实验表明骨缺损区域的NGF能够促进大鼠下颌骨骨缺损的愈合,促进大鼠的三叉神经节细胞合成CGRP。
     4、体外研究表明CGRP对成骨细胞NGF的表达有促进作用,并与剂量和时间呈正相关。
There is a terrible difficulty in mandible defect repair after injury for clinical doctorsdue to trauma, tumor, congenital malformation and so on. On one hand, jaw defect inducesdysfunction, and aggravates the patient burden because of preventing beautiful outlook onanother hand. During the social development, the ratio of traffic accidents step up more andmore meanwhile the ratio of jaw fractures happen as well; and the ratio of jaw fractures inthe war is critical high as well as above, thus, it makes the research of the restoration afterjaw fractures to be a hot spot. The restoration after jaw injury is based on the stability andblood supply surrounding the jaw defect, there are many cytokines participated in it, andthere is the important role for nerve growth factor in regulation function.
     The molecular biological research showed, the jaw restitution was is a complexprocess in which many cytokines took place, and there were many cytokines producingmarked effect, included cytokines with cells secreting related to osteogenesis surroundingjaw defect, kinds of hormones and regulatory factors transported from distal organ by bodyfluids and neurotransmitters released from nerve terminal in nerve system. Nerve growthfactor is one of the nerve nutrition factors, is also secreted from the cells related toosteogenesis surrounding bone defect. The research showed, NGF played an important rolein the process of restoration after jaw defect. As the considerable sensory nerve signalingmolecule, calcitonin gene related protein is paid close attention very much due to itsimportant function in regulation of restoration of jaw fractures. NGF and CGRP are allrelated to the restoration after bone fractures, and the internal and abroad research foundthat CGRP and NGF released from the position of fractures increased apparently, Moreoverthey were all related to nerve system gaverning bone tissue, but the differences betweenthem were that NGF was secreted from nerve target cells and was uptake by nerve terminal,CGRP was released from nerve terminal and acted at target cells. Is there some relationship or how to interact between each other in process of bone restitution?
     Based on above information, and binding internal and abroad research, we firstproduced the microballoons which could released NGF continuously and slowly at theposition of defect, order that investigate the effect of NGF which governed mandibletrigeminal nerve in the restoration after mandible fractures, specially influence on synthesisand secretion of CGRP. We used pharmaceutics technology to produce mPEG-PLA-NGFmicroballoons, detected physical and chemical characteristic of microballoons, included theentrapment rate, drug-loading rate and so on; investigated the release pattern ofmicroballoons in vitro; used PC-12cell culture experiment to detect if there was biologicalactivity in NGF released from microballoons. All of above were to do the groundwork fornext experiments. Meanwhile, there was some practical application value. We prepared themodel of mandible defect of rat, through NGF released from microballoons which injectedlocally and systemic administration in the process of bone restitution, detected the changesof NGF, CGRP, TrkA in ganglia of rat trigeminal nerve, and investigated the influence ofNGF on ganglia in restoration after mandible defects. We cultured primarily, observedmorphologically and identified the rat osteoblast, then stimulated osteoblast with differentdensity of CGRP to observe the influence of CGRP on synthesis of NGF of osteoblast.
     Method and Result:
     1. the produce of mPEG-PLA-NGF microballoons and release experiment in vitro
     Preliminary experiment of the the produce of mPEG-PLA-NGF microballoons: usedthree kinds of matches mPEG-PLA(mPEG: PLA=1:4,1:10,1:20, and Molecular Weight ofmPEG is5000) to produce microballoons by multiple emulsion, then identified, selectedmPEG:PLA=1:20. We produced mPEG-PLA-NGF microballoons by multiple emulsion,and observed surface appearance of microballoons, results showed the surface ofmicroballoons was smooth and clean, microballoons were well-distributed. The average ofparticle diameter of microballoons was74.2±21.3μm, distribution range of particlediameter was a little narrow. The results of drug-loading rate and entrapment rateexperiments indicated that microballoons do not only release continuously nerve growthfactors, but also make the density of NGF keep a stable level during14days:(54.67-76.81)fmol/μL, the average density was (65.74±11.07) fmol/μL. Detection showed the volume ofNGF released from microballoons were27.36%in24h,72.34%in21d. In the detection experiment of activity of NGF released from release system, it proves thatmPEG-PLA-NGF microballoons could release continuously NGF with activity byprolification of PC-12cell.
     2. The promotion of NGF for fracture healing during the mandible restitution afterbone defect and the effect of NGF for CGRP synthesized by trigeminal ganglion.
     We constructed the model of rat mandible bone defect, include:①blank group: justoperation, no medicine;②control group: after operation, NGF of Intraperitonealadministration;③experimental group: mPEG-PLA-NGF microballoons was coatedpartially in operation. Then the animals were sacrificed at1w,2w,4w,8w after operation.HE results showed: the quantity and maturation of mPEG-PLA-NGF experimental groupwere significantly better than control group and blank group, and the healing time wasapparently advanced. Tetracycline staining results showed, the new bone formation of ratwas promoted in mPEG-PLA-NGF experimental group, significantly.
     We constructed the model of rat mandible bone defects, included:①simple-bonedefects group, with no medicine;②simple systemic administration, no operation;③bonedefects+systemic administration group;④bone defects+NGF microballoons;⑤blankcontrol group. The animals were sacrificed at first, second, third, seventh day afteroperation, ganglia of trigeminal nerve was gained, and the difference of expression of NGF,CGRP, TrkA in ganglia were detected by immunohistochemisty. Findings showed:expression of NGF, CGRP, TrkA in ganglia were increased in each group, the expression ofsecond group was lowest, the expression of forth group was apparently higher than others,the highest at the third day, then downregulated gradually, but still higher than two controlgroups. The results of these three markers were so similar that there were close associationbetween them.
     3. The influence of CGRP on NGF synthesized by osteoblast
     The rat osteoblast was primary cultured, observed morphologically and identified. Theosteoblast was stimulated by CGRP with different density, at1,2,3,5d, the influence ofdifferent density CGRP on density of NGF in the supernatant of rat osteoblast by ELISA.Results showed osteoblast can release a little NGF, and can release more NGF under theCGRP working; moreover, the effectiveness of CGRP was stronger during density of CGRPupregulation.
     Conclusion:
     1. There were very well physical and chemical characteristics in mPEG-PLA-NGFmicroballoons with mPGE-PLA carrier by double emulsion, which could releasecontinuously NGF with activity.
     2. the method and technology of producing microballoons was real working, and it hassome practicality.“a kind of NGF released from microballoons and producing technology”was original by patent search from china, USA, UE, Japan and so on, and it had beenacquired China Intellectual Property Office technical invention patent(No.201110027337.8).
     3. Results indicated that NGF could accelerate the process of mandible defect repairand promote synthesis of CGRP in ganglion cells of trigeminal nerve at the position of bonedefects in vivo.
     4. Results indicated that CGRP could promote the expression of NGF in osteoblast invitro, and be positively correlated with the dose and the event.
引文
1.张益,顾晓明.我国口腔颌面创伤外科的现状与展望[J].中华口腔医学杂志,2001,36(2):88-90.
    2.戴星,张国志.240例颌面部骨折的回顾性研究[J].临床口腔医学杂志,2004,20(4):225-227
    3. Rose FR,Oreffo RO.Bone tissue engineering: hope vshype.[J] Biochem Biophys ResCommun,2002,14(7):2921.
    4. Hulth A.Current concept of fracture healing.[J]Clin Orthop Res1989;249:265-84
    5. Hurrell DJ. The nerve supply of bone[J]. J Anat,1937,72:54~61.
    6. Hara I F.Immunohistochemical and ultrastructural localization of CGRP-positivenervefibers at the epiphyseal trabecules facing the growth plate of ratfemurs[J].Bone,1996,18:29-39.
    7. Spencer R. The effects of head injury on fracture healing:aquantitative assessment[J]. J Bone Joint Surg,1987,69B:525~528
    8. Madsen J E,Wang J S, Hukkanen M,et al. Sensory nerve ingrowth during bone graftincorporation in the rat.[J]Acta orthop scand,1996,67:217~220.
    9. Bidner SM, Rubins IM, Desjardins JV, et al.Evidence for a humoral mechanism forenhanced osteogenesis after head injury.[J] J Bone Joint Surg(Am),1990,72:1144-1149
    10. Konttinen YT.Neuropeptides and the puzzle of bone remodeling[J].Acta OrthopScand,1996,67:632-639.
    11. Bierl MA, Jones EE, Crutcher KA,et al.'Mature' nerve growth factor is a minor speciesin most peripheral tissues.[J]Neurosci Lett2005;380(1-2):133-137.
    12. Nakanishi T, Takahashi K, Aoki C, et al. Expression of nerve growth factor familyneurot rophins in a mouse osteoblastic cell line.[J] Biochem Biophys Res Commun,1994,198:891~897.
    13. Jehan F, Naveilhan P, Neveu I,et al. Regulation of NGF,BDN F and LNGFR geneexpression in Ros17/2.8cells.[J]Mol Cell Endocrinol,1996,116:149~156
    14. Letic-Gavrilovic A,Piattelli A,Abe K.Nerve growth factor beta(NGF beta) delivery viaa collagen/hydroxyapatite (Col/HAp) composite and its effects on new bone ingrowth.[J]J Mater Sci Mater Med2003;14(2):95-102
    15. Huebner AK,Keller J,Catala-Lehnen P,et al. The role of calcitonin andalpha-calcitonin gene-related peptide in bone formation.[J] Arch Biochem Biophys2008;473(2):210-217
    16. Hara I F,Immunohistochemical and ultrastructural localization of CGRP-positivenervefibers at the epiphyseal trabecules facing the growth plate of ratfemurs[J],Bone,1996,18:29-39.
    17. Kawase T,Okuda K,Burns DM. Immature osteoblastic MG63cells possess twocalcitonin gene-related peptide receptor subtyps that respond differently to[Cys(Acm)(2,7)] calcitonin gene-related peptide and CGRP(8-37).[J] Am J PhysiolCell Physiol2005;289(4):C811-C818
    18. Ishizuka K,Hirukawa K,Nakamura H,et al. Inhibitory effect of CGRP on osteoclastformation by mouse bone marrow cells treated with isoproterenol.[J]Neurosci Lett2005;379(1):47-51
    19. Xu X,Yu H,Gao S,et al. Polyphosphoester microspheres for sustained release ofbiologically active nerve growth factor.[J] Biomaterials.2002;23(17):3765-3772.
    20. Garbayo E,Montero-Menei CN,Ansorena E,et al. Effective GDNF brain deliveryusing micropheres--a promising strategy for Parkinson's disease.[J]J Control Release.2009;135(2):119-126.
    21. Péan JM,Boury F,Venier-Julienne MC,et al. Why does PEG400co-encapsulationimprove NGF stability and release from PLGA biodegradable microspheres?[J]PharmRes.1999;16(8):1294-1299.
    22.曾晗冰,徐华梓,李万里,等。改良复乳法制备神经生长因子微球及其体外释药性能。[J]中国组织工程研究与临床康复.2009;13(42):8286-8290.
    23. Lu SH,Yang Y,Liu SJ. An investigation on the division of neuronal PC12cellsinduced by nerve growth factor.[J] Sheng Li Xue Bao.2005;57(5):552-556.
    24. Chung CW, Zhang QL, Qiao LY.Endogenous nerve growth factor regulates collagenexpression and bladder hypertrophy through Akt and MAPK pathways duringcystitis.[J]J Biol Chem.2010Feb5;285(6):4206-12.
    25. Chen QL, Zhu SY, Bian ZQ,et al.Activation of p38MAPK pathway by hepatitis Cvirus E2in cells transiently expressing DC-SIGN.[J]Cell Biochem Biophys.2010;56(1):49-58.
    26. Ciofani G,Raffa V,Menciassi A,et al. Magnetic alginate microspheres: system for theposition controlled delivery of nerve growth factor.[J]Biomed Microdevices.2009;11(2):517-527.
    27. Heese K, Low JW, moue N. Nerve growth factor, neural stem cells and Alzheimer'sdisease[J]. Neurosignals.2006,15:1一12
    28. Chiaretti A, Genovese O, Riccardi R, et al. Intraventricular nerve growth factorinfusion:a possible treatment for neurological deficits following hypoxic ischemicbrain injury in infants[J]. Neurol Res.2005,7:741一746
    29. Letic-Gavrilovic A,Piattelli A,Abe K.Nerve growth factor beta(NGF beta) delivery viaa collagen/hydroxyapatite (Col/HAp) composite and its effects on new bone ingrowth.[J]J Mater Sci Mater Med2003;14(2):95-102
    30. Mogi M, Kondo A, Kinpara K, et al. Anti-apoptotic action of nerve growth factor inmouse osteoblastic cell line.[J] Life Sci,2000;67(10):1197~1206
    31. Yao M, Dooley PC, Schuijers JA, et al. Nerve growth factor and norepinephrineconcentrations in weight-bearing and non-weight-bearing bones of euthyroid andhyperthyroid rats.[J]J Musculoskelet Neuronal Interact,2002;2(4):327~334
    32. Malcangio M, Garrett NE, Tomlinson DR.[J] Eur J Neurosci,1997;9(5):1101~1104
    33.莫勇军;杨志;赵劲民,等. NGF促进骨折愈合的适宜浓度初步研究[J].中国修复重建外科杂志,2011,(05):575-581
    34. McCallisterWV, McCallister EL, Dubois B, et al. Regeneration along intact nervesusing nerve growth factor and ciliary neurotrophic factor.[J]J Reconstr Microsurg,2004;20(6):437-451
    35. Philip JJ, Stacy LS, Sarah ES, et al. Maintaining bioactivity of NGF for controlledrelease from PLGA using PEG[J]. Journal of Biomedical Materials.
    36. McCallister WV, Tang P, Smith J, et al. Axonal regeneration stimulated by thecombination of nerve growth factor and ciliary neurotrophic factor in an end-to-sidemodel.[J] J Hand Surg,2001;26(3):478-488.
    37.萧文耀,王昕,段大鹏;等.外源性神经生长因子诱导下自体静脉桥接修复神经缺损[J]中国组织工程研究与临床康复2010;14(28):5191-5194
    38. Garbayo E,Montero-Menei CN,Ansorena E,et al. Effective GDNF brain deliveryusing microspheres--a promising strategy for Parkinson's disease.[J]J Control Release.2009;135(2):119-126.
    39. Gu H,Long D,Song C,et al.Recombinant human NGF-loaded microspheres promotesurvival of basal forebrain cholinergic neurons and improve memory impairments ofspatial learning in the rat model of Alzheimer's disease with fimbria-fornix lesion.[J]Neurosci Lett.2009;453(3):204-209.
    40.罗彦凤,王远亮,潘君,等.新型改性聚乳酸及其亲疏水性研究[J].高技术通讯,2003,13(2):47-51.
    41. ZhaoYM,WangZY,WangJ, et al. Direct synthesisofpoly(D, L-acticacid)viameltpolycondensationand its application in drug delivery[J]. J Appl PolymSci.2004,91(4):2143-3150.
    42.张纲,谭颖徽,卢来春等. bFGF-PLA缓释纳米微球的制备及体外释药的研究[J].重庆医学,2006(11):1002-1004
    43. Wang S, Wan ACA,Xu X, el al.A new nerve guide conduit material composed of abiodegradable poly(phosphoester)[J] J.Biomaterials,2001,22:1157-1169.
    44. Saito N,Takaoka K.New syntheie biodegradable polymers as BMP carriers for bonetissue engineering [J]Biomatetials,2003,24:2287-2293.
    45. Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drugdelivery system.[J]Int J Pharm.2003Apr14;255(1-2):13-32.
    46. Yu X, Bellamkonda RV. Tissue-engineered scaffolds are effective alternatives toautografts for bridging peripheral nerve gaps. Tissue Eng,2003;9(3):421-430.
    47. Xu W, Yang Y. Relationship between drug release and some physical parameters ofdrug sorption onto PLA fibers[J]. J Biomater Sci Polym Ed.201021(4):445-62.
    48. Christine H,Zhong Zhiyuan,Li Liangbin,et a1.In-situ formation of biodegradablehydrogels by stereocomplexation of PEG-(PLLA)8and PEG-(PDLA)8star blockcepolymers[J].Biomacromoleeules,2006,7:2790-2795.
    49. Park TG,Lu WQ,Crotts G. Importance of in vitro experimental conditions on proteinrelease kinetics,stability and polymer degradation in protein encapsulated poly(-lactic acid-co-glycolic acid) microspheres.[J]Journal of Controlled Release.1995;33(2):211-222.
    50. Giteau A, Venier-Julienne MC, Aubert-Pou ssel A,et al. How to achievesustained and complete protein release from PLGA-based microparticles?[J] Int JPharm.2008;350(1-2):14-26.
    51. Péan JM,Venier-Julienne MC,Filmon R,et al. Optimization of HSA and NGFencapsulation yields in PLGA microparticles.[J] International Journal ofPharmaceutics.1998;166(1):105-115.
    52.孙华燕,徐风华.常用的蛋白质保护剂对NGF-PLGA微球性质的影响[J].解放军药学学报,2008,24(2):113-116.
    53. Shrivastava R, John GW. Treatment of Aphthous Stomatitis with topical Alchemillavulgaris in glycerine[J].Clin Drug Investig,2006,26(10):567-573.
    54. Robinson SN, Chavez JM, Blonder JM,et a1.Hematopoietic progenitor cellmobilization in mice by sustained delivery of granulocyte colony-stimulatingfactor[J]J Interferon Cytokine Res,2005,25(8):490-500.
    55. Ito F,Fujimori H,Makino K. Incorporation of water-soluble drugs in PLGAmicrospheres.[J] Colloids Surf B Biointerfaces.2007;54(2):173-178.
    56. Kim JH,Taluja A,Knutson K,et al. Stability of bovine serum albumin complexed withPEG-poly(L-histidine) diblock copolymer in PLGA microspheres.[J]J ControlRelease.2005;109(1-3):86-100.
    57. Kim HK, Park TG. Microencapsulation of human growth hormone withinbiodegradable polyester microspheres: protein aggregation stability and ncompleterelease mechanism.[J] Biotechnol Bioeng.1999;65(6):659-667.
    58. RobinsonCJ, StammersR. An in vitro bioassay for nerve growth factor based on24hours survival of PC-12cells.[J]GrowthFactors,1994,10(3):193-196.
    59.王慧娟宋洪涛彭碧文等.环孢素A眼用亚微乳含量测定及其体外释放度的考察[J].解放军药学学报,2008,24(1):72-75
    60.李焰,谭颖徽,张纲,等.兔下颌骨骨折愈合中降钙素基因相关肤对一氧化氮合成酶调控的实验研究[J].实用口腔医学杂志,2008,24(1):78-81.
    61.熊正文,李德炳,冯骥良等.不同脱钙条件对骨组织免疫组织化学染色抗原性的影响[J].实用医技杂志,2005,12(5):1092-1094
    62. Meuge-Moraw C, Bernard MC, Delacretaz F. Immunophenotyping of B lymphoma inbone marrow biopsies. Contribution of4monoclonal antibodies used onparaffin-embedded tissues [J].Ann Pathol,1993,13(3):151-156.
    63. Archimbaud E, Islam A, Preisler HD.Immunoperoxidase detection of myeloidantigens in glycolmethacrylate-embedded human bone marrow[J]. HistochemCytochem,1987,35(5):595-599
    64. Cho T.J,Gerstenfeld L.C, Einhorn T.A,et al. Differential temporal expression ofmembers of the transforming growth factor beta superfamily during murine fracturehealing[J].J Bone Miner Res,2002,(5):13-20
    65. Rose F.R, Oreffo R.O.Bone tissue engineering: hope vs hype[J].Biochem Biophys ResCommun,2002,14(7):2921-2927.
    66. Averlock B.Inflammatory mediators release calcitonin gene related peptide fromdorsal root ganglion neuron of rat [J]. Neuroscience,2000,98(1):135-140.
    67. Togari A, Arai M, Mizutani S, et al. Expression of mRNAs for neuropeptidereceptors and beta-adrenergic receptors in human osteoblasts and human osteogenicsarcoma cells.[J]Neurosci Lett,1997,233:125-128.
    68. Ransjo M, Lie A, Mukohyama H, et al. Microisolated mouse osteoclasts expressVIP-1and PACAP receptors.[J] Biochem Biophys Res Commun,2000,274:400-404.
    69. Gajda M,Litwin JA,Cichocki T,et al. Development of sensory innervation in rattibia:co-localization of CGRP and substance P with growth-associated protein43(GAP-43).[J] J Anat2005;207(2):135-144.
    70. Imai S,Rauvala H,Konttinen YT,et al. Efferent targets of osseousCGRP-immunoreactive nerve fiber before and after bone destruction in adjuvantarthritic rat:an ultramorphological study on their terminaltarget relations.[J] J BoneMiner Res1997;12(7):1018-1027
    71. Villa I,Mrak E,Rubinacci A,et al. CGRP inhibits osteoprotegerin production inhuman osteoblast-like cells via cAMP/PKA-dependent pathway.[J] Am J Physiol CellPhysiol2006;291(3):C529-C537.
    72. Ishizuka K,Hirukawa K,Nakamura H,et al. Inhibitory effect of CGRP on osteoclastformation by mouse bone marrow cells treated with isoproterenol.[J]Neurosci Lett2005;379(1):47-51
    73.孙应明,罗颂椒,赵昱辉,等.降钙素基因相关肽对体外大鼠破骨细胞形成的影响[J].临床口腔医学杂志,2005,21(1):3-5.
    74. Hukkanen M.Effect of sciatic nerve section on renewal ingrowth into the rat tibialfracture callus[J].Cim Orthop,1995,311:247-257..
    75. Figini M. Substance Pand bradykinin stimulate andpancreas [J]1AMJPhysiology,1997,272:785-793.
    76.李云超,管茶香,周漾,等.降钙素基因相关肽对脂多糖诱导的巨噬细胞表达髓样细胞触发受体-1影响.[J]中南大学学报:医学版,2010,35(2):100-106.
    77. Schlomer JJ,Storey BB,CiorneiRT, et al. Calcitonin gene-related peptide inhibitsearly B cell development in vivo.[J] J Leukoc Bio,l2007,81(3):802-808.
    78. Brown JA. The trigeminal complex. Anatomy and physiology[J]. Neurosurg Clin NAm,1997,8(1):1-10.
    79. Eppley BL,Snyders RV,winkelmann TM,et al. Efficacy of nerve growth factor inregeneration of the mandibular nerve: apreliminary report.[J]J Oral Maxillofac Sury,1991,49:61~68.
    80. Grills BL, Schuijers J A, Ward AR. Topical application of nerve growth factorimproces fracture healing in rats.[J] J orthop Res,1997,15:235~242.
    81. Nakanishi T,Takahashi K,Aoki C,et al.Expression of nerve growth factor familyneurotrophins in a mouse osteoblastic cell line.[J]Biochem Biophys Res Commun1994;198(3)891-897.
    82. Garcia R,Aguiar J,Alberti E,et al. Bone marrow stromal cells produce nerve growthfactor and glial cell line-derived neurotrophic factors.[J] Biochem Biophys ResCommun2004;316(3):753-754.
    83. Grills BL,Schuijers J A. Immunohistochemical localization of nerve growth factor inf ract ured and unf ract ured rat bone.[J]Acta Orthop Scand,1998,69:415~419.
    84. Malcangio M, Garrett N E, Tomlinson DR. Nerve growth factor treatementincreases stimulus-evoked release of sensory neuropeptides in t he rat Spinal Cord[J]. Eur J Neurosci,1997,9:1101~1104.
    85. Boes M, Kain M, Kakar S,et al. Osteogenic effects of traumatic brain injury onexperimental fracture-healing.[J]J Bone Joint Surg Am2006;88(4):738-743.
    86. Emanueli C, Salis MB, Pinna A, et al.[J].Nerve growth factor promotesangiogenesis and arteriogenesis in ischemic hindlimbs [J]Circulation,2002;106(17):2257~2262.
    87. Bayas A, Kruse N, Moriabadi NF, et al. Modulation of cytokine mRNA expressionby brain-derived neurotrophic factor and nerve growth factor in human immunecells.[J] Neurosci Lett,2003;335(3):155~158.
    88. Sabsovich I, Wei T, Guo TZ.et al. Effect of anti-NGF antibodies in a rat tibia fracturemodel of complex regional pain syndrome type I.[J]Pain.2008Aug15;138(1):47-60.
    89.徐琳、谭颖徽、何海涛.降钙素基因相关肽对免成骨细胞OPG/RANKL mRNA表达的影响[J].实用口腔医学杂志,2005,21(3):396-398.
    90.王稚英王兴肖军军等连续植块培养原代成骨细胞及其特性的比较[J]北京大学学报医学版.2004,36(1):99-101.
    91.傅德皓杨述华马德彰等鼠胚成骨细胞的原代培养与鉴定[J]创伤外科杂志.2006,8(2):157-160.
    92. Reinholz GG, Getz B, Sanders ES,et al. Distinct mechanisms of bisphosphonateaction between osteoblasts and breast cancer cells: identity of a potent newbisphosphonate analogue[J].Breast Cancer Res Treat.2002,71(3):257-268.
    93. Andersen H, Jensen ON, Moiseeva EP,et al A proteome study of secreted prostaticfactors affecting osteoblastic activity:galectin-1is involved in differentiation ofhuman bone marrow stromal cells[J]. J Bone Miner Res,2003,18(2):195-203.
    94. Lewin GR, Barde YA. Physiology of the neurotrophins.[J] Annu Rev Neurosci,1996;19:289~317.
    95. Landi F, Aloe L, Russo A, et al. Topical treatment of pressure ulcers with nerve growthfactor: a randomized clinical trial.[J] Ann Intern Med,2003;139(8):635~641.
    96. Lambiase A, Manni L, Bonini S, et al. Nerve growth factor promotes corneal healing:structural, biochemical, and molecular analyses of rat and human corneas.[J] InvestOphthalmol Vis Sci,2000;41(5):1063~1069.
    97. Nithya M, Suguna L, Rose C. The effect of nerve growth factor on the earlyresponses during the process of wound healing.[J]BiochimBiophys Acta,2003;1620(122):25~31.
    98. Grills BL,Schuijers JA. Immunohistochemical localization of nerve growth factor infractured and unfractured rat bone.[J]Acta Orthop Scand1998;69(4):415-419.
    99. Garcia R, Aguiar J, Alberti E, et al. Bone marrow stromal cells produce nervegrowth factor and glial cell line-derived neurotrophic factors.[J] Biochem BiophysRes Commun,2004;316(3):753~754
    100. Mogi M, Kondo A, Kinpara K, et al. Anti-apoptotic action of nerve growth factor inmouse osteoblastic cell line.[J] Life Sci,2000;67(10):1197~1206.
    101.郑林丰,谢应海,许愿忠.降钙素系统损伤中的作用[J].创伤外科杂志,2006,8(6):571-573.
    102. Imai S,Matsusue Y. Neuronal regulation of bone metabolism and anabolism:calcitonin gene-related peptide-,substance P-,and tyrosine hydroxylase-containingnerves and the bone.[J]Microsc Res Tech2002;58(2):61-69
    103. Lerner UH. Deletions of genes encoding calcitonin/alpha-CGRP, amylin andcalcitonin receptor have given new and unexpected insights into the function ofcalcitonin receptors and calcitonin receptor-like receptors in bone.[J]J MusculoskeletNeuronal Interact2006;6(1):87-95.
    104. Schlomer JJ,Storey BB,Ciornei RT,et al. Calcitonin gene-related peptide inhibits earlyB cell development in vivo.[J]J Leukoc Biol2007;81(3):802-808.
    105. Kawase T,Okuda K,Burns DM. Immature osteoblastic MG63cells possess twocalcitonin gene-related peptide receptor subtypes that respond differently to[Cys(Acm)(2,7)] calcitonin gene-related peptide and CGRP(8-37).[J] Am J PhysiolCell Physiol2005;289(4):C811-C818.
    106. Hukkanen M,Konttinen YT,Santavirta S,et al. Rapid proliferation of calcitoningene-related peptide-immunoreactive nerves during healing of rat tibial fracturesuggests neural involvement in bone growth and remodelling.[J] Neuroscience1993;54(4):969-979
    107. Madsen JE,Wang JS,Hukkanen M,et al. Sensory nerve ingrowth during bone graftincorporation in the rat.[J]Acta Orthop Scand1996;67(3):217-220
    108.王新,宋跃明,裴福兴.中枢神经损伤大鼠骨痂中神经肽的表达[J].中国矫形外科杂志,2006,14(16):1261-1263
    109.王桂芝,王君,鹿文静等.降钙素基因相关肽对HaCaT细胞增殖和分泌神经生长因子的影响.[J]中国皮肤性病学杂志.2008;22(5):263-265.
    110. Onuoha GN,Alpar EK. Elevation of plasma CGRP and SP levels in orthopedicpatients with fracture neck of femur.[J] Neuropeptides.2000;34(2):116-20.
    111. Asaumi K,Nakanishi T,Asahara H,et,al. Expression of neurotrophins and theirreceptors (TRK) during fracture healing.[J]Bone.2000;26(6):625-33.
    112. J Cornish, K. E. Callon. Effects of calcitonin, amylin, and calcitonin gene-relatedpeptide on osteoclast development[J]. Bone,2001,29(2):162~168.
    113. Santavirta S, Konttinen YT,Nordest rom D,el al. Immunologic st udy of nonunited fract ures.[J]Acta Ort hop Scand,1992,63:579~586.
    1. Saltzman WM, Olbricht WL. Building drug delivery into tissue engineering. Nat RevDrug Discov2002;1:177–186.
    2. Saito N,Takaoka K.New syntheie biodegradable polymers as BMP carriers for bonetissue engineering [J]Biomatetials,2003,24:2287-2293.
    3. Lewin GR, Barde YA. Physiology of the neurotrophins.[J] Annu Rev Neurosci,1996;19:289~317
    4. Landi F, Aloe L, Russo A, et al. Topical treatment of pressure ulcers with nerve growthfactor: a randomized clinical trial.[J] Ann Intern Med,2003;139(8):635~641
    5..Lambiase A, Manni L, Bonini S, et al. Nerve growth factor promotes corneal healing:structural, biochemical, and molecular analyses of rat and human corneas.[J] InvestOphthalmol Vis Sci,2000;41(5):1063~1069
    6. Nithya M, Suguna L, Rose C. The effect of nerve growth factor on the early responsesduring the process of wound healing.[J]BiochimBiophys Acta,2003;1620(122):25~31
    7. Hu Y, Grainger DW, Winn SR,et sl,.Fabrication of poly(alpha-hydroxy acid) foamscaffolds using multiple solvent systems.[J]J Biomed Mater Res.2002Mar5;59(3):563-72.
    8. Tuszynski MH, Peterson DA, Ray J, et al. Fibroblasts genetically modified to producenerve growth factor induce robust neuritis in growth after grafting to the spinal cord.Exp Neurol,1994;126(1):1-14
    9. Aloe L, Manni L, Properzi F, et al. Evidence that nerve growth factor promotes therecovery of peripheral neuropathy induced in mice by cisplatin: behavioral, structuraland biochemical analysis. Auton Neurosci,2000;86(1-2):84-93
    10. Aychaudhuri SP, Sanyal M, Weltman H, et al. K252a, a high-affinity nerve growthfactor receptor blocker, improves psoriasis: an in vivo study using the severe combinedimmunodeficient mouse-human skin model. J Invest Dermatol,2004;122(3):812-819
    11. Goerges AL, Nugent MA. pH regulates vascular endothelial growth factor binding tofibronectin: a mechanism for control of extracellular matrix storage and release. J BiolChem.2004;279(3):2307-2315
    12. Schrodeer-Tefft JA, Bentz H, Estridge TD. Collagen and heparin matrices for growthfactor delivery. J Control Release,1997;9:291-298
    13. Xu X, Yu H, Gao S, et al. Polyphosphoester microspheres for sustained release ofbiologically active nerve growth factor. Biomaterials.2002;23(17):3765-3772
    14. Jockenhoevel ST, Zund GR, Simon P, et al. Fibrin gel-advantages of a new scaffold incardiovascular tissue engineering. Eur J Cardiothorac Surg,2001;19:424-430
    15. Schense JC, Hubbell JA. Three-dimensional migration of neuritis is mediated byadhesion site density and affinity. J Biol Chem,2000;10(275):6813-6829
    16. Sara JT, John WM. Sakiyama-Elbert SE. Controlled release of neurotrophin-3fromfibrin gels for spinal cord injury. J Control Release,2004;98:281-294
    17. Annie C,Vivian M.,James B, et,al. Controlled release of nerve growth factor enhancessciatic nerve regeneration.[J] Experimental Neurology2003;(184):295–303.
    18. Wood MD, Hunter D, Mackinnon SE, et,al. Heparin-binding-affinity-based deliverysystems releasing nerve growth factor enhance sciatic nerve regeneration. J BiomaterSci Polym Ed.2010;21(6):771-87
    19. Xu W, Yang Y. Relationship between drug release and some physical parameters of drugsorption onto PLA fibers[J]. J Biomater Sci Polym Ed.201021(4):445-62.
    20. Christine H,Zhong Zhiyuan,Li Liangbin,et a1.In-situ formation of biodegradablehydrogels by stereocomplexation of PEG-(PLLA)8and PEG-(PDLA)8star blockcepolymers[J].Biomacromoleeules,2006,7:2790-2795.
    21. Valmikinathan CM, Defroda S, Yu X. Polycaprolactone and bovine serum albuminbased nanofibers for controlled release of nerve growth factor. Biomacromolecules.2009May11;10(5):1084-9.
    22. Pfister LA, Alther E, Papalo zos M. Controlled nerve growth factor release frommulti-ply alginate/chitosan-based nerve conduits. Eur J Pharm Biopharm.2008Jun;69(2):563-72.
    23. Philip JJ, Stacy LS, Sarah ES, et al. Maintaining bioactivity of NGF for controlledrelease from PLGA using PEG[J]. Journal of Biomedical Materials.
    24.于海龙,彭江,孙华燕,等.化学去细胞同种异体神经复合缓释神经生长因子修复周围神经缺损[J].中国修复重建外科杂志.2008,22(11):1373-1377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700